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Abstract: This paper presents a hardware implementation of a one-dimensional convolutional neural
network using depthwise separable convolution (DSC) on the VC707 FPGA development board. The
design processes the one-dimensional rolling bearing current signal dataset provided by Paderborn
University (PU), employing minimal preprocessing to maximize the comprehensiveness of feature
extraction. To address the high parameter demands commonly associated with convolutional neural
networks (CNNs), the model incorporates DSC, significantly reducing computational complexity and
parameter load. Additionally, the DoReFa-Net quantization method is applied to compress network
parameters and activation function outputs, thereby minimizing memory usage. The quantized DSC
model requires approximately 22 KB of storage and performs 1,203,128 floating-point operations in
total. The implementation achieves a power consumption of 527 mW at a clock frequency of 50 MHz,
while delivering a fault diagnosis accuracy of 96.12%.

Keywords: current signal fault diagnosis; depthwise separable convolution (DSC); neural networks;
quantization; fixed-point arithmetic; real-time systems; digital circuits

1. Introduction

With the advent of advanced industrialization, factory production has largely tran-
sitioned from manual labor to automation, with machines undertaking the majority of
tasks. This shift has led to the development of industrial equipment that is increasingly
complex, sophisticated, and intelligent. Consequently, greater attention is being directed
toward ensuring the quality and reliability of the mechanical components that underpin
these systems.

Rolling bearings are critical components in modern industrial machinery, playing a
fundamental role in supporting rotating elements under load and directly influencing the
performance and stability of the entire system [1]. Operating under the harsh conditions
typical of industrial environments, bearings are subject to vibrations that can lead to
aging, wear, and fatigue. Such degradation may result in bearing failures, potentially
causing significant malfunctions, accidents, and economic losses. Research indicates that
approximately 30% of failures in rotating machinery stem from bearing damage [2]. To
mitigate unexpected downtime and associated costs, the development of advanced fault
diagnosis techniques for rolling bearings has become a focal point of study [3].

Traditional data-driven methods for bearing fault diagnosis include model-driven,
signal-driven, and knowledge-driven approaches, which rely on manually extracting
features from data based on accumulated expertise. These features are subsequently used
to train machine learning algorithms, such as support vector machines or random forests,
to classify the health status of CNC machines. Techniques like fast Fourier transform
(FFT) and wavelet transform are employed to reduce data dimensionality and enhance the
efficiency of fault diagnosis by isolating key signal characteristics.
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Zhang [4] proposed a feature extraction method for analog circuit incipient fault di-
agnosis that combines wavelet transform, Kernel Entropy Component Analysis (KECA),
and One-Against-One Least Squares Support Vector Machine (OAO LSSVM), achieving
significant improvements in diagnostic accuracy and dimensionality reduction. Subse-
quently, they introduced an enhanced wavelet transform approach [5] incorporating op-
timal wavelet basis function selection and a Multiple Kernel Extreme Learning Machine
(MKELM) optimized using particle swarm, further advancing feature extraction and fault
identification capabilities. On the other hand, researchers have developed diagnostic
methodologies such as a fault diagnosis method leveraging Manhattan distance evaluation
and voltage difference analysis [6], which provides sensitive and reliable detection and
isolation of multiple faults. Additionally, Du [7] proposed an Integrated Gradient-based
Continuous Wavelet Transform (IG-CWT) method to isolate critical frequency components
for bearing fault diagnosis, enhancing data preprocessing for deep learning applications.

Data-driven methods, while effective, often demand substantial memory and com-
putational resources for feature extraction, limiting their feasibility for edge computing
applications. Similarly, statistical approaches face challenges in real-time applications due
to their reliance on extensive pre-processing and batch computations. For instance, Tan [3]
explored bearing fault diagnosis in rotating machinery using data from three accelerome-
ters under normal operating conditions and three fault types (inner race defect, outer race
defect, and ball defect). Statistical analysis of the sensor data extracted 14 features per sen-
sor, yielding 42 features per rotation as input for a Deep Belief Network (DBN) trained for
fault classification. However, calculating features such as skewness and kurtosis required
storing 500 data points per sensor, making the approach impractical for hardware-based
implementations. This limitation underscores its suitability for software-based processing
rather than real-time health monitoring of CNC machine tools.

In summary, directly classifying real-time data offers a practical solution for field
applications by eliminating the need for extensive preprocessing and large memory storage,
thereby enhancing compatibility with real-time monitoring systems. While numerous
studies have successfully employed neural network-based methods with various architec-
tures [8–17] to achieve high diagnostic accuracy, these approaches often demand significant
memory and hardware resources, making them unsuitable for devices with constrained
hardware capabilities. This paper addresses these challenges by utilizing a depthwise sepa-
rable convolution (DSC) to reduce the parameter count and computational complexity of
convolution operations, thereby optimizing hardware resource usage. The study evaluates
the proposed method using the Paderborn University (PU)-bearing dataset [18], a pub-
lic dataset for bearing fault diagnosis that includes synchronized current and vibration
signal data.

The main contributions in this paper are summarized as follows:

1. By maintaining the same number of sample points, down-sampling extends the
temporal range of the input signal, enhancing the network’s ability to extract features
efficiently.

2. This paper utilizes current signals instead of vibration signals, reducing sensor costs
while maintaining high diagnostic accuracy.

3. The proposed DSC architecture achieves significantly lower memory usage and fewer
floating-point operations (FLOPs) compared to traditional CNNs, with negligible
impact on accuracy.

4. The application of DoReFa-Net for weight and activation function quantization further
reduces memory consumption and computational complexity.

The structure of this paper is as follows: Section 2 provides a comprehensive review
of related research on bearing fault diagnosis. Section 3 introduces the proposed DSC
architecture in detail, followed by Section 4, which explains its hardware implementation.
Experimental results are presented in Section 5, and Section 6 provides the conclusion.
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2. Related Work

Recent studies have made significant progress in applying machine learning tech-
niques to fault diagnosis for rolling bearings, yielding promising results. These methods
generally follow a two-stage process: feature extraction and fault classification, with the
success of diagnosis heavily dependent on the quality of feature extraction. Traditional
approaches, however, face key challenges, as they often rely on manual feature extrac-
tion followed by the use of classifiers for fault categorization. This dependence not only
reduces the accuracy of feature detection but also increases computational and implemen-
tation costs.

Ref. [19] introduced a fault classification algorithm based on multi-domain feature
optimization, leveraging statistical analysis, fast Fourier transform (FFT), and variational
mode decomposition (VMD) to extract and optimize fault-relevant features across multiple
domains. This approach facilitates the efficient identification of features that are both
meaningful and sensitive to fault conditions. Similarly, Ref. [11] presented a feature
distance stacking autoencoder (FD-SAE) for rolling bearing fault diagnosis. Utilizing
the clear distinctions between normal and faulty data in the CWRU dataset (a widely
used benchmark for bearing fault diagnosis), support vector machine (SVM) and FD-SAE
methods are applied independently to diagnose normal and faulty data, significantly
reducing computational complexity.

Long short-term memory (LSTM) networks, an extension of recurrent neural networks
(RNNs) designed to address long-term dependency challenges, have gained significant
attention in recent applications. By employing gating mechanisms, LSTMs effectively
regulate memory retention, determining how prior states, stored information, and input
data are combined. In Ref. [12], the parameters of an LSTM-based classification model were
fine-tuned, and L1 regularization was applied to enhance generalization by promoting
sparsity and mitigating overfitting.

Ref. [20] proposed a method for bearing signal analysis that integrates variational
mode decomposition with hierarchical fuzzy entropy to effectively capture critical signal
features. To further reduce human intervention and processing time, AlexNet is utilized
for automated feature extraction. Compared to traditional CNNs, AlexNet demonstrates
superior diagnostic accuracy by efficiently isolating key information from bearing signals
while minimizing the effects of noise and other interference factors.

Given the importance of critical decision-making in machine state monitoring, the out-
puts of autonomous monitoring systems must prioritize both reliability and interpretability.
Ref. [13] introduced a specialized CNN architecture, DecouplEd Feature-Temporal CNN
(DEFT-CNN), which integrates analyses across frequency, time, and time–frequency do-
mains to classify fault types in the PU dataset. Using gradient-weighted class activation
mapping (Grad-CAM), DEFT-CNN generates interpretable visualizations of key features
and temporal dynamics, effectively balancing high diagnostic accuracy with enhanced
interpretability.

Ref. [14] introduced a CGAN-2-D-CNN fusion model, which integrates a conditional
generative adversarial network (CGAN) with a two-dimensional CNN to address the
challenge of bearing fault diagnosis with limited sample sizes. Experimental results indicate
that the CGAN-2-D-CNN achieves accuracy comparable to a standalone 2-D CNN when
trained on the same original dataset. However, as sample sizes decrease further, the
GAN-generated data may exhibit excessive similarity to the original samples, potentially
restricting the model’s capacity for generalization.

Ref. [15] proposed an integrated ResNet and GoogLeNet framework for predicting
the remaining useful life (RUL) of bearings. To simplify the model and address overfitting,
increased stride lengths are employed instead of pooling layers, thereby also reducing
computational overhead. GoogLeNet is utilized for feature extraction, leveraging its archi-
tecture to capture richer and more detailed data representations. Furthermore, an attention
mechanism is incorporated to enhance network convergence efficiency and improve the
precision of RUL predictions.
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Several studies have focused on addressing resource constraints by developing bear-
ing fault diagnosis methods tailored for embedded systems. For example, Bertocco [21]
introduced a machine learning (ML) algorithm optimized for microprocessors to detect
early-stage roller bearing faults, including defects in the bearing balls, inner raceways, and
outer raceways. This algorithm supports integration into IoT-based predictive maintenance
systems via distributed sensor networks, enabling proactive machine failure prevention.
Similarly, Ding [22] proposed S-AlexNet, an edge intelligence fault diagnosis approach
based on a lightweight convolutional neural network (CNN) using parameter transplan-
tation. Designed for real-time condition monitoring on low-cost embedded systems, S-
AlexNet offers a practical solution for edge computing environments. However, both
methods rely on vibration signal data, necessitating additional sensors to be installed on
the bearing equipment.

In addition, several prior studies have utilized the same dataset as this work, em-
ploying current data to classify bearing faults. For instance, Ref. [23] proposed a two-
dimensional convolutional neural network (2-D CNN) for feature extraction, emphasizing
fault diagnosis through the analysis of both current and vibration signals. Although vi-
bration signals are often preferred due to their spectral characteristics, which are easier to
extract compared to current signals, their dependence on vibration sensors significantly
increases costs, posing challenges for practical applications. The classification in Ref. [23]
encompasses four fault conditions—inner race fault, outer race fault, combined inner and
outer race fault, and normal. In contrast, this study focuses on three fault conditions with a
particular emphasis on computational efficiency.

Furthermore, Ref. [24] achieved superior accuracy by leveraging synthetic current data.
The approach employs multiple convolutional and pooling operations to extract intrinsic
features from raw mechanical signals, which are subsequently classified into mechanical
health states through fully connected layers. Additionally, Ref. [25] introduced an inno-
vative transfer learning framework for bearing fault diagnosis, utilizing a convolutional
neural network (CNN) to transfer knowledge from artificial damage data to real-world
damage scenarios. The CNN model is pre-trained on easily obtained artificial damage
samples, fine-tuned with a small number of real damage samples, and some layers are
frozen to retain shared features between the two datasets.

However, these studies, which utilize the same dataset as this work, seldom address
parameter efficiency or computational complexity. Furthermore, they predominantly rely
on software-based architectures that transmit sensor data to a central server for processing,
limiting their ability to satisfy real-time operational requirements. In practical industrial
environments, real-time decision-making is often critical. Consequently, this paper aims to
develop a hardware accelerator that optimizes both resource efficiency and computational
complexity, delivering high accuracy while maintaining real-time performance.

In recent developments addressing hardware deployment, Chung [26] proposed a one-
dimensional convolutional neural network (CNN) hardware accelerator for real-time bear-
ing condition monitoring. Their approach incorporates techniques such as down-sampling
and quantization to enhance the efficiency of neural network models. Nevertheless, the
adoption of quaternary quantization, aimed at substantial memory reduction and real-time
fault diagnosis in embedded systems, remains an active area of investigation. Despite these
contributions, the parameter count in their model could be further optimized.

Despite their strong performance in various fault diagnosis applications, CNN-based
classification models face significant challenges. First, deeper networks require extensive
parameter sets, resulting in substantial resource demands for deployment and training,
which hinders efficient hardware implementation. Moreover, industrial applications ne-
cessitate fault diagnosis models that are both memory-efficient and capable of high-speed
predictions, posing challenges for direct deployment on production lines. Second, most
diagnostic models assume that the training and test sets share the same data distribution,
which overlooks the model’s ability to generalize to new scenarios or datasets.
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Consequently, variations in operating conditions or environments can markedly de-
grade the model’s performance, even for tasks that are similar to the original.

3. The Proposed DSC Model Architecture
3.1. Bearing Data Preprocessing

To provide a foundation for the proposed methodology, the dataset employed in this
study is first described. The Paderborn University-bearing dataset is used to analyze key
features related to bearing conditions. This dataset includes four categories of bearing fault
data, with each category containing a distinct number of data points. Table 1 summarizes
the proportion of each fault type.

Table 1. Network setting label and the corresponding fault type.

Label Fault Type Data Amount

0 Healthy 6

1 Outer race fault (OR) 12

2 Inner race fault (IR) 9

3 Combine outer and inner race fault (CR) 5

During the data-preprocessing stage, down-sampling is applied to the dataset to
reduce redundancy and improve processing efficiency. Figure 1 illustrates the process of
down-sampling in a pipeline, where the original signal is sampled at specified intervals
based on a down-sampling factor. For example, with a factor of 1, the raw data are
retained without modification, while a factor of 3 skips two data points between each
sample. To maintain the overall data volume, the skipped data points are repurposed to
generate additional training samples, ensuring that the total number of training images
remains unchanged.
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Experimental accuracy results from Ref. [26] indicate that a down-sampling factor
of 10 achieves the best performance. Consequently, this study adopts the same factor.
However, this choice necessitates observing the data over a longer time window to ensure
sufficient information is captured for effective analysis.
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Down-sampling methods are notable for their ability to reduce noise, making them
particularly suitable for real-time processing. Additionally, down-sampling allows the
model to associate each data point with an extended time interval, thereby retaining
sufficient information for accurate feature extraction. To avoid potential data leakage
caused by splitting adjacent data points between the training and test sets, the dataset is
first partitioned into 80% for training and 20% for testing, after which down-sampling is
applied separately to each subset. Table 2 presents the amount of training and test data for
each label.

Table 2. The amount of training and test data in each label.

Label Amount of Training Data Amount of Test Data

0 115,260 28,815

1 230,860 57,715

2 173,280 43,320

3 96,160 24,040

Total data 615,560 153,890

3.2. Depthwise Separable Convolution Architecture and DoReFa-Net Quantization

Adjusting the network architecture requires specifying several key hyperparameters
before training, including kernel size, the number of convolutional layers, the learning rate,
and the number of epochs. The input data are encoded as fixed-point numbers, whereas the
weights are stored as floating-point numbers to balance computational efficiency and preci-
sion. While increasing the number of convolutional layers generally improves accuracy,
excessive layers or epochs can lead to overfitting, where the model achieves high accuracy
on the training data but performs poorly on test data. Therefore, identifying an optimal net-
work architecture requires iterative training and careful evaluation of performance metrics.

This paper proposes a bearing fault diagnosis method leveraging current signals, utiliz-
ing the one-dimensional (1-D) DSC architecture illustrated in Figure 2. The model processes
1600 data points per input image and incorporates five DSC layers, which consist of six
pointwise convolutional layers and five depthwise convolutional layers. This architecture
is designed to efficiently extract features while minimizing computational complexity.
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Table 3 shows the accuracy of the proposed DSC architecture under varying numbers
of output channels. Testing various architectural configurations revealed that standard
DSCs often fail to achieve satisfactory accuracy. This limitation arises from the structure
of DSC architectures, which combine depthwise and pointwise convolutions. Depthwise
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convolutions are constrained by a configuration of 1 × kernel size × input channels
configuration. Since the input to the first layer is typically set to 1, its depth is dependent on
the preceding layer. To address this issue, as illustrated in Figure 3, a pointwise convolution
layer is introduced before the first depthwise convolution layer. This modification enables
the first layer to independently increase in depth regardless of the input image dimensions.
Experimental results demonstrate that incorporating a pointwise convolution layer in the
first DSC layer significantly enhances the accuracy of the proposed model. In this study,
the kernel size was set to 7, and the model was trained for 500 epochs.

Table 3. The accuracy in different conditions with proposed DSC.

Version
Output Channels in Each Layer

Param # Accuracy
C1 C2 C3 C4 C5

1 12 18 48 60 72 9.9 K 97.71%

2 12 12 48 60 72 9.5 K 95.96%

3 8 24 48 60 72 10 K 96.54%

4 8 36 48 60 72 10 K 96.67%

5 8 12 48 60 72 9.4 K 95.57%

6 12 24 48 60 72 11 K 98.27%
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In this paper, each convolution operation in the DSC layer is directly followed by batch
normalization and ReLU activation. Max-pooling is applied after each DSC layer, and a
fully connected (FC) layer serves as the final layer in the network. The hyperparameters
for model training were configured as follows: 400 training epochs, 400 retraining epochs,
a batch size of 128, and a learning rate of 10−3. The model architecture was established
through iterative experimentation employing a Train-Test Split strategy to partition the
dataset into training and testing subsets. During these iterations, the architecture was re-
fined through multiple adjustments. Once finalized, the model underwent cross-validation
using various training and test data sets to evaluate its stability and robustness.

Neural network applications deployed on edge devices are constrained by limited
computational resources, including storage, memory, power consumption, and latency.
As shown in Table 3, the proposed architecture comprises a total of 11 K parameters, of
which convolution operations contribute 10 K, accounting for 87% of the total. Conse-
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quently, reducing the precision of parameters in convolution operations is a crucial step to
significantly lower memory usage and computational overhead.

Neural network computations rely on numerous parameters and inputs, which are
typically stored in the 32-bit floating-point format (float32). Quantization reduces mem-
ory storage requirements and computational costs by converting float32 data into lower-
precision formats, such as 8-bit or 16-bit representations. This process enables more efficient
computation while potentially balancing trade-offs in model accuracy.

Quantization techniques are broadly categorized into post-training quantization and
quantization-aware training. Post-training quantization employs tools to quantize a pre-
trained model, optimizing it for efficient deployment. Specifically, the checkpoint file
(.ckpt) generated after training in TensorFlow is loaded, and quantization is applied to
both weights and activations. Post-training quantization can be further divided into two
approaches: weight-only quantization, where only the weights are quantized, and full
quantization, which involves quantizing both weights and activations. The latter approach
requires additional computation to determine the dynamic range of activation outputs,
ensuring proper scaling during inference. In this paper, we adopt post-training quantiza-
tion of both weights and activations to achieve efficient deployment while maintaining
computational and memory efficiency.

Neural network computations often involve numerous parameters, a significant por-
tion of which may carry redundant or non-essential information. Quantization, an effective
technique for optimizing these models, helps reduce memory usage and hardware resource
demands. In this work, the proposed DSC architecture employs DoReFa-Net quantiza-
tion to minimize parameter bit-width. DoReFa-Net [27] simplifies backpropagation by
calculating a single scaling factor for the total output of each convolutional layer, rather
than for each convolutional kernel output individually. To enhance comprehension of the
quantization methodology utilized in this work, the subsequent sections introduce the
quantization approach proposed in DoReFa-Net [27].

The straight-through estimator (STE) is used to address the zero-gradient problem.
STE can be seen as an operator that permits flexible forward and backward operations.
Its forward and backward passes are defined in Equations (1) and (2), where quantizek(x)
quantizes the input to k bits. In cases of zero gradients, the derivative is zero during
backpropagation, preventing the network from learning and updating weights. To avoid
this, STE approximates the gradient by setting the input gradient equal to the output
gradient via a threshold function, thereby circumventing the zero-gradient issue.

Forward : quantizek(x) =
1

2k − 1
round((2k − 1)x) (1)

Backward :
∂c
∂ri

=
∂c

∂rO
(2)

To mitigate the significant quantization error caused by a large input data range, the
tanh function is applied to constrain the weights within the range of [−1, 1]. Following this
step, the weights are quantized to k bits, as described in Equation (3):

f k
w(r) = 2quantizek(

tanh(r)
2max(|tanh(r)|) +

1
2
)− 1 (3)

Table 4 presents the test accuracy of the proposed DSC architecture with and without
retraining, supporting the adoption of retraining in this paper’s quantization method.
Additionally, Table 5 shows test accuracy across different weight bit-widths. Reducing bit-
width from 32 to 8 bits resulted in only a 0.45% accuracy loss, highlighting the effectiveness
of weight quantization in preserving accuracy while improving memory efficiency.
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Table 4. The test accuracy with retraining and without retraining.

Result Quantization Method Retrain Testing Accuracy

1 DoReFa-Net No 94.47%

2 DoReFa-Net Yes 98.27%

Table 5. The test accuracy of different weight bits.

Result Bit-Width of Weight Testing Accuracy

1 32 98.27%

2 10 98.11%

3 9 97.98%

4 8 97.82%

5 7 97.15%

6 6 97.09%

7 5 91.64%

In this study, DoReFa-Net [27] quantization reduces the weight precision from 32 bits
to 8 bits, thereby lowering the weight storage requirement by 75%. Overall, the com-
bined application of quantization and parameter optimization accelerates inference in
the proposed DSC architecture, enhancing its suitability for hardware implementation in
resource-constrained conditions.

In DoReFa-Net quantization, experimental results indicate that a bounded activation
function is essential to scale input activations to a specific range, ensuring stable model
convergence. If input activations are not scaled, the model may struggle to converge
accurately. In this paper, the scaling factor is selected based on the observed range of
activation values, with a denominator that is a power of two (e.g., 2, 4, and 8) to effectively
limit the range and minimize quantization errors. This approach reduces computational
complexity by enabling multiplication operations to be performed using bit shifting and
addition instead of multipliers. Specifically, Equation (4) defines the bounded activation
function used in this paper, and a scaling factor of 0.078125 (i.e., 5/64) is selected to
constrain the activation function, as shown in Equation (5):

h(x) = clip(x, 0, 1) (4)

h(x) = clip(x × 0.078125, 0, 1) (5)

Table 6 shows the test accuracy for different activation bit-widths in DoReFa-Net
quantization. Experimental results indicate that test accuracy is sensitive to activation
bit-width, dropping by approximately 2% as bit-width decreases from 10 to 6. Thus, the
activation bit-width is set to 8 bits, yielding an accuracy of 97.52%.

Table 6. The test accuracy with different bit-width of activation in DoReFa-Net.

Result Bit-Width of Activation Testing Accuracy

1 32 98.27%

2 10 97.73%

3 8 97.52%

4 7 97.04%

5 6 95.74%
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Table 7 shows simulation data used to determine the bit-width for the weight lookup
table. With the weight bit-width established, the total memory required to store the weights
can be calculated based on the number of parameters, yielding a total storage requirement
of 154,980 bits.

Table 7. The lookup table for determining the bit-width of weight.

The Lookup Table for Bit-Width of Weight

Integer Bits Decimal Bits Total Bits Test Accuracy

2 13 15 97.17%

2 12 14 96.93%

2 11 13 96.45%

2 10 12 96.19%

2 9 11 95.19%

2 8 10 89.47%

Since Batch Normalization (BN) parameters cannot be quantized via retraining, a fixed-
point method is used to reduce their bit-width. Although BN operations require only
768 parameters, reducing bit-width is still advantageous for hardware implementation. BN
involves four parameters: gamma, beta, mean, and variance. As shown in Equations (6)–(8),
these four parameters can be combined into two, reducing the parameter count. Here, µB
represents the mean, and α2

B represents the variance.

γ′ =
1√
α2

B

γ (6)

β′ = −
(
µBγ

′)+ β (7)

yi = γ′xi + β′ (8)

Table 8 presents the accuracy results for BN parameters across different bit-widths.
The integer bit-width is set to 8, based on the observed maximum and minimum values
of γ and β, resulting in a representable range of −128 to 127. For fractional bits, it was
observed that accuracy drops significantly when the fractional bit count is less than 8,
while an 8-bit fractional width allows accuracy to be maintained at 97%. Consequently, the
total bit-width for BN parameters can be reduced from a 32-bit floating point to a 16-bit
fixed-point, composed of 8 integer bits and 8 fractional bits, thereby reducing parameter
bit-width by 50%. Given the number of BN parameters, the total bit requirement for BN
parameters can be calculated as 12,288 bits.

Table 8. The table for determining the bit-width of BN parameters.

Bit-Width of BN Parameters

Integer Bits Decimal Bits Total Bits Test Accuracy

8 15 23 97.15%

8 13 21 97.12%

8 11 19 97.12%

8 9 17 97.03%

8 8 16 97.03%

8 7 15 96.12%

8 6 14 93.28%
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The results of testing different activation bit-widths are presented in Table 9, with the
integer bit-width set to 1, corresponding to a representable range of 0 to 1. A noticeable
drop in accuracy was observed between total bit-widths of 12 and 13. Consequently, the
optimal bit-width for activation after fixed-point quantization is set to 13.

Table 9. The table for determining the lookup table bit-width of activation fixed point.

The Lookup Table Bit-Width of Activation

Integer Bits Decimal Bits Total Bits Test Accuracy

1 15 16 96.99%

1 14 15 96.95%

1 13 14 96.84%

1 12 13 96.59%

1 11 12 95.75%

1 10 11 94.31%

4. Hardware Implementation

Figure 4 illustrates the hardware architecture of the proposed DSC. Before computation
begins, the Input_image stores a preprocessed 1 × 1600 input image. The controller then
applies zero padding to the input image. During each clock cycle, the controller reads
weight values stored in Conv_weight and retrieves 15-bit actual weight values from the
lookup tables for each layer. Weights are quantized using DoReFa-Net quantization,
limiting each layer to a maximum of 256 weight values.
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The controller transmits the actual weight values and input image to the DW Conv
block, where the DW Conv module performs 1-D depthwise convolution, ReLU, and batch
normalization. Given a kernel size of 7, the module applies multiply-accumulate (MAC)
operations to the input and weights. In the ReLU block, if the most significant bit (MSB)
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is 1, indicating a negative value, the ReLU output is set to 0; otherwise, it outputs the
accumulated result. The output from the ReLU block is then sent to the BN block. Before
batch normalization, the controller retrieves 16-bit γ and β values from the BN_parameter
block, using these to scale and shift the ReLU output by multiplying it by γ and adding β.
The output of the BN operation is then quantized to 13 bits and stored in Fmap_1.

The PW_Conv block then reads weights from the Conv_weight block and feature maps
from Fmap_1, generated by the DW_Conv block, using the same approach as the DW_Conv
block. The PW_Conv block performs ReLU and BN operations, requiring parameters from
the BN_parameter block. The output of the PW_Conv block is passed to the Max Pooling
block, where, after four values are transferred, the max pooling operation is performed.
The result from the Max Pooling block is stored in Fmap_2 (one of the ping-pong RAM
blocks). The remaining operations follow the same processing steps as in the DW_Conv
and PW_Conv blocks. Using a ping-pong architecture avoids memory conflicts between
the memory requirements of the previous layer and the output storage of the current layer,
while also reducing overall memory usage.

As shown in Table 10, quantization is a crucial process for reducing memory resource
usage in neural networks. After quantization, the bit usage for convolution weights is
reduced by approximately 53.1%, BN parameters by 50%, and feature map memory usage
by 59.4%, resulting in an overall reduction in total bit requirements of 57.9%.

Table 10. The comparison of memory usage after fixed-point parameter.

Memory Type Memory Name Total Bits Before
the Fixed Point

Total Bits After
the Fixed Point Reduction Ratio

ROM
Conv_Weight 330,624 154,980 53.125%

BN_parameter 24,576 12,288 50%

RAM
Fmap_1 614,400 249,600 59.375%

Fmap_2 614,400 249,600 59.375%

Sum of all bits 1,584,000 666,468 57.925%

In the proposed DSC hardware design, a single-port read-only memory (ROM) is
employed to store the model parameters, as the circuit is synthesized and implemented on
an FPGA (Field Programmable Gate Array). The single-port ROM IP is generated using
the IP block generator available in AMD Vivado 2020.2 Design Suite software. Table 11
details the composition and total bit usage of each storage block. The cumulative storage
requirement for this circuit implementation is 774 K bits. However, due to a minimum
memory block size constraint of 18 K bits, the total memory allocation for the DSC hardware
circuit was adjusted, resulting in a memory usage of 420 K bits.

Table 11. Size and composition of each memory block.

Memory Name 18 Kbits RAM 36 Kbits RAM Total Kbits

Input_image 1 0 18

Conv_weight 3 4 198

BN_parameter 1 0 18

Fmap_1 5 5 270

Fmap_2 5 5 270

Total 15 14 774

5. Experimental Results

The power analysis for the FPGA implementation is shown in Figure 5. During testing,
the clock frequency is set to 50 MHz, resulting in a total power consumption of 566 mW at
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a temperature of 25.6 ◦C. Of the total power, 57% is attributed to dynamic power, while
43% is attributed to static power. Here, BRAM refers to the built-in memory of the FPGA,
meaning that smaller BRAM usage translates to lower resource consumption.
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The test data are stored in the FPGA’s memory blocks to verify circuit functionality.
Multiple entries of test data can be stored within these blocks. However, Vivado imposes a
memory block size limit, allowing only 655 images to be stored at once when the test data
size is 1 × 1600. As a result, each test on the FPGA is restricted to 655 images, requiring
successive cycles of different test data to fully verify the functionality of the proposed
DSC architecture.

Table 12 presents the relative accuracy of the proposed DSC architecture across each
implementation stage. From TensorFlow to FPGA deployment, the total accuracy loss is
approximately 0.47%.

Table 12. The test accuracy at each implementation stage.

Each Stage Operation Accuracy

Input data fixed-point training (9 bits) 97.52%

Weight value fixed-point (15 bits) 97.17%

BN parameters fixed-point (16 bits) 97.03%

Feature map fixed-point (13 bits) 96.59%

FPGA implement 96.12%

The experimental results of various studies using the same dataset are compared in
Table 13. The model proposed in Ref. [23] employed a two-dimensional (2-D) CNN for
feature extraction. The results are evaluated using actual damage observed in current and
vibration signals, as the vibration signal’s spectral characteristics are easier to extract than
those of the current signal. This makes vibration signals more effective for fault diagnosis.
However, the sensors needed for collecting vibration signals are costly, raising the overall
expense of fault diagnosis. The classification labels used are inner race fault, outer race
fault, combined inner and outer race fault, and normal. In contrast, Ref. [23] classified only
three fault conditions.
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Table 13. Comparison table at the software level.

[23]
IEEE TIM ‘20

[24]
IEEE Access ‘20

[25]
ICICAS ‘19

[3]
IEEE TIM ‘21

[26]
Sensors ’23 Proposed Work

Dataset PU PU PU PU PU PU

Type of damage Real damage Artificial damage Mixed
damage Mixed damage Mixed damage Mixed damage

Signal type Vibration Current Current Current Vibration Current Vibration Current

Architecture 2-D CNN 1-D CNN 1-D CNN 1-D CNN 1-D CNN 1-D DSC

Data
pre-processing Gray image N/A N/A N/A Down-sampling

and fixed-point
Down-sampling and

fixed-point

Image size 80 × 80 1 × 1200 1 × 1800 1 × 696 1 × 1600 1 × 1600

Number of
parameters 25,810 >750,000 1 40,448 33,280 75,436 11,868

FLOPs 16,781,497 N/A 16,767,933 7,418,436 N/A 1,203,128

Type of
classification

Fault location
(3 types without IR +
OR combined fault)

Fault location
(3 types without

IR + OR
combined fault)

Fault
location
(4 types)

Fault location
(3 types without

IR + OR
combined fault)

Fault location
(4 types)

Fault location
(4 types)

Accuracy 99.4% 98.3% 99.36% 97.78% 98.16% 98.58% 99.45% 98.27%

1: Only count the parameters of the fully connected layer.

Ref. [24] used artificial current data, achieving higher accuracy than this work but
requiring at least 70 times more parameters. Moreover, relying on synthetic rather than
actual damage data may lead to less reliable judgments in practical applications. Refs. [3,25]
used mixed data from current and vibration signals and classified only three fault labels.
However, both models have higher parameter counts and FLOPs than this work, making
this model more suitable for efficient hardware implementation.

More recently, ref. [26] adopted a one-dimensional CNN architecture with a new
quaternary quantization method to improve accuracy compared to ternary quantization.
Although the proposed method is suitable for hardware implementation and achieves
real-time performance, its architecture still results in a significantly higher number of
parameters compared to the proposed method.

To provide a clearer representation of the software-based results, Figure 6 presents the
confusion matrix for the software training outcomes. In this figure, the term ‘label’ refers to
the classification type specific to this study (as detailed in Table 1). The ‘True label’ repre-
sents the actual type of the sample, while the ‘Predicted label’ indicates the type assigned
by the model. This confusion matrix demonstrates that the model achieves a consistent
level of accuracy across various label categories. Additionally, Table 14 provides detailed
metrics, including precision, recall, and F1-score for each type. As shown in Table 14, the
F1-scores for all labels exceed 97%, indicating that the training results effectively balance
precision and recall, with no significant bias toward any specific type.

Table 14. Precision, recall, and F1-score for each label.

Label Precision Recall F1-Score

Label 0 99.22% 98.60% 98.91%

Label 1 97.84% 98.72% 98.28%

Label 2 97.91% 97.61% 97.76%

Label 3 99.25% 98.36% 98.80%
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The following sections examine whether the proposed DSC hardware design can
perform real-time bearing failure analysis. Table 15 lists the clock cycles required for each
layer’s computation. According to the PU dataset specifications, the current signal data has
a sampling rate of 64 K samples per second. With a down-sampling factor of 10, this rate is
reduced to 6.4 K samples per second, meaning each data point is received every 156,250 ns.
Since the initial computation stage requires 1600 data points to begin processing, subsequent
calculations cannot proceed until this initial data collection is complete. Consequently, the
waiting time for the first image is 250,000,000 ns, as shown in Equation (9).

250,000,000 ns = 156,250 ns × 1600 (9)

Table 15. Cycle usage in each layer calculation.

# Cycles

Layer 1 19,219

Layer 2 19,405

Layer 3 19,265

Layer 4 5004

Layer 5 182,690

Layer 6 2808

Layer 7 149,954

Layer 8 2016

Layer 9 85,382

Layer 10 1440

Layer 11 + FC 38,676

Total 525,889

As the proposed DSC hardware design receives the first image, new data points
continue to be input during ongoing calculations. However, memory resources cannot
be freed until the current computation is completed. Therefore, an additional buffer is
needed to temporarily store incoming sensor data until the previous image’s processing is
finished. In this paper, the maximum clock frequency is set to 50 MHz. Thus, 12.5 million
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cycles are required to gather the 1600 data points, and the DSC model calculation requires
525,889 cycles. Consequently, approximately 67 data points need to be stored in additional
buffers to accommodate the calculation delay, as shown in Equation (10):

525, 889 × 20 ns ÷ 156, 250 ns ≈ 67 (10)

Taking into account both the image acquisition time and the diagnostic processing
time of the DSC hardware design, the total response time for the proposed DSC hardware
design is 0.26 s, as calculated in Equation (11):

0.26 s = 250, 000, 000 ns + 525, 889 cycles × 20 ns (11)

6. Conclusions

This paper utilizes bearing current signals from the Paderborn University dataset and
proposes a DSC network architecture designed to reduce parameter count and computa-
tional load. Additionally, it incorporates the DoReFa-Net quantization method to decrease
the bit-width of model parameters. Testing results demonstrate that the proposed DSC
achieves significant resource savings with minimal accuracy loss.

The proposed DSC hardware design is initially developed using hardware description
language (HDL) and verified through circuit simulation before being implemented on
the AMD Virtex-7 FPGA VC707 evaluation board. This setup enables the final accuracy
evaluation of the DSC hardware implementation and resource analysis. Additionally, the
paper examines the requirements for real-time bearing fault diagnosis, concluding that the
DSC hardware design needs only an additional buffer to store 67 data points.

The accuracy of the proposed DSC hardware design implemented on the FPGA is
ultimately 96.12%, with only a 0.47% reduction in accuracy compared to that achieved
using TensorFlow.

To sum up, this paper presented a hardware implementation for real-time bearing
fault detection, focusing on reducing hardware costs while maintaining acceptable accu-
racy. In the future, authors will refer to some excellent previous works [28–30] to consider
exploring techniques such as early exit mechanisms and model modularization to en-
hance flexibility and further reduce costs. Additionally, incorporating diverse real-world
datasets will improve the model’s adaptability. In our opinion, the key limitation of stud-
ies in this field is that real-world scenarios often differ from existing datasets. While
high accuracy was achieved by using real-world data, models trained solely on standard
datasets may struggle in real-world applications, highlighting the need for improvements
in model generalization.
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