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Abstract

This paper presents a disaster detection framework based on aerial imagery, utilizing a
Branch Convolutional Neural Network (B-CNN) to enhance feature learning efficiency. The
B-CNN architecture incorporates branch training, enabling effective training and inference
with reduced model parameters. To further optimize resource usage, the framework
integrates DoReFa-Net for weight quantization and fixed-point parameter representation.
An early exit mechanism is introduced to support low-latency, energy-efficient predictions.
The proposed B-CNN hardware accelerator is implemented using TSMC 16 nm CMOS
technology, incorporating power gating techniques to manage memory power consumption.
Post-layout simulations demonstrate that the proposed hardware accelerator operates at
500 MHz with a power consumption of 37.56 mW. The system achieves a disaster prediction
accuracy of 88.18%, highlighting its effectiveness and suitability for low-power, real-time
applications in aerial disaster monitoring.

Keywords: unmanned aerial vehicles (UAVs); disaster detection; neural networks;
quantization; fixed-point arithmetic; real-time systems; early-exit mechanism; digital circuits

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have attracted considerable attention
as a remote sensing platform across various application domains, including agricultural
monitoring [1], search and rescue operations [2], and traffic management [3]. Traditional
cloud computing architectures require data transmission between terminal devices and
remote servers, which introduces challenges such as data security vulnerabilities, privacy
concerns, and network latency. UAVs address these issues by autonomously executing
computational and processing tasks, thereby enabling more efficient and reliable detection
and recognition.

Moreover, UAVs are widely utilized in disaster detection. They offer efficient monitor-
ing capabilities, enabling rapid coverage of large areas and facilitating timely acquisition
of disaster overviews. This capability supports swift situational awareness and the imple-
mentation of appropriate response measures. In addition, UAVs are adept at navigating
complex geographical and topographical conditions, including mountainous regions, bod-
ies of water, and urban environments, thus demonstrating significant potential in disaster
monitoring applications. Notably, UAVs are equipped with high-resolution cameras that
allow for the acquisition of detailed imagery, thereby enhancing the accuracy of disaster as-
sessment. For instance, UAV-mounted cameras can distinctly capture submerged structures
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during floods [4], the formation of landslides after slope collapses [5], and burning areas in
wildfires [6]. Finally, UAVs can promptly gather and transmit disaster-related information
to command centers, contributing to the mitigation of disaster-induced losses.

The limited flight endurance of UAVs constrains their capacity for continuous monitor-
ing, spatial coverage, and high-resolution observation, thereby posing significant challenges
to effective disaster response and loss mitigation. For instance, a long-range DJI drone [7]
equipped with a 4280 mAh battery typically achieves a flight duration of 28 min. When
loaded with a 5 V, 5 W Jetson Nano module [8], its flight time decreases drastically to
approximately 3.7 min, reducing by about 87%, and this does not even consider the impact
of weight. In contrast, when carrying a 40 mW Application-Specific Integrated Circuit
(ASIC), the drone can maintain a flight time of 21 min, representing only a 25% reduction.
These comparisons underscore the critical need for developing low-power chips to extend
UAV flight time, which is essential for effectively executing disaster detection missions.

Additionally, the aforementioned applications are limited to the detection of individual
events, resulting in UAVs being unable to effectively adapt to different environments. This
limitation hinders the development of UAVs from disaster prevention and management.
Hence, the creation of AIDER [9] dataset entailed the manual collection of images for
four disaster classes: Fire, Flood, Collapsed Building, Traffic Accidents, along with a
category representing the Normal class.

Prior studies have explored architectural and training optimizations to enhance model
performance. For example, in Ref. [10], the use of atrous convolutions enables multi-scale
feature extraction by enlarging the receptive field without increasing parameter count. In
Ref. [11], data augmentation techniques (e.g., rotation, flipping, intensity variation) improve
model generalization, while different layer configurations are evaluated to balance accuracy
and complexity. In Ref. [12], EfficientNet is adopted as a backbone model, employing
width scaling and attention mechanisms to focus on salient features while maintaining a
lightweight structure.

However, many existing approaches emphasize accuracy at the expense of computa-
tional complexity and energy efficiency, thereby limiting their feasibility for deployment
on power-constrained UAV platforms. To address this limitation, an energy-efficient and
lightweight disaster classification model is proposed, suitable for real-time deployment on
UAVs while maintaining high accuracy and full functional capability.

In this paper, a lightweight convolutional neural network (CNN) model is proposed
for disaster recognition. The model incorporates a hierarchical classification framework
based on coarse and fine category levels to enhance classification accuracy. In addition, an
early exit mechanism is employed to substantially reduce computational overhead. For
hardware implementation using the TSMC 16 nm CMOS process, weight and activation
quantization techniques are applied to reduce memory space demand. These strategies
collectively improve the feasibility and efficiency of deploying neural networks on UAVs
for disaster classification tasks.

The main contributions of this paper can be summarized as follows:

1. A hierarchical classification strategy is integrated to differentiate between coarse- and
fine-grained disaster categories. This approach enhances the semantic richness and
interpretability of the learned features, allowing the model to achieve comparable or
superior accuracy with a reduced number of parameters.

2. Alightweight convolutional neural network incorporating an early-exit mechanism
is designed to enable dynamic inference based on prediction confidence. This sig-
nificantly reduces computational demands and energy consumption, facilitating
low-latency and energy-efficient disaster recognition suitable for deployment on
UAV platforms.
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3. The proposed model is designed with resource efficiency in mind, minimizing memory
usage and computational overhead to enable deployment on power-constrained UAV
hardware. This ensures practical feasibility while maintaining reliable performance in
real-world disaster monitoring scenarios.

The remainder of the paper is organized as follows: Section 2 presents an overview of
the related work on model quantization. Section 3 shows the architecture of the proposed B-
CNN. Section 4 describes the hardware implementation of the proposed B-CNN. Section 5
provides the experimental results, while the conclusion is presented in Section 6.

2. Related Work

Recent advances in model compression and efficient deep learning have promoted
quantization as a key strategy for deploying neural networks on resource-constrained
devices. In this section, existing methods are categorized into three groups: weight quan-
tization techniques, activation quantization and function optimization, and architectural
innovations that enhance inference efficiency.

2.1. Weight Quantization Techniques

Traditional deep neural networks rely on 32-bit floating-point precision, offering high
accuracy at the cost of computational and memory demands. To alleviate this, many
studies have explored reducing the bit-width of weights. For instance, Binary Neural
Networks (BNNSs) [13] restrict weights to +1 and —1, drastically lowering memory usage
and computational cost. However, the representational capacity is significantly limited,
often resulting in noticeable accuracy degradation. Ternary Weight Networks (TWNs) [14]
allow weights of +1, 0, and —1, offering improved accuracy and a trade-off between
model sparsity and performance. Nevertheless, both BNNs and TWNs face challenges in
maintaining high accuracy, particularly for complex tasks such as disaster recognition.

2.2. Activation Quantization and Function Optimization

Activation functions such as ReLU are commonly used due to their simplicity, but
their unbounded outputs can lead to quantization inefficiencies. To address this, Parame-
terized Clipping Activation (PACT) [15] introduces a learnable clipping parameter «, which
adaptively bounds activations during training, effectively reducing quantization error.
DoReFa-Net [16] further generalizes this idea by applying quantization to both weights
and activations at arbitrary bit-widths. It introduces a general k-bit quantization function,
as shown in Equation (1).

quantized; (x) = 2]{17_1r0und<(2k — 1) x) (1)

For weight quantization, weights are first constrained to the [—1, 1] range using the
hyperbolic tangent function, then normalized and quantized as shown in Equation (2).

e . tanh(r) 1y
fo(r) = 2quantize; ( 2max([tanh (r)]) ta) 1

2.3. Architectural Innovations for Efficient Inference

(2)

Beyond quantization, architectural strategies have emerged to improve efficiency.
Branch Convolutional Neural Networks (B-CNNs) [17] introduce hierarchical outputs
aligned with semantic label structures, enabling both coarse- and fine-grained classification
with intermediate supervision. This enhances interpretability while reducing computa-
tional overhead. BranchyNet [18] extends this concept with early-exit mechanisms that
allow inference to terminate once confidence thresholds are met, reducing latency and
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energy consumption. However, these architectures require careful design to avoid perfor-
mance bottlenecks and to ensure early branches still provide reliable predictions.

2.4. Summary

In summary, previous research has predominantly concentrated on software-level
optimizations and neural network architecture design, while hardware solutions addressing
these issues remain relatively scarce. As mentioned earlier, deploying existing embedded
platforms (e.g., Jetson Nano) that support deep learning inference on UAVs significantly
increases battery consumption, thus shortening flight duration. On the other hand, relying
on cloud-based inference requires stable, high-bandwidth communication networks, which
can often be unreliable or unavailable in disaster-affected areas. To address these challenges,
this work proposes a customized ASIC solution specifically designed for UAV-based
disaster recognition, aiming to enable real-time, energy-efficient inference under conditions
of limited power consumption and constrained communication.

3. The Proposed B-CNN Architecture
3.1. B-CNN Architecture Overview

This paper presents a branch CNN-based approach, referred to as B-CNN, for low-
power disaster detection, suitable for real-time classification. As previously noted, the
AIDER dataset contains various disaster scenarios captured from aerial imagery and is thus
adopted in this work as a case for method evaluation. Specifically, a total of 6433 aerial
images were used. After random shuffling, 80% of the data (5147 images) were allocated
for model training and the remaining 20% (1286 images) for testing. Notably, while the
dataset provides diverse scenes and multiple disaster types, it primarily focuses on event
classification and does not explicitly annotate environmental conditions such as fog, rain,
or nighttime lighting. Detailed information about the training set and test set in each class
is provided in Table 1.

Table 1. The amount of training set and test set in each class.

Class Amount of Training Data Amount of Test Data
Fire 417 104
Flood 421 105
Collapsed building 409 102
Traffic accidents 388 97
Normal 3512 878
Total 5147 1286

Figure 1 depicts the workflow for constructing the proposed branch CNN model
with an early-exit mechanism. As illustrated, following image preprocessing, the first step
involves constructing a label tree for the dataset. This tree clusters frequently confused
classes together to facilitate hierarchical prediction. After completing data preprocessing
and label tree construction, a suitable neural network architecture is selected through
iterative experimentation. Given that images captured by drones are predominantly of the
normal class, the early-exit mechanism can be effectively applied at the coarse prediction
stage to conserve energy and reduce computational overhead.
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Figure 1. Flowchart for designing the software B-CNN model.

Subsequently, the model is implemented and trained using Keras until a satisfactory
test accuracy is achieved. Upon completion of model construction, a series of quanti-
zation techniques were implemented to enable deployment on edge devices. Given the
limited computational and storage resources of edge hardware, reducing memory consump-
tion and computational complexity is crucial. To address these constraints, DoReFa-Net
was applied for weight quantization, while PACT was adopted for activation quantiza-
tion. Both approaches are quantization-aware methods that integrate quantization into
the training phase and retrain the model, thus minimizing accuracy degradation caused
by quantization. Following quantization-aware training, all model parameters are con-
verted into fixed-point representations, offering better hardware compatibility and signifi-
cantly reducing implementation costs. Notably, this procedure can be considered as post-
training quantization-aware processing. As illustrated in Figure 1, this strategy achieves
an effective balance between model efficiency and accuracy, with only minimal accuracy
degradation. Finally, Python 3.10.x code is employed to validate the consistency between
software-based and hardware-based computations, marking the completion of the software
implementation phase.

In selecting an appropriate image preprocessing strategy, it is essential to evaluate its
impact on model accuracy and computational resource consumption. Since the images
in the dataset vary in size, all inputs are initially resized to 128 x 128 pixels to balance
model complexity and predictive performance. A preliminary five-layer CNN model is
constructed to facilitate the evaluation of various preprocessing approaches. Subsequently,
as shown in Table 2, experiments are conducted using different image resizing strategies to
assess their effects on classification accuracy.

Table 2. The accuracy of different compression methods across various image sizes.

Nearest Neighbor Interpolation

Bilinear Interpolation Area Interpolation Bicubic Interpolation

Image Size Test Accuracy Test Accuracy Test Accuracy Test Accuracy
128 x 128 85.31% 90.28% 90.34% 90.31%

64 x 64 78.72% 90.12% 90.21% 90.25%

32 x 32 66.34% 73.57% 74.39% 75.44%
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The results presented in Table 2 demonstrate the substantial impact of the nearest-
neighbor interpolation method on classification accuracy, with a marked decline observed
when images are scaled to 32 x 32 pixels. In contrast, the other three interpolation methods
yield superior performance. Although area and bicubic interpolation methods achieve
slightly higher accuracy than bilinear interpolation, they impose significantly greater
computational complexity. Therefore, considering both computational efficiency and
classification accuracy, the proposed architecture adopts bilinear interpolation and resizes
input images to 64 x 64 pixels for subsequent model training and evaluation.

Prior to constructing the branch CNN model, it is necessary to establish a label tree for
the dataset by grouping classes that are frequently misclassified. The dataset comprises
five classes, with the Normal class isolated to enable its use within the early-exit mechanism.
Initially, a compact five-layer neural network is developed and trained on the remaining
classes intended for hierarchical classification.

As shown in Table 3, the class most frequently confused with Traffic Accidents is
Collapsed Building, indicating a strong tendency for misclassification between these
two categories. Consequently, they are grouped together to form a subclass named Acci-
dent. Similarly, a high degree of mutual confusion is observed between Fire and Flood,
leading to their grouping into a subclass named Disaster.

Table 3. The confusion matrix for creating the label tree.

Fire Flood Collapsed Building Traffic Accidents
Fire 75 25 3 1
Flood 25 67 6 7
Collapsed building 6 11 47 38
Traffic accidents 8 6 27 56

To better understand the proposed model, the final label tree for the dataset is con-
structed, as illustrated in Figure 2. Based on this hierarchical structure, the branch CNN
model produces both coarse- and fine-grained predictions for each input image. For exam-
ple, when processing an image depicting a fire, the model first outputs a coarse prediction of
Disaster, followed by a fine prediction of Fire. This hierarchical prediction strategy enhances
the semantic richness and interpretability of the model’s outputs, facilitates more effective

feature representation learning, and ultimately improves overall classification accuracy.
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Figure 2. The label tree corresponding to the dataset (all the figures are from the AIDER dataset) [9].
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The feature map sizes for each layer of the proposed branch CNN model are presented
in Figure 3. To maintain the spatial dimensions of the feature maps after convolution,
zero padding is employed. However, this may cause the receptive field center of the kernel
to overlap with edge data points, potentially affecting boundary information. A stride of 1
is used in the convolution operations to enable the extraction of fine-grained features, albeit
at the cost of increased computational complexity. Consequently, pooling is performed
with a stride of 2 to progressively reduce the size of the subsequent feature maps, thereby
decreasing memory usage and computational overhead. In addition, as shown in Figure 3,
normal cases exit and produce prediction results after Convolution Layer 3, while abnormal
cases are processed through the full model and exit after Convolution Layer 5.

Predict result: Normal
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(b) Abnormal cases with complete model.

Figure 3. The proposed model with example input cases. The numbers inside each layer indicate the
dimensions in the format (width x height x channels, stride).

Furthermore, Table 4 illustrates the accuracy differences between the branch CNN
model with and without batch normalization. Although batch normalization introduces
additional parameters and thus imposes greater hardware overhead, it offers notable ben-
efits in terms of accelerating training and enhancing model stability. The inclusion of
batch normalization results in an approximate 3% to 4% improvement in accuracy. There-
fore, incorporating batch normalization into the proposed model is considered essential.
This adjustment is particularly critical for ensuring consistent performance across varying
training conditions.

Table 4. The test accuracy of the branch CNN model with and without BN.

With Batch Normalization Without Batch Normalization
Test accuracy 90.21% 86.67%

Moreover, it is important to analyze the effect of the coarse classifier’s placement
within the proposed model on overall classification accuracy. As shown in Figure 4,
four different positions are tested, referred to as Test1, Test2, Test3, and Test4. According to
the results in Table 5, the coarse classifier at Test] and Test2 exhibits suboptimal performance
due to the limited number of layers and convolutional kernels, which in turn leads to
reduced accuracy in the fine classification stage. Although Test4 benefits from a deeper
architecture, its proximity to the fine classifier reduces the effectiveness of the coarse
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classifier in influencing model training via loss weighting, resulting in slightly lower fine
classifier accuracy compared to Test3. Therefore, based on overall accuracy improvement,
the proposed model adopts Test3 as the optimal placement for the coarse classifier.

Input image — Conv1 layer—— Conv2 layer —— Conv3 layer — Conv4 layer — Conv5 layer —— cIaTsr‘i:er
l l l l
Testl Test2 Test3 Test4
Figure 4. The test placement of coarse classifier in the proposed model.
Table 5. The test accuracy of the placement of coarse classifier in the proposed model.
Testl Test2 Test3 Test4
Test accuracy 85.57% 87.85% 90.21% 90.07%

By incorporating a hierarchical structure of target classes into the model, the branch
CNN leverages structured prior knowledge to enhance the classification process, offering a
distinct advantage over traditional CNN models. As shown in Table 6, the inclusion of the
branch structure leads to a 5-6% improvement in accuracy compared to the model without
the branch component.

Table 6. The test accuracy of the branch CNN model with and without branch.

With Branch Without Branch
Test accuracy 90.21% 84.67%

Based on the architecture of the proposed B-CNN model, the total number of parame-
ters is approximately 24,000. A detailed breakdown of the model parameters is provided in
Table 7.

Table 7. The number of parameters of each operation.

Operation Number of Parameters Sum of Parameters
CONV 3x3x3x8 216
BatchNorm 4x8 32
CONV 8 X3 x3x16 1152
BatchNorm 4 x 16 64
CONV 16 x 3 x 3 x 24 3456
BatchNorm 4 x24 96
FC 24x 3 72
CONV 24 x 3 x 3 x 32 6912
BatchNorm 4 x 32 128
CONV 32 x3x3x40 11,520
BatchNorm 4 x 40 160
FC 40 x 5 200
Total parameters: 24,008
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3.2. B-CNN with Early Exit Mechanism

Drone-captured images predominantly fall under the Normal class. Therefore, an
early-exit mechanism for the Normal class is implemented within the coarse classifier of
the proposed model, as illustrated in Figure 5.

Fine

Input image — Conv1 layer —> Conv2 layer — Conv3 layer ——| Conv4 layer —— Conv5 layer —— classifier

Normal class exit

Coarse
classifier

Figure 5. The early exit of Normal class through coarse classifier in proposed model.

Table 8 shows that the coarse classifier achieves lower accuracy than the fine classifier
for the Normal class but still maintains an accuracy exceeding 85%. However, the coarse
classifier requires fewer parameters and incurs lower computational overhead. As a
result, the proposed branch CNN model enables fast inference and energy efficiency by
implementing an early-exit mechanism for the Normal class at the coarse classification
stage, while utilizing the fine classifier to accurately predict other disaster or accident
categories. This design allows drones with limited hardware resources to perform disaster
detection more effectively.

Table 8. The comparison of coarse and fine classifier to the Normal class.

Parameters FLOPs Accuracy
Coarse classifier 5152 6.1 M 88.67%
Fine classifier 24,008 74 M 95.32%

3.3. Model Quantization Method

Unlike BNN and TWN, which restrict weight quantization to 1-bit or 2-bit precision,
DoReFa-Net provides a quantization scheme that supports flexible bit-width selection.
Accordingly, DoReFa-Net is adopted in this study for weight quantization. It defines a
quantization function that transforms continuous weight values into discrete values ranging
between -1 and 1. This section investigates the selection of an appropriate bit-width to
strike a balance between memory efficiency and weight precision.

First, it is necessary to determine the number of quantization bits required to represent
weight values within the range [—1, 1]. Table 9 presents the classification accuracy of the
proposed model under various quantization bit-widths for each classifier. When weights are
quantized to 7 bits, only a slight degradation in accuracy is observed. However, reducing
the bit-width to 6 bits or fewer results in a significant drop in accuracy. Therefore, the
proposed model is configured to quantize weights to 7 bits.

To accelerate model computation, a direct fixed-point representation is employed and
stored in memory, rather than using a lookup table for conversion. Since DoReFa-Net
constrains weight values to the range [—1, 1], 2 bits are allocated for the integer part of the
weights. The number of fractional bits is then determined. As shown in Table 10, allocating
6 bits for the fractional part yields stable accuracy, whereas reducing the fractional precision
to 5 bits or fewer leads to a noticeable decline in performance. Thus, each weight is
represented using 8 bits in total, with 2 bits assigned to the integer part and 6 bits to the
fractional part.
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Table 9. The accuracy of weight quantization with different bits in DoReFa-Net.
Bits Coarse Accuracy Fine Accuracy
FP32 87.53% 90.21%
9 87.21% 89.95%
8 87.05% 89.87%
7 86.81% 89.72%
6 85.23% 88.48%
5 83.40% 86.28%
4 63.18% 70.36%
Table 10. The accuracy of weight quantization with different decimal bits.
Integer Bits Decimal Bits Coarse Accuracy Fine Accuracy
2 9 86.78% 89.68%
2 8 86.75% 89.67%
2 7 86.41% 89.51%
2 6 86.27% 89.43%
2 5 84.75% 88.39%

Nevertheless, using DoReFa-Net for activation quantization requires additional multi-
plication and division operations in hardware implementations, resulting in a significant
increase in computational complexity during model inference. To address this issue, the
use of PACT for activation quantization is explored. Unlike ReLU, which lacks an upper
bound and therefore demands a wide precision range to accurately represent activation
values, PACT dynamically learns an upper bound for each layer’s activation during train-
ing via backpropagation. Each layer is associated with a distinct upper bound parameter,
denoted as «. However, this design introduces varying memory requirements for feature
maps across layers, thereby posing challenges for efficient memory reuse in subsequent
hardware implementations.

As shown in Table 11, although the a values for each layer exhibit slight variation
between the 100th and 200th training epochs, the resulting accuracy reduction is minimal,
ranging from 0.03% to 0.09%. Furthermore, the integer part of the « values across layers
falls within the range of 1 to 3. Based on these observations, the proposed method first
employs PACT to train the model for a limited number of epochs to determine the activation
upper bounds for each layer, and then selects the maximum observed value as a unified
upper bound for all layers in the subsequent retraining phase. In this case, the maximum «
value is 3, which is used as the fixed upper bound across all layers during retraining.

As shown in Table 12, while the fixed-« model incurs a slight accuracy reduction of
0.07% to 0.1% compared to the original PACT configuration, it significantly reduces the
complexity of subsequent hardware implementation.

Since the activation upper bound is set to 3 for each layer, the integer part is encoded
using 2-bit unsigned integers. Table 13 presents the model accuracy across different levels
of fractional precision. The results indicate that with 6 bits of fractional precision, the
accuracy remains relatively stable. However, a noticeable degradation in accuracy occurs
when the fractional precision is reduced to 5 bits. Consequently, the fractional precision is
fixed at 6 bits, allowing activation values to be stored using only one-quarter of the memory
required by standard 32-bit floating-point representation.
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Table 11. The alpha value in each layer with 100 epochs and 200 epochs.
Alpha Value 100 Epochs 200 Epochs
Layer 1 1.3719286 1.3830165
Layer 2 1.3525951 1.3779949
Layer 3 2.6114667 2.6246102
Layer 4 1.1478527 1.1531808
Layer 5 2.0920019 2.0938022
Coarse accuracy 86.21% 86.24%
Fine accuracy 89.27% 89.36%
Table 12. The accuracy of setting different alpha value.
Clipping Value to 3 PACT
Coarse accuracy 86.14% 86.21%
Fine accuracy 89.17% 89.27%
Table 13. The accuracy of activation quantization with different decimal bits.
Integer Bits Decimal Bits Coarse Accuracy Fine Accuracy
2 9 86.14% 89.17%
2 8 86.05% 89.15%
2 7 85.85% 89.08%
2 6 85.57% 89.02%
2 5 84.26% 87.68%

4. Hardware Implementation
4.1. Fixed-Point Conversion of Batch Normalization

Upon completion of model training, each batch normalization layer produces four
parameters: the mini-batch mean (i), mini-batch variance (zx%), and the learnable scaling
() and shifting (B) factors. To reduce the computational complexity in hardware imple-
mentation, these four parameters can be algebraically reduced to two simplified terms
using mathematical formulations, as shown in Equations (3) and (4), where yp denotes the
mini-batch mean and zx% the mini-batch variance. As a result, the batch normalization com-
putation can be efficiently implemented using only multiplication and addition operations,
as illustrated in Equation (5).

Y = %7 3)
&g

B’ = —(upY') + B 4)

vi=Y'xi+p 5)

Next, the simplified batch normalization parameters are subject to fixed-point quan-
tization. Taking 7 as an example, since its values lie within the range [0, 1], 2 bits are
allocated for the integer part. The fractional bit-width is then determined based on quan-
tization sensitivity. As shown in Table 14, when the fractional precision ranges from 9
to 11 bits, model accuracy remains largely unaffected. However, a noticeable decline in
accuracy is observed when the fractional precision is reduced to 8 bits or fewer. Therefore,
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each 7/ value is represented using 11 bits in total, comprising 2 bits for the integer part and
9 bits for the fractional part.

Table 14. The test accuracy comparison table for the bit-width of 7.

Integer Bits Decimal Bits Coarse Accuracy Fine Accuracy
2 11 85.48% 88.96%
2 10 85.43% 88.82%
2 9 85.36% 88.69%
2 8 82.75% 87.12%
2 7 77.57% 82.43%
2 6 70.81% 76.53%

After completing the fixed-point quantization of v/, a similar procedure is applied to
B. Since B’ values range from —3 to 3, 3 bits are allocated for the signed integer part. The
next step involves determining the appropriate fractional precision. As shown in Table 15,
the model maintains stable accuracy when the number of fractional bits ranges from 6 to 8.
However, a significant degradation in accuracy is observed when the fractional precision is
reduced to 5 bits or fewer. Therefore, p’ is represented in fixed-point format using 3 integer
bits and 6 fractional bits.

Table 15. The test accuracy for different bit-width of '.

Integer Bits Decimal Bits Coarse Accuracy Fine Accuracy
3 8 85.34% 88.65%
3 7 85.25% 88.54%
3 6 85.12% 88.38%
3 5 83.75% 87.43%
3 4 78.69% 82.43%

4.2. B-CNN Hardware Accelerator Architecture

This section presents a detailed discussion of the hardware implementation strategy
and memory utilization. To achieve high efficiency and flexibility, the proposed hardware
architecture utilizes fully on-chip memory blocks, eliminating the requirement for external
memory access. This design choice maximizes memory bandwidth utilization and enables
improved control over memory access scheduling and power management. At the software-
level optimization stage, memory consumption is carefully minimized by compressing
selected intermediate features (as described in detail in Section 3). Furthermore, memory
usage is partitioned into multiple smaller blocks tailored specifically to the demands of
each network layer, thus enabling finer-grained activation control and reducing overall
energy consumption. In addition, to decrease system complexity and power consumption,
convolution computations are implemented using a single set of processing elements (PEs),
which are reused across different layers through a time-multiplexed mechanism. Figure 6
illustrates the hardware architecture of the proposed B-CNN model, which incorporates an
early-exit mechanism.

The memory requirements for hardware computation are primarily divided into two
types: Static Random-Access Memory (SRAM) and Read-Only Memory (ROM). SRAM is
utilized to store the input image, intermediate partial sums generated during computation,
and the feature maps produced after each convolutional layer. ROM is used to store the
weights associated with the convolutional and fully connected layers.
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coarse fine
rom_conv3 rom_conv4
3456 X 8 bits 6912 X 8 bits
sram_img (1~3) sram_psum sram_fmap (1~4)
4096 X 8 bits 4096 X 29 bits 2048 X 8 bits rom_conv1-2 rom_conv5
1368 X 8 bits 11,520 X 8 bits

| l

CNN controller

| Convolution | | Maxpooling | Global average
pooling
| BatchNorm |—>| ReLU I rom_fc1-2 | | Fully
272 X 8 bits connected
l Result

Figure 6. The hardware architecture of proposed B-CNN model with early exit mechanism.

The convolution block performs zero-padding on the input image and feature maps,
and applies convolution operations using the corresponding weights. The batch normaliza-
tion block processes the convolution outputs using the parameters o/ and f, as defined
in Equation (5), through multiplication and addition operations. These parameters are
stored in a look-up table, eliminating the need for an additional ROM. The ReLU block
replaces negative values with zero. The max pooling block performs the pooling operation
to reduce the spatial dimensions of the feature maps. Finally, the global average pooling
block computes the average across each input channel and forwards the results to the fully
connected block for final model prediction.

Table 16 summarizes the memory usage for each layer. The input is a 64 x 64 RGB im-
age, with each pixel value represented using 8 bits. This image is stored across three SRAM
modules, namely sram_img1, sram_img2, and sram_img3, amounting to 98,304 bits. This
constitutes the largest memory allocation in the entire computation process.

Table 16. The memory usage table for each layer.

Stored Data

Feature Map Size Total Size

(Width x Height x Channel x Bit-Width)  (Bits) Data Management

sram_img]l, sram_img?2,

Input image 64 x 64 x 3 x 8 98,304 -
sram_img3
Feature maps of layer 1 32x32x8x8 65,536 sram_fmapl, sram_fmap2,
sram_fmap3, sram_fmap4
Feature maps of layer 2 16 x 16 x 16 x 8 32,768 sram_img1l
Feature maps of layer 3 8 x 8 x24x 8 12,288 sram_fmap1l
Feature maps of layer 4 4x4x32x8 4096 sram_fmap2
Feature maps of layer 5 2x2x40x8 1280 sram_fmap1l

After loading the input image into SRAM, convolution operations begin. The fea-
ture map generated by the first convolutional layer is stored in four SRAM modules:
sram_fmap1, sram_fmap2, sram_fmap3, and sram_fmap4, with a total memory usage of
65,536 bits. This makes it the largest intermediate feature map in the model. Due to max
pooling, the spatial resolution of feature maps is halved in each subsequent layer. Conse-
quently, from the third layer onward, feature maps are alternately stored in sram_fmap1
and sram_fmap2, eliminating the need for additional memory allocation.
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The proposed B-CNN model comprises a coarse prediction stage followed by a fine
prediction stage. The cycle count required to complete the full model inference is illustrated
in Figure 7. Inference with the B-CNN model requires a total of 2,350,000 cycles. However,
the coarse prediction stage alone completes 1,850,000 cycles. This enables early termination
of inference for data belonging to the Normal class, significantly reducing computational
demand and power consumption.

| 2,350,000 cycles |

| 1,850,000 cycles | 500,000 cycles |
Coarse Fine

Figure 7. The different cycle counts for coarse and fine prediction.

For other categories such as disasters or accidents, more extensive computation is
required to ensure higher classification accuracy. Nevertheless, after the coarse classifier,
only an additional 500,000 cycles are required to complete the fine prediction stage.

Power gating is a key technique in memory management, aimed at improving energy
efficiency in electronic systems. By selectively disabling power to inactive sections of a
circuit, it significantly reduces both dynamic and static power consumption. In memory
systems, energy savings are achieved by deactivating unused memory blocks, ensuring
that only the memory blocks required for current operations remain powered.

Control circuitry plays a critical role in managing the power supply by determining
when to enable or disable specific memory regions based on access patterns. This technique
not only enhances energy efficiency but also reduces heat generation, which is essential for
maintaining device reliability and prolonging operational lifespan. The proposed memory
power gating strategy is illustrated in Figure 8. Notably, in the proposed design, power
gating is applied exclusively to the memory subsystem, such as ROM and RAM modules.
Other components, including logic and control circuits, are not subjected to power gating
in this architecture.

sram_imgl

4096 x 8 bits
sram_fmap3 sram_img2
2048 x 8 bits 4096 X 8 bits
sram_fmap4 sram_img3 sram_psum sram_fmap2
2048 x 8 bits 4096 X 8 bits 4096 x 29 bits 2048 x 8 bits
pgenl pgen2 pgen3 pgend
Power management
pgens pgen6 pgen7 pgen8

rom_convl-2
1368 X 8 bits

rom_conv3
3456 X 8 bits

rom_conv4
6912 X 8 bits

rom_convs
11,520 x 8 bits

Figure 8. The power management for memory power gating control.

The power control module, referred to as the power management unit, generates
control signals (pgenl to pgen8) to operate the power switches associated with various
memory blocks. Due to shared circuit activity, sram_img1, sram_fmap3, and sram_fmap4
are managed collectively by the control signal pgenl, while sram_img?2 and sram_img3 are
controlled by pgen2. Additional details regarding memory power management across the
entire hardware architecture are provided in Table 17.
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Table 17. The power state in each layer.
Layer Power Domain
pgenl pgen2 pgen3 pgend pgenb pgen6 pgen7 pgen8

layerl On On On On On Off Offt Off
layer2 On Off On On On Off Off Off
layer3 On Off On Off Off On Off Off
layer4 Off Off On On Off Off On Off
layer5 Off Off Offt On Off Off Oft On

Figure 9 illustrates the computation flow of the proposed B-CNN hardware architec-
ture. After loading the input image, the inference process is divided into a three-layer
coarse prediction stage or a five-layer fine prediction stage. Each layer performs a simi-
lar sequence of operations, including convolution, batch normalization, ReLU activation,
max-pooling, and memory read /write processes. The final prediction result, regardless
of whether it is produced by the coarse or fine prediction stage, is obtained by applying
global average pooling to the feature map, followed by a fully connected layer.

l

Coarse prediction
Load input image

o . . 1. Read input data from sram_fmap1
1. Write input image to sram_img (1~3) 2. Global average pooling -
v 3. Fully connected
Layer 1 v
. Read input image from sram_img (1~3) Layer 4

[ S

. Convolution 1. Read input data from sram_fmap1

. Batch normalization 2. Convolution
4. ReLU 3. Batch normalization
5. Max-pooling 4.RelLU
6. Write feature map to sram_fmap (1~4) 5. Max-pooling

v 6. Write feature map to sram_fmap2
Layer 2 v
1. Read input data from sram_fmap (1~4) Layer 5
2. Convolution 1. Read input data from sram_fmap?2
3. Batch normalization 2. Convolution
4.ReLU 3. Batch normalization
5. Max-pooling 4.RelLU
6. Write feature map to sram_img1 5. Max-pooling
v 6. Write feature map to sram_fmap1
Layer 3 1

1. Read input data from sram_img1 Fine prediction
2. Convolution 1. Read input data from sram_fmap!
3. Batch normalization 2. Global average pooling
4. RelLU 3. Fully connected
5. Max-pooling
6. Write feature map to sram_fmapl

l

Figure 9. The computation flow for the proposed B-CNN hardware design.

5. Experimental Results

This section presents an analysis of the experimental results for the proposed B-CNN
hardware design. The design was implemented using TSMC 16 nm CMOS technology.
To evaluate power consumption, an automatic placement and routing (APR) flow was
employed to collect relevant experimental data. The layout was completed using Cadence
Innovus 21.17, followed by post-layout simulation to generate switching activity data.
Subsequently, the power consumption was estimated using the Powermeter utility within
Cadence Voltus 21.16, incorporating simulated switching activity and standard cell library
power models. Interconnect parasitics, including resistance and capacitance (RC) effects,
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were also taken into account. During the post-layout simulation, the design operated at
a frequency of 500 MHz. Note that, the proposed design’s maximum clock frequency
(500 MHz) is limited by the ROM access time, with rom_conv5 being the critical path due
to its relatively long delay.

As shown in Figure 10, the proposed B-CNN hardware incorporating power-gating
operates at a power consumption of 37.56 mW under a 500 MHz clock frequency. This
corresponds to a reduction of approximately 12.9% compared to the design without power-
gating. These results demonstrate the efficacy of the power-gating technique in achieving
low-power operation for the circuit.

43.14 = Dynamic Power
mm Leakage Power

37.56

Power (mW)

N
S

10

0

cené&pgen off cen on&pgen off cen&pgen on

Figure 10. The power management for power gating control.

Table 18 illustrates the classification accuracy at various stages, from software imple-
mentation to hardware realization. The results indicate that, following quantization and
fixed-point representation, the representable numerical precision of model parameters is
reduced, leading to a cumulative accuracy degradation of approximately 2.1%. During
the Verilog Register Transfer Level (RTL) simulation phase of the proposed B-CNN hard-
ware, minor bit-level discrepancies in computation further contributed to the reduction in
accuracy. Nevertheless, the overall classification accuracy remains above 88%.

Table 18. The test accuracy with different operations.

Operation of Each Stage Coarse Accuracy Fine Accuracy
Build B-CNN model 87.53% 90.21%
Weight quantization to 8 bits 86.27% 89.43%
Activation quantization to 8 bits 85.57% 89.02%
Convert v’ in BN to 11 bits 85.24% 88.63%
Convert B’ in BN to 9 bits 85.02% 88.38%
Verilog Register Transfer Level 84.85% 88.18%

Table 19 summarizes the test accuracy and classification results obtained during the
Verilog RTL simulation stage. Following model quantization and fixed-point conversion,
the highest classification accuracy is observed for the Normal category, reaching 93.17% and
remaining above 90%. In contrast, the lowest accuracy is recorded for the Traffic Accident
category, with a classification accuracy of only 73.20%. To further analyze the system
behavior, missed detection and false alarm rates were calculated based on the experimental
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results. The missed detection rate was approximately 8.58%, indicating that some disaster
scenarios were incorrectly classified as normal. The false alarm rate was approximately
5.47%, suggesting that normal scenarios were mistakenly identified as disasters. Despite
these errors, their impacts can be mitigated through repeated detection of spatially or
temporally adjacent frames. Such redundancy-based strategies are particularly suitable
for drone-based applications, as video inputs from these applications provide continuous
observations of the same area.

Table 19. The test accuracy and classification results in Verilog RTL simulation.

Image Number

Image Type (Correct/Total) Test Accuracy
Collapsed building 75/102 73.52%
Fire 84/104 80.77%
Flood 86/105 81.90%
Normal 818/878 93.17%
Traffic accident 71/97 73.20%
Overall accuracy 1134/1286 88.18%

Following multiple adjustments and testing, the proposed B-CNN hardware circuit
achieves a maximum operating frequency of 500 MHz. As shown in Equation (6), the total
inference time for a complete model prediction is 0.0047 s. Equations (7) and (8) detail the
computation times for each classifier, with the coarse classifier requiring 0.0037 s and the
fine classifier requiring 0.001 s. It is worth noting that the reported latency in this work
already accounts for the activation and deactivation overhead introduced by the power
gating mechanism. This design enables UAVs to execute disaster detection tasks more
rapidly and efficiently, while conserving power during operation.

2,350,000 x 2 ns = 4,700,000 ns ~ 0.0047 s (6)
1,850,000 x 2ns = 3,700,000 ns ~ 0.0037 s (7)
500,000 x 2ns = 1,000,000 ns ~ 0.001 s 8)

The chip layout of the proposed B-CNN hardware design is shown in Figure 11, which
illustrates the locations of the ROM, SRAM, and partial sum (PSUM) components. The
total chip area is 0.75 x 0.75 mm?. Note that Figure 11 illustrates a verification layout used
for post-layout simulation and does not represent a complete tape-out-ready design.

The implementation results of the proposed B-CNN hardware design are summarized
in Table 20. The design, implemented using TSMC 16 nm CMOS technology, achieves
a maximum operating frequency of 500 MHz, with a power consumption of 37.56 mW
and a total memory size of 57 KB. For more detail, the power consumption can be further
broken down into memory blocks and logic circuits. The memory blocks include both
SRAM and ROM, while the logic circuits refer to the computational components. The
power consumption of the memory blocks is approximately 2.169 mW, whereas that of the
logic circuits is around 35.39 mW.

Table 21 provides a detailed comparison of prior arts used for processing the AIDER
dataset, including various hardware information, image sizes, quantization methods,
inference times, memory sizes, FLOPs, and accuracies.
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0.75 mm

Logic

0.75 mm

circuit

Figure 11. The layout of the proposed B-CNN circuit.

Table 20. The B-CNN hardware implementation results.

The Proposed Architecture
Technology TSMC 16 nm CMOS
Frequency (MHz) 500
Memory block 2.169
Power (mW) Total 3756 T Togic circuit 3539
Chip area (mm?) 0.5625
Parameters 24,008
Memory size (KB) 57
Table 21. Comparison with prior methods.
IEEE IEEE IEEE IEEE Provosed Work
CVPR’2019 [9] JSTARS’2020 [10] EUVIP’2022 [11] LGRS"2023 [12] P
Dataset AIDER AIDER AIDER AIDER AIDER
Architecture ERNet EmergencyNet CNN WATT-EffNet Branch CNN
Hardware . . NVIDIA Tesla T4
information Intel i7 ARM Cortex-A57 Intel i5 GPU + TPU 16 nm ASIC
Image size 240 x 240 240 x 240 100 x 100 224 x 224 64 x 64
Quantization DoReFa-Net +
method No No No No Fixed-point
. 0.0037 (coarse)/
Inference time (s) 0.018 0.041 0.069 N/A 0.0047 (fine)
Memory size (KB) 300 360 3072 2690 57
6.1 M (coarse)/
FLOPs N/A 57M 22M N/A 7.4 M (fine)
o o o o 90.21% (software)/
Accuracy 90.1% 83.1% 88% 88.5% 88.18% (hardware)

Note: N/A = not available, indicating that data were not provided by the comparative references.

Since the power consumption details in references [9-12] are not reported, the power
estimates are derived primarily from manufacturer specifications: 91 W for the Intel i7,
28 W for the Intel i5, and 70 W for the NVIDIA T4 GPU. Additionally, memory usage is not
provided in reference [12]; only the number of model parameters is reported. As a result,



Sensors 2025, 25, 4867

19 of 21

the comparison table assumes each parameter is represented as a 32-bit floating-point
value and converts this into kilobytes for estimation. Furthermore, the accuracy of 83.1%
attributed to reference [10] is derived from the analysis presented in reference [12].

The proposed B-CNN outperforms the models in [9-12] in terms of inference time
and memory efficiency by resizing input images to 64 x 64 pixels and employing model
quantization to reduce both the number of parameters and their bit-width. This enables
faster predictions with lower memory requirements in hardware implementation. Although
the proposed model exhibits slightly lower accuracy compared to [9,12] due to reduced
parameter complexity, the incorporation of branch-based training strategies enhances
feature learning, resulting in competitive overall performance.

6. Conclusions

This paper proposes a B-CNN model with an early-exit mechanism for UAV-based dis-
aster detection. A label tree is constructed to address frequently confused classes, enhancing
feature representation through branch-based training and reducing the parameter count
with negligible loss in classification accuracy. The model employs DoReFa-Net along with
a clipped activation function to constrain weights and activations, while fixed-point quanti-
zation is applied to determine appropriate decimal precision. Software evaluation shows
that the B-CNN achieves 90.21% accuracy with only 24K parameters. After quantization, it
maintains an accuracy of 88.38% using 8-bit weights and activations, reducing memory and
computational demands to just 25% of those required by conventional 32-bit CNNs. Batch
normalization is simplified using mathematical expressions, allowing computation with
only two parameters via basic arithmetic operations, followed by fixed-point quantization.

For hardware implementation, memory power consumption is reduced through power
gating by disabling idle memory blocks. The proposed hardware design is implemented
using TSMC 16 nm CMOS technology, operates at 500 MHz, consumes 37.56 mW of power,
and achieves a final classification accuracy of 88.18%.

Moreover, since UAVs often operate in complex environments, they may encounter
various challenging conditions such as fog, nighttime scenes, or low visibility. To address
these issues, several image enhancement techniques have been proposed in the literature.
For example, Sun et al. [19] introduced an adaptive dehazing and tracking framework that
selectively performs dehazing during hazy conditions, improving tracking robustness in
UAV videos. Similarly, Liu et al. [20] proposed a variational nighttime image dehazing
method tailored for intelligent transportation systems, which effectively enhances visibility
in dark and glowing scenes using hybrid regularization. In the future, we plan to explore the
integration of such lightweight image preprocessing techniques into our system, allowing
our design to better adapt to challenging environmental conditions and further enhance its
practical applicability.
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