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Abstract: In various industrial domains, machinery plays a pivotal role, with bearing failure standing
out as the most prevalent cause of malfunction, contributing to approximately 41% to 44% of all
operational breakdowns. To address this issue, this research employs a lightweight neural network,
boasting a mere 8.69 K parameters, tailored for implementation on an FPGA (field-programmable
gate array). By integrating an incremental network quantization approach and fixed-point operation
techniques, substantial memory savings amounting to 63.49% are realized compared to conventional
32-bit floating-point operations. Moreover, when executed on an FPGA, this work facilitates real-time
bearing condition detection at an impressive rate of 48,000 samples per second while operating
on a minimal power budget of just 342 mW. Remarkably, this system achieves an accuracy level
of 95.12%, showcasing its effectiveness in predictive maintenance and the prevention of costly
machinery failures.

Keywords: fault diagnosis; convolution; neural networks; incremental network quantization;
fixed-point arithmetic; real-time systems; field-programmable gate arrays; digital circuits

1. Introduction

With the development of automated production, electric motors have been used in
various industrial fields. Due to the different applications, the motor can be operated in
harsh, fast, and overloaded environments. In this case, the motor parts may quickly fail,
and the failure of the parts can cause considerable losses and result in safety risks for the
operator. Therefore, fault diagnosis technology is one of the most important techniques in
the modern industrial field. The fault types of motors and drive systems can be divided
into stator faults, electrical faults of the rotor, and mechanical faults of the rotor [1], whereby
bearing faults are the most common causes. Bearing faults account for 41% to 44% of all
faults [2–5], and bearing faults cause noise, vibrations, and even system failures. If the
fault can be diagnosed in time, then the loss due to the faults can be reduced. Also, the
reliability and safety of the machine can be improved. The main fault conditions of the
bearing include ball faults, outer race faults, and inner race faults.

Currently, the bearing fault diagnosis methods can be divided into model-driven
methods [6] and data-driven methods [7]. The model-driven approach must understand
its physical principles and construct mathematical models accordingly. The data-driven
method can be divided into four steps to diagnose bearing fault types: data acquisition,
feature extraction, feature selection, and classification [8]. Also, the fault model can be
built from the signals detected by the accelerometers. When dealing with non-linear and
complex systems, the data-driven approach is a better choice because these systems are
difficult to describe with accurate mathematics. More specifically, this paper adopts the
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data-driven approach and uses bearing fault vibration data provided by Case Western
Reserve University (CWRU) [9].

Among various data-driven-based detection technologies, machine-learning-based
methods, especially neural networks, have become popular because of their accuracy and
adaptability. The burgeoning interest in this field has led to a recognition of the influence
of uncertainty in the outcomes predicted by deep learning techniques, as highlighted in
previous studies. For example, Liang et al. [10] tackled the issue of uncertainty and intro-
duced a method based on the Gaussian process classifier (GPC), which is deeply anchored
in Bayesian inference principles. Conversely, there exists a notable scarcity of publicly avail-
able data on real-world bearing faults, accompanied by challenges of data imbalance. To
enrich training datasets and boost the precision of machine learning, generative adversarial
network (GAN) technology [11,12] has been utilized to create new, analogous training
samples, thereby crafting a highly refined model for identifying bearing faults. Beyond
GAN, the use of transfer network technology has been embraced to overcome the hurdles
in data gathering for the data-driven diagnosis of bearing faults, as indicated in [13,14].

However, the large computing load of machine learning and the complex data-
preprocessing process may lead to fault detection not meeting the real-time requirement,
and the faults may not be detected in time. Fortunately, implementing a machine learning
model into a specific hardware accelerator can accelerate the computing speed. However,
when a neural network is implemented in hardware, a large number of storage devices
are required to store the parameters and calculation results of the neural network, and it
may lead to the chip area being too large to be attached to CNC machines. Most hardware
resources are located on the storage device instead of the calculation units. Therefore,
memory reduction has become one of the foremost research topics. Approaches to memory
reduction can be divided into network pruning [15,16] and network parameter quantiza-
tion [17–19].

Weight pruning is a common technique for creating sparse networks that can eliminate
unimportant weights during training to reduce memory space. In [15], the pruning of
the neural network is divided into three steps. The first step is to train the network and
distinguish the importance of the weights. The weight below the threshold is adjusted in the
second step. The final step is to retrain the network. Retraining the network can seriously
impact accuracy, but retraining can take a significant amount of time. On the other hand,
the quantization method can be divided into two methods: weighting quantization and
activation quantization, where the same effect can be achieved by using fewer bits. In [17],
the weighting and activation are quantized into two values, and one bit can represent 1
and −1. Memory space can have a 32× reduction after the quantized network.

Additionally, the quantization method offers benefits beyond just memory reduction,
extending to computational improvements. For instance, within a computing system, the
prevalent multiplication operations in the convolutional layers of a neural network can
be substituted with addition operations. This is achievable by quantizing the weights to
power of two values. When this method is applied to hardware, the on-chip multipliers can
be replaced with adders, leading to a substantial decrease in both power consumption and
chip size. This efficiency gain stems from the fact that an adder, compared to a multiplier,
occupies less chip area and is more energy-efficient. For example, in [18], the weighting
has been quantized to three values (−1, 0, 1), and each weight needs to be represented
by two bits. The memory space compression ratio can be more than 16 times, and the
accuracy of this network is higher than that of a binary neural network. However, binary
and ternary neural networks are easily affected by noise. In [19], a quantization method
for incremental network quantization (INQ) is proposed. Initially, 50% of the total weights
are quantized. Subsequently, the unquantized weights are retrained to compensate for
the loss of accuracy. Then, half of the unquantized weights are quantized, and the same
retraining process is repeated until all weights are quantized. Notably, in this work [19],
weights are all quantized to the power of two. Then, the multiplication between the input
and the weights can be replaced by shifting instead of multiplying.
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Although many existing excellent works discussed the weight pruning and quanti-
zation process, their usage for bearing fault detection hardware implementation gained
little attention. On the other hand, despite that the computing time can be sped up by
implementing neural network model to hardware, and that memory usage can be reduced
by the technology of weight pruning and quantization, the complex data-preprocessing
process still significantly influences the fault-detecting time. Therefore, reducing the com-
plexity of the data-preprocessing process is also an important goal of this paper. More
specifically, the main goal of this work is to propose a hardware solution for the accurate
bearing fault diagnosis. In addition, the proposed method will achieve real-time processing
and minimize the hardware resources.

The main contribution of this work can be summarized as follows.

1. In this work, a CNN-based hardware accelerator has been implemented for bearing
faults, which can achieve real-time processing in industrial environments.

2. An improved incremental network quantization (INQ) method has been proposed to
reduce the memory usage of the proposed hardware accelerator.

3. The complex multiplier operations have been removed from the proposed method to
realize a multiplier-free accelerator.

4. The power consumption of the proposed accelerator can be reduced to 342 mW with
a 140 MHz clock frequency.

5. The accuracy of the proposed accelerator can achieve 95.12% with only 8.69 K parameters.

The organization of the rest of the paper can be summarized as follows. Various of
different type fault detection methods will be explored in Section 2. Next, the proposed
method will be introduced in Section 3. More specifically, Section 3.1 describes the software
architecture of our proposed model, and Section 3.2 provides the details of hardware
implementation. The experimental results are then shown in Section 4. Finally, Section 5
will conclude this work.

2. Exploring Different Fault Diagnosis Methods

In this section, various machine-learning-based methods for fault diagnosis will be
discussed to explore the research background.

(1) K-Nearest Neighbor (K-NN)

K-NN is an algorithm for classification and regression. The output is a classified ethnic
group. The majority vote of the neighbors classifies the unclassified data. K indicates
how many similar training data were selected. In [20], 30 features are extracted from
the vibration signal, 24 of which are standard features for diagnosing rotating machine
faults, and 6 are extracted by electromyography (EMG). Relief algorithm, Chi-squared, and
information gain rank thirty features. The top 10 features are selected and fed into K-NN
and random forest for classification, using five different vibration datasets for testing. The
experiment results show that the features extracted by EMG are useful for diagnosing faults
on rotating machines.

(2) Support Vector Machine (SVM)

The SVM is a supervised learning model that can find decision boundaries in the
hyperplane to maximize both boundaries. When faced with non-linear responsibilities,
kernel tricks can be added to map the original data in high-dimensional space. Many
studies used SVM for bearing fault detection and achieved excellent results. In [21], a
one-class v-SVM is used to detect abnormal vibration signals. If abnormal, a sensitivity test
is used to select the fault frequency band through envelope analysis. The one-class v-SVM
is highly input-dependent, and small changes to the input can result in reduced accuracy.

(3) Principal Component Analysis (PCA)

PCA is a method of statistical analysis and simplification of data. In [22], a solution
for the unknown signal is proposed. The self-organizing map and principal component
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analysis (SOM-PCA) method analyzes the residual signal of the unknown signal. After
the characteristic frequency of the faulty component has been separated, the SOM model
classifies the four bearing states (normal condition, infield fault, field fault, and ball fault).
This method can effectively distinguish the bearing condition.

(4) Neural Network (NN)

In [23], the feedforward multi-layer perceptron (MLP) neural network consists of three
layers: an input layer, a hidden layer, and an output layer. After using the Laplace wavelet
transform and genetic algorithm to preprocess the bearing vibration signal, the time and
frequency domain features are extracted as inputs for the DNN. The features are the root
mean square, standard deviation, kurtosis, wavelet spectrum frequency peak to the shaft
rotational frequency ratio, and wavelet power spectrum maximum amplitude to the overall
amplitude ratio. The genetic algorithm aims to reduce the number of hidden-layer nodes
to improve the classification speed. Finally, the bearing health status is classified into four
bearing categories. The Laplace wavelet transform is very sensitive to noise, and when it
encounters a signal with a sizeable periodic component, it is easy to generate errors. In [24],
the vibration signal characteristics are extracted from the frequency domain to reduce the
size of the data and then fed into the DNN model for fault classification. This approach
reduces the network architecture and shortens the calculation time. The Fourier transform
is useful for smoothing signals and may not reflect features in non-uniform signals.

Moreover, in [25], a quantum-inspired differential evolution (MSIQDE) algorithm is
proposed based on the improvement of the multi-strategy to optimize the DBN connection
weights and improve accuracy. Moreover, the CNN-based method has become mainstream
for fault diagnosis technology because of its high accuracy. In [26], the discrete wavelet
transform (DWT) splits the original signal into different scales, uses CNN for feature extrac-
tion, and finally performs fault classification using the softmax classifier, which performs
better than other wavelet-based methods. However, the input is the four components of
the signal. The parameters of the first layer are 32 × 32 × 4 × 32, and there are many
parameters. Therefore, the chip area of hardware circuits and power consumption are
unfavorable. In [27], the original signal is randomly sampled, and the input signal is
converted into a two-dimensional image and then fed to the LeNet-5 CNN for classification.
The accuracy of the three experimental conditions is more than 99%.

More recently, the study cited as [28] introduced a CNN model specifically developed
for detecting bearing faults, utilizing both vibration and acoustic signals. In this study,
the short-time Fourier transform (STFT) method was applied to transform these signals
into a time frequency representation. The findings from this research showed that the
proposed model achieved notably high accuracy in classification tasks. In contrast, the
study referred to as [29] went beyond signals produced by CNC machines (like vibration,
current, and acoustic signals) and introduced an innovative approach to fault detection.
This approach involved the use of event-based cameras and vision sensing techniques to
develop a contactless fault detection method. The results of their experiments showed
high accuracy under specific conditions, also emphasizing that the effectiveness of this
camera-based solution is greatly influenced by lighting conditions.

However, to enhance the accuracy, many existing works tend to select complex pre-
processing methods, taking several important features and then using neural networks to
classify them. Complex pretreatment will greatly burden hardware implementation, so
this paper uses the method of [27]. The pretreatment stage is relatively simple, and the
accuracy is not worse than other methods.

3. The Proposed Methodology

In this research, we focus on developing a real-time hardware solution to identify
faults in CNC machinery. Our approach employs a CNN as the predictive mechanism for
fault detection. The CNN model primarily uses images as input, which, in our case, are
derived from sensors attached to CNC machines. The essence of real-time processing in our
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project is the system’s ability to complete the fault prediction before the sensors produce a
subsequent image. For example, if an input image is made up of 4096 data points and the
sensor outputs every × nanoseconds, then the model’s prediction time per image should
be less than 4096× nanoseconds. In simpler terms, the model must process each image
swiftly to prevent delay accumulation, thereby maintaining real-time efficiency. To achieve
this, we simplify complex data preprocessing steps in our model. Besides streamlining
preprocessing, reducing the computational delay in the CNN is essential, particularly in
processes like convolution. Typically, a CNN with more parameters yields higher accuracy
but also longer prediction times. Therefore, balancing the CNN’s architecture size and
its accuracy is crucial. On the hardware side, we prioritize efficiency; adders are used
instead of multipliers to decrease computation time, power consumption, and chip area in
our design. Moreover, real-time performance, accuracy, and hardware cost are our prime
considerations. We have endeavored to reduce memory usage and hardware overhead
by minimizing the bits needed for data representation. However, this reduction can
significantly affect prediction accuracy. This paper will also explore the trade-off between
accuracy and hardware cost. Detailed explanations of our methodology will be discussed
in the following subsections.

3.1. Software Design
3.1.1. Dataset Preprocessing

First of all, we reduce the data preprocessing process, and this section will introduce
the details of the dataset we use in this paper and the dataset preprocessing process. As
aforementioned, in this work, we use the CWRU [9] dataset to train a CNN model to detect
the bearing faults. The test equipment at CWRU includes a two-horsepower (HP) motor,
torque sensor and encoder, a force meter, and control electronics. Svenska Kullagerfabriken
(SKF) (Gothenburg, Sweden) bearings and NTN equivalent bearings are used as test
bearings to support the motor shaft. The test bearings generate a single point of failure
by discharge processing. SKF bearings produce 0.007-, 0.014-, and 0.021-inch single-point
failures, and NTN equivalent bearings produce 0.028- and 0.04-inch single-point failures.

The defective bearing is installed in the electric motor, and the electric motor runs at
a constant speed. Each motor loads 0–3 HP (approx. 1730–1797 r.p.m). Bearing vibration
data are collected by three accelerometers mounted on the motor support substrate, the
drive-end motor housing, and the fan-end motor housing. Subsequently, the collected
vibration signals are processed in MATLAB. Each file contains multiple accelerometer data.
Moreover, there are four bearing datasets in the CWRU datasets: normal reference, 12 K
drive bearing failure, 48 K drive bearing failure, and 12 K fan-end bearing failure. There are
three types of fault data: inner race, ball fault, and outer race. The position of the outer race
fault concerning the bearing load area directly affects the vibration response, so the outer
race fault data contain data at three different locations: three o’clock position (orthogonal),
six o’clock position (center), and twelve o’clock position (opposite).

The vibration dataset is used to train the CNN model in this work. More specifically,
the vibration signals are converted into images sequentially. The bearing status is clas-
sified into ten categories according to the diameter of damage and type of fault, and if
the vibration signal can be classified into one of ten categories, then the CNN network
outputs the appropriate category. The label and corresponding bearing status are shown
in Table 1. The CWRU bearing vibration dataset for bearing fault detection consists of a
total of three accelerometer data, respectively: drive-end accelerometer data (DE), fan-end
accelerometer data (FE), and basic accelerometer data (BA). In this paper, data from fan-end
(FE) accelerometers are used.
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Table 1. Label and corresponding bearing status.

Label Fault Diameter Bearing Status

0 No fault health

1 0.007 inch ball fault

2 0.007 inch inner race fault

3 0.007 inch outer race fault

4 0.014 inch ball fault

5 0.014 inch inner race fault

6 0.014 inch outer race fault

7 0.021 inch ball fault

8 0.021 inch inner race fault

9 0.021 inch outer race fault

To convert a vibration signal to a gray-scale image through normalization, the normal-
ization requires a time domain signal’s maximum and minimum values and performing
multiplication and division operations, as shown in Equation (1). When implementing
CNN hardware, it takes 4096 cycles to find the minimum and maximum values of the
vibration signal. The preprocessing of the vibration signal will take a long time and require
memory and computing resources to process. Therefore, this paper directly arranges the
values of vibration signals into 64 × 64 images.

yi =
(x i − min)
(max − min)

× 255 (1)

Note that, in order to avoid waiting time, this study does not make a normalization
for the vibration signal. The vibration signal is converted directly as an image, and each
image size is 64 × 64. All images are divided into training images in the proportion of
64:16:20, verified, and tested. There are 8306 images, of which 5317 are training images,
1329 are validated images, and 1660 are test images. Training, validation, and test images
are randomly selected from all images, not from each category. Therefore, the number of
training, validation, and test images in each category is not exactly 64:16:20. The number of
training, validation, and test images in each category is shown in Table 2.

Table 2. Number of training and test images for each category.

Label Training Images Validation Images Test Images

0 259 54 100

1 401 120 125

2 398 115 133

3 1120 260 339

4 465 96 125

5 391 73 113

6 423 114 138

7 400 113 132

8 414 104 129

9 1046 280 326

Total 5317 1329 1660
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3.1.2. Architecture of the Proposed CNN Model

The proposed CNN network architecture for bearing condition detection is shown
in Figure 1. After arranging the vibration signals into images, the bearing conditions are
classified using the proposed CNN network. The proposed CNN architecture includes
the convolutional layers (Conv1 to Conv4), the max pooling layers, the global average
pooling layer, and the fully connected layer. If the global average pooling layer is used in
the network instead of the convolution results being output directly to the fully connected
(FC) layer, then the parameters of the neural network are greatly reduced, and overfit-
ting is prevented. The Conv includes a zero-padding layer, a convolution layer, and an
activation layer.
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This research examines four kernel sizes: 1 × 3, 1 × 5, 2 × 2, and 3 × 3. The vibration
signals are arranged on the image from the top to bottom and left to right. Notably, there
is a lack of continuity among values from distinct data rows situated at the same point.
To illustrate, the initial values of the first and second rows do not represent continuous
signals. As a result, for the purposes of this research, kernel sizes of 1 × 3 and 1 × 5 are
more suitable. For convolutional layers, Conv1 utilizes 8 filters, Conv2 employs 16 filters,
while Conv3 and Conv4 use 32 filters to gauge accuracy and pinpoint the optimal kernel
size. The outcomes of the simulations can be found in Table 3. With a 1 × 5 kernel size, we
achieve an accuracy rate of 97.16%, leading to the adoption of this size for our study.

Table 3. Different kernel sizes and the corresponding accuracy.

Kernel Size Training (64%) Validation (16%) Test (20%)

1 × 3 92.41% 90.66% 92.34%

1 × 5 98.70% 97.14% 97.16%

2 × 2 95.35% 92.55% 94.09%

3 × 3 97.25% 94.65% 94.39%

Eight distinct architectures are trained to ascertain the optimal number of layers and
the number of filters within each layer. Out of these, half feature three convolutional layers,
while the remaining half have four convolutional layers. All architectures employ a kernel
size of 1 × 5 and leverage global average pooling, leading to outputs for ten classes. As
illustrated in Table 4, the accuracy of using three convolutional layers is on par with that of
four convolutional layers. However, the parameter count for the three-layer setup is not
necessarily lower. For instance, Architecture 3, comprising three convolutional layers, has
filters distributions of 32 in Conv1, 64 in Conv2, and 128 in Conv3. It achieves an accuracy
rate of 97.34% with a parameter count of 13,530. In comparison, Architecture 6, with its
four convolutional layers, allocates 8 filters to Conv1, 16 to Conv2, and 32 to Conv3 and
Conv4. Despite its accuracy being marginally lower by 0.18% compared to Architecture 3,
it requires 4840 fewer parameters. Based on this, our study selects Architecture 6.
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Table 4. Different architectures and the corresponding accuracy.

Architecture
Output Filter

Parameter Test
Conv1 Conv2 Conv3 Conv4

1 4 8 16 × 990 85.36%

2 8 16 32 × 3570 95.54%

3 16 32 64 × 13,530 97.34%

4 32 64 128 × 54,150 97.53%

5 4 8 16 16 2270 89.15%

6 8 16 32 32 8690 97.16%

7 16 32 64 64 34,010 97.28%

8 32 64 128 128 134,570 97.46%

Table 5 compares prior works focusing on CWRU bearing fault detection but employ-
ing varying network architectures and preprocessing techniques. This study takes into
account hardware implementation; therefore, it adopts preprocessing methods that are
easy to implement and aim to minimize the architecture to achieve parameter lightness. In
Table 5, the network parameters of the proposed model are more than 30-fold fewer than
other architectures. In contrast, the accuracy of the proposed model is only slightly lower
by 2.54% compared to the others.

Table 5. Comparison table of the software level.

[24] [25] [27] This Work

Algorithm DNN MSIQDE + DBN 2-D CNN 2-D CNN

Parameter (K) 1110 266 10,899 8.69

Category 7 10 10 10

Accuracy 100% 99.7% 99.77% 97.16%

To assess our trained model’s ability to classify accurately, we create a confusion matrix
for the proposed CNN architecture, as shown in Figure 2. This matrix uses the x-axis to
display predicted categories across ten classes and the y-axis to indicate the actual labels of
the input images. Each value in the matrix reflects the likelihood of a specific outcome. For
example, a value at the intersection of the actual label 0 and predicted label 0 indicates the
probability that an image, truly belonging to class 0, is correctly predicted as class 0. High
values along the diagonal of the matrix, nearing 1, suggest strong classification accuracy.
Notably, all diagonal values being close to 1 in Figure 2 demonstrates that our CNN model
has a high level of classification precision.

3.2. Hardware Implementation

Upon successfully training the CNN model in a software environment, our next
step involves starting to implement this model into a hardware accelerator. This section
delves into strategies for minimizing power consumption and chip area while enhancing
computational speed. A significant factor in the circuit’s power consumption is attributed
to off-chip memory access. Frequent read and write operations on the same memory
device substantially limit the energy efficiency of the circuit. Consequently, quantizing the
CNN network becomes imperative to lessen memory access time and power consumption,
thereby boosting the speed of computations.



Sensors 2023, 23, 9437 9 of 19
Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 2. The confusion matrix of the proposed CNN network architecture. 

3.2. Hardware Implementation 
Upon successfully training the CNN model in a software environment, our next step 

involves starting to implement this model into a hardware accelerator. This section delves 
into strategies for minimizing power consumption and chip area while enhancing com-
putational speed. A significant factor in the circuit’s power consumption is attributed to 
off-chip memory access. Frequent read and write operations on the same memory device 
substantially limit the energy efficiency of the circuit. Consequently, quantizing the CNN 
network becomes imperative to lessen memory access time and power consumption, 
thereby boosting the speed of computations. 

The entire design process proceeds from training the CNN network model to the 
hardware implementation, as shown in Figure 3. The first step is to convert 4096 vibration 
signals per image into 64 × 64 images using the signal-to-image conversion method men-
tioned in [27]. The second step is to train the CNN network architecture and consider 
power consumption and computing speed in the hardware implementation. Therefore, 
the network structure is kept lightweight to reduce network complexity and the number 
of parameters, but high accuracy is still required. 

The third step involves parameter quantization. This research draws inspiration from 
the incremental network quantization method [19] with further enhancements. In [19], the 
quantization process is divided into four stages, initially quantizing 50% of all model pa-
rameters, followed sequentially by 75%, 87.5%, and 100%. During the retraining process, 
ref. [19] utilizes unquantized parameters for adjustments to compensate for the accuracy 
loss caused by quantization. On the other hand, in this work, all parameters are used for 
retraining. Notably, this work does not employ pruning since its effects are insignificant. 

In the fourth step, the values are represented in fixed-point format after quantizing 
all parameters. However, TensorFlow is used when training the proposed CNN, and float-
ing-point computations are applied. Therefore, during hardware implementation, as 
fixed-point computations can lead to accuracy loss, it is essential to evaluate the proposed 
CNN in Python to assess the precision loss when choosing the minimum bit-width imple-
mentation. After confirming the precision loss and determining the bit-width, we proceed 
to write the Verilog register transfer level (RTL) code to implement the functionality of 

Figure 2. The confusion matrix of the proposed CNN network architecture.

The entire design process proceeds from training the CNN network model to the
hardware implementation, as shown in Figure 3. The first step is to convert 4096 vibration
signals per image into 64 × 64 images using the signal-to-image conversion method
mentioned in [27]. The second step is to train the CNN network architecture and consider
power consumption and computing speed in the hardware implementation. Therefore, the
network structure is kept lightweight to reduce network complexity and the number of
parameters, but high accuracy is still required.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

each component in the proposed CNN. Subsequently, we synthesize the code using Xilinx 
Vivado and obtain the implementation results.  

Vibration signal 
converted into 

image

CNN 
architecture 
adjustment

Training CNN

Is the model 
converges?

initial choose 
50%  parameters 
for quantization, 

then 75%, 
87.5%, 100%

Retrain and    
Quantization 
parameters

Is the model 
converges?

Whether
all parameters 

quantized?

Save 
quantization 

model

Convert floating 
point to fixed-

point using 
python

hardware 
implementation

Yes

Yes

Yes

No

NoNo

 
Figure 3. From software training to quantization, parameter extraction, final software verification, 
and hardware implementation. 

The proposed CNN network hardware block diagram is shown in Figure 4. The en-
tire calculation process can be divided into three blocks: Conv, max pooling, and FC. The 
Conv is responsible for the zero-padding, dynamic fixed-point adjustment, convolution 
calculations, and activation function. The image size output after the convolution opera-
tion is smaller, so the input image needs to be zero-padded to maintain the same input 
and output image size. Dynamic fixed-point adjustments are used in the architecture, and 
each layer’s integer and decimal bits are different. In this study, the whole number of in-
tegers and decimal places is adjusted in the Conv, and the entire convolution operation is 
carried out only after adjustment. The convolution contains six adders, five of which are 
used for the kernel calculation of the convolution operation, and one is for the partial sum 
accumulation. The activation function chooses to use ReLU because ReLU is very simple. 
The max pooling block is responsible for performing max pooling and controlling whether 
the output is stored to Ofmap_RAM, and when four layers of convolution are complete, 
the results are output to the FC block. The FC block is responsible for global average pool-
ing and fully connected operations and compares ten output values, outputting the max-
imum label. There are four convolution layers and four max pooling layers in the pro-
posed CNN network. The max pooling results from the first to the third layer are trans-
mitted to Ofmap_RAM1 or Ofmap_RAM2, and the max pooling results in the fourth layer 
are transferred to the FC block for operations. The global average operation and the fully 
connected layer operation are performed in the FC block. After four maximum pooling 
layers, only 4 × 4 images remain in the output. Therefore, the global average operation can 
be calculated by shifting four bits to the right instead of division. When the fully connected 
layer is calculated, the label with the maximum value is output. ConvKernel_ROM only 
stores the weight of the convolution layer. The weight of the fully connected layer is stored 
in the FCWeight_ROM, which makes it more convenient to take the value when perform-
ing fully connected layer operations. The memory management method of the ping-pong 
architecture consists of two memory banks, where one memory provides the value, and 

Figure 3. From software training to quantization, parameter extraction, final software verification,
and hardware implementation.



Sensors 2023, 23, 9437 10 of 19

The third step involves parameter quantization. This research draws inspiration from
the incremental network quantization method [19] with further enhancements. In [19],
the quantization process is divided into four stages, initially quantizing 50% of all model
parameters, followed sequentially by 75%, 87.5%, and 100%. During the retraining process,
ref. [19] utilizes unquantized parameters for adjustments to compensate for the accuracy
loss caused by quantization. On the other hand, in this work, all parameters are used for
retraining. Notably, this work does not employ pruning since its effects are insignificant.

In the fourth step, the values are represented in fixed-point format after quantizing all
parameters. However, TensorFlow is used when training the proposed CNN, and floating-
point computations are applied. Therefore, during hardware implementation, as fixed-point
computations can lead to accuracy loss, it is essential to evaluate the proposed CNN in
Python to assess the precision loss when choosing the minimum bit-width implementation.
After confirming the precision loss and determining the bit-width, we proceed to write the
Verilog register transfer level (RTL) code to implement the functionality of each component
in the proposed CNN. Subsequently, we synthesize the code using Xilinx Vivado and obtain
the implementation results.

The proposed CNN network hardware block diagram is shown in Figure 4. The entire
calculation process can be divided into three blocks: Conv, max pooling, and FC. The
Conv is responsible for the zero-padding, dynamic fixed-point adjustment, convolution
calculations, and activation function. The image size output after the convolution operation
is smaller, so the input image needs to be zero-padded to maintain the same input and
output image size. Dynamic fixed-point adjustments are used in the architecture, and
each layer’s integer and decimal bits are different. In this study, the whole number of
integers and decimal places is adjusted in the Conv, and the entire convolution operation is
carried out only after adjustment. The convolution contains six adders, five of which are
used for the kernel calculation of the convolution operation, and one is for the partial sum
accumulation. The activation function chooses to use ReLU because ReLU is very simple.
The max pooling block is responsible for performing max pooling and controlling whether
the output is stored to Ofmap_RAM, and when four layers of convolution are complete, the
results are output to the FC block. The FC block is responsible for global average pooling
and fully connected operations and compares ten output values, outputting the maximum
label. There are four convolution layers and four max pooling layers in the proposed
CNN network. The max pooling results from the first to the third layer are transmitted
to Ofmap_RAM1 or Ofmap_RAM2, and the max pooling results in the fourth layer are
transferred to the FC block for operations. The global average operation and the fully
connected layer operation are performed in the FC block. After four maximum pooling
layers, only 4 × 4 images remain in the output. Therefore, the global average operation can
be calculated by shifting four bits to the right instead of division. When the fully connected
layer is calculated, the label with the maximum value is output. ConvKernel_ROM only
stores the weight of the convolution layer. The weight of the fully connected layer is stored
in the FCWeight_ROM, which makes it more convenient to take the value when performing
fully connected layer operations. The memory management method of the ping-pong
architecture consists of two memory banks, where one memory provides the value, and the
other memory stores the result of the operations. Since the CNN network proposed in this
design has the most significant output values on the first and second layers, the number of
first- and second-layer output values determines the memory size.

The quantization process is divided into four stages, initially quantizing 50% of all
model parameters, followed sequentially by 75%, 87.5%, and 100%. The quantization
process is shown in Algorithm 1. First, random numbers produce a quantization order of
parameters for each layer and quantify the parameters of that layer based on the quanti-
zation order and the quantization phase. The model is quantified once it documents the
accuracy of the quantization, and then the model, maximum precision, and quantization
order to be trained and quantized is entered into Algorithm 2 for retraining and quanti-
zation. If the accuracy of the output of Algorithm 2 is not higher than before, then the
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quantization method is replaced. If all three quantization methods are already in use, then
the next phase of quantization will take place.
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This study employs three distinct methods in the quantization process, as detailed in
Algorithm 2. The first method involves quantizing after each training epoch. The second
method quantifies after each training batch. Meanwhile, the third approach activates
quantization once the verification accuracy surpasses a predetermined threshold. If the
conditions for quantization are met, then the quantization model and the quantization
order are transmitted to Algorithm 3. If the quantization accuracy surpasses the peak
accuracy, then the model will be preserved. While all three methods are applied, the first
and third methods often yield higher training accuracies at the expense of lower verification
accuracies. Conversely, the second method effectively narrows the training and verification
accuracy gap.

Parameters are quantized to the nearest value among the 15 options. These values are
1, −1, 0.5, −0.5, 0.25, −0.25, 0.125, −0.125, 0.0625, −0.0625, 0.03125, −0.03125, 0.015625,
−0.015625, and 0, as shown in Algorithm 3. After quantization, the computational proce-
dure does not use multiplication; only shifting the operation is required.

In the proposed CNN model, there are 8680 parameters, excluding biases. Throughout
the training process, 32-bit floating-point numbers facilitate the calculations of the neural
network model. Without quantization, storing all these parameters necessitates 277,760 bits
of memory. Models that are neither compressed nor quantized lead to increased chip
area and greater power demands. Consequently, we employ the improved incremental
network quantization method to quantize the parameters, with each parameter being
represented using just four bits. This results in savings of 243,040 bits at the cost of losing
1.62% accuracy. Table 6 exhibits the accuracy achieved at varying quantization levels. The
remaining unquantized parameters can counteract the losses from quantization. Therefore,
even after quantizing 87.5% of the parameters, the verification accuracy remains unchanged.
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Algorithm 1. Select order and training

INPUT : trained_network Net
OUTPUT : quantized_network N̂et
//LW_NUM[n] : number of layer n weights
N̂et = Net;
for i in range (max(n)) :

order[i] = RandomOrder(LW_NUM [i])
for m in range([0.5, 0.75, 0.875, 1])

Qmethod = 0;
max_acc = 0;
original_acc = 0;
for i in range(max(n)) :

orderM = order[i][0 : LW_NUM [i] ∗ m]

N̂et = QuantizationNetwork
(

N̂et, orderM
)

;
while(Modelnotconvergent)

original_acc = max_acc;
while(Modelnotconvergent)

N̂et = QuantizationMethod
(

N̂et, orderM, max_acc, Qmethod
)

if (original_acc == max_acc)
Qmethod = Qmethod + 1;
if (Qmethod == 3)

Qmethod = 0;
return

(
N̂et

)

Algorithm 2. Quantization method

Input : Net , orderM , max_acc , Qmethod
Output : quantized_network N̂et
if (Qmethod == 0)

N̂et = TrainingNetwork(Net);

N̂et = QuantizationNetwork
(

N̂et, orderM
)

;
else if (Qmethod == 1)

while (AnEpochisnotComplete.)
N̂et = TrainingNetworkOneBatch(Net);

N̂et = QuantizationNetwork
(

N̂et, orderM
)

;
else

N̂et = TrainingNetwork(Net);
if (validation_acc >= SettheAccuracyRate)

N̂et = QuantizationNetwork
(

N̂et, orderM
)

;

validation_accuracy = TestNetwork
(

N̂et
)

if (validation_acc > max_acc)
max_acc = validation_acc;
SaveModel

(
N̂et

)
;

return
(

N̂et
)

;
else

return (Net);
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Algorithm 3. Quantization network

Input : Net , orderM
Output : quantized_network N̂et
Target =

{
0,±20,±2−1,±2−2,±2−3,±2−4,±2−5,±2−6}

for i in range (number of Net layers)
for j in range(orderM)
N̂et[i][j] = QuantizeasApproximateValue (Target, Net[i][j])

return
(

N̂et
)

Table 6. Accuracy with different quantization percentages.

Training Validation Test

Unquantized 98.70% 97.14% 97.16%

Quantize 50% 97.98% 97.74% 95.78%

Quantize 75% 98.00% 97.81% 97.04%

Quantize 87.5% 98.00% 97.74% 96.80%

Quantize 100% 97.28% 95.93% 95.54%

To demonstrate the reliability of our approach, we conduct a series of experiments
for cross-validation analysis. In this experiment, we adopt a shuffle–split strategy that
randomly samples elements from datasets in each iteration. More specifically, we resample
our dataset ten times, generating unique training and testing sets labeled from v1 to v10.
For each set, we retrain our model. The outcomes of these experiments are presented in
Table 7. As observed in the table, our proposed network consistently achieves an accuracy
rate above 91% in all ten instances of resampling.

Table 7. Cross-validation analysis after quantization.

Version Training Validation Test

v1 97.28% 95.93% 95.54%

v2 92.56% 91.94% 92.46%

v3 97.91% 93.15% 93.85%

v4 98.45% 93.07% 93.43%

v5 96.40% 93.37% 92.77%

v6 96.00% 94.50% 92.95%

v7 98.56% 96.08% 95.48%

v8 94.86% 93.00% 94.75%

v9 98.23% 91.87% 93.73%

v10 95.33% 93.30% 91.38%

Moreover, sensor data are continuously fed into the operational circuit in the hardware
configuration. Consequently, a dedicated memory segment is essential to store these
sensor data. The vibration signal’s minimum and maximum values are −7.1409 and 7.5856,
respectively. As a result, one bit is allocated for the sign and three bits for the integer part.
Next, we experiment with varying the precision from 4 to 10 decimal bits to assess accuracy
implications. The outcomes of these tests can be found in Figure 5. Note that, in Figure 5,
the x-axis denotes the total presenting bits, which includes the 4-bit integer of the input,
and the y-axis indicates the accuracy. Assuming an input value is represented using a 32-bit
floating point and an image contains 4096 values, the necessary memory storage amounts
to at least 131,072 bits. When each value is denoted using four bits for the integer part
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and five for the fractional part, summing up to nine bits in total, there is a slight reduction
in accuracy by 0.42%. However, this approach allows for significant memory savings of
94,208 bits.
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During the execution of the CNN hardware circuit, the input is accessed multiple
times. Hence, two instances of Ofmap_RAM are required to implement the ping-pong
architecture. While one memory handles the data reading process, the other memory stores
the results from the CNN operations. The outputs from each layer are also represented in
fixed-point format to conserve space in Ofmap_RAM.

Owing to the vast variability in the output values across each layer of the neural
network, it is crucial to assess the bit requirement for each layer before transitioning values
from 32-bit floating-point to fixed-point format. The number of output bits is minimized
by trimming extra bits before they are relayed to the subsequent layer for processing. It
is worth noting that the count of output bits directly influences memory consumption.
A Python-based simulation of the CNN network’s computation process is employed to
quickly determine the integer and fractional bits that need to be retained for each layer’s
output. During this Python-based CNN operation simulation, each layer’s maximal and
minimal values are logged throughout the computation, with the results shown in Table 8.

Table 8. Maximum and minimum values of each layer output.

Layer Maximum Minimum Integer Bits

Conv1 13.078 −13.988 5

Conv2 41.105 −67.315 8

Conv3 273.757 −218.08 10

Conv4 1081.706 −1536.202 12

FC 437.778 −637.388 11
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This study examines two distinct fixed-point methods to calculate the necessary bit
count. The first approach uses a consistent representation with a set number of integer and
decimal bits per layer. Specifically, the integer part is set to 12 bits tested across decimal bits
ranging from 5 to 10. The second method, dynamic fixed point, adapts the integer digits
based on the layer’s maximum value. For example, Conv1 through FC have integer bits
set at 5, 8, 10, 12, and 10, respectively, and are tested using 17 to 22 bits to evaluate any
accuracy drop in the CNN.

Results for both methods are shown in Figure 6. The data suggests that the dynamic
fixed-point method outperforms the consistent representation, especially when fewer bits
are employed. A clear observation from Figure 6 is that the dynamic approach delivers
superior accuracy for the same total bit count, particularly at lower bit numbers.
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Given these findings, this study opts for the dynamic fixed-point method, setting
each output at 18 bits. The two Ofmap_RAM storage units require storage for 8192 and
4096 values. Using 32-bit floating points for the output would demand 262,144 bits and
131,072 bits of memory, respectively. By selecting the 18-bit dynamic method, we achieve
significant memory savings of 114,688 bits and 57,344 bits for the two Ofmap_RAM units.

The accuracy for each category is shown in Table 9, derived from a Python evaluation
used to quantize the fixed-point networks. Notably, the second and eighth categories
display lower accuracy levels. These categories correspond to 0.007-inch and 0.021-inch
inner race faults, respectively. Their identification poses a challenge; for instance, the
0.007-inch inner race fault is often misclassified as a 0.021-inch inner race fault.

In total, there are 8680 weights. Originally, each weight is represented by 32 bits.
After quantization, each weight requires only four bits, resulting in memory savings of
87.5%. The bias, Ofmap_RAM1, and Ofmap_RAM2—with 10, 8192, and 4096 values,
respectively—transition from using 32-bit floating-point representations to 18-bit fixed-
point numbers. This change means each value only needs 18 bits, saving 43.75% of memory
space for these components. Additionally, the Input_RAM, comprising 4096 values, is
optimized to use just nine bits per value, leading to a 71.88% reduction. Cumulatively, the
overall memory savings is 63.49%, as shown in Table 10.
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Table 9. Accuracy for each category.

Label Test Image Correct Image Accuracy

0 100 100 100%

1 125 118 94.40%

2 133 110 82.71%

3 339 331 97.64%

4 125 112 89.60%

5 113 109 96.46%

6 138 137 99.28%

7 132 127 96.21%

8 129 115 89.15%

9 326 320 98.16%

Total 1660 1579 95.12%

Table 10. The memory usage of 32-bit floating point and this work.

32-bit Floating Point This Work Reduction

Weight 277,760 34,720 87.5%

Bias 320 180 43.75%

Input ROM 131,072 36,864 71.88%

Ofmap RAM1 262,144 147,456 43.75%

Ofmap RAM2 131,072 73,728 43.75%

Total 802,368 292,948 63.49%

4. Experimental Results

When deploying on an FPGA, components such as Kernel_ROM, Input_RAM,
Ofmap_RAM1, and Ofmap_RAM2 are constructed using the block memory generator,
while the clocking wizard produces the system clock. Within the FPGA synthesis tool, the
integrated logic analyzer (ILA) allows easy waveform visualization to facilitate debugging.
Users can specify the signals and the depths they wish to observe via the ILA. However, it
is essential to define the trigger conditions appropriately.

To achieve real-time capability, we analyze the requirement of the computing cycles
and decide the clock rate. The CWRU dataset offers vibration signal samples at 12,000
and 48,000 samples per second. The circuit must wait for 4096 data points to be input
before performing the CNN network operations using the 48,000 samples/second rate
for illustration. An image containing 4096 time domain signal points for real-time state
diagnosis must be processed within 0.085333 s. Completing the calculations for one such
image requires 360,828 cycles, implying a required clock frequency of approximately
4.23 MHz for the intended hardware accelerator. However, generating a precise 4.23 MHz
frequency during FPGA implementation is not feasible. Consequently, a 5 MHz clock
frequency is employed in this work.

This research specifically utilizes the Xilinx Virtex-7 FPGA VC707 evaluation board to
validate the circuit design. While the VC707 inherently offers a 200 MHz clock frequency,
the necessary clock rate for our circuit is achieved using the clocking wizard. The circuit’s
power consumption is 342 mW at a clock rate of 5 MHz. Notably, the circuit can function at
a maximum clock rate of 140 MHz, which consumes 616 mW.

In the proposed design, a single Input_RAM is utilized to access the input signal. Once
the initial convolution layer processes are finalized, the RAM values can be refreshed. With
a frequency of 5 MHz, completing the first convolution layer requires 6574,500 ns, while
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generating the label output takes 72,165,700 ns. Vibration signals are fed every 20,833 ns.
Hence, besides the 4096 values needed for the initial convolution layer’s computations,
extra memory is necessary to accommodate the 316 vibration signals fed during this period.
After the label generation, only 3464 vibration values are input, leading to a circuit idle
time of 13,166,456 ns.

On the other hand, at 140 MHz clock rate, the first convolution layer completes in
236,682 ns, and producing the label output requires 2,597,965 ns. In this scenario, extra
storage is required for the 12 vibration signals processed during the initial convolution
phase. Post-label production, with just 125 vibration values input, the circuit remains
inactive for 82,727,843 ns. The vibration signal’s sampling rate can be elevated, or the
operational frequency can be adjusted to 4.23 MHz to optimize and prevent such inactivity.

To assess real-time capabilities, we conduct a comparison between our method and a
state-of-the-art real-time hardware solution [30] for bearing faults diagnosis. The referenced
work [30] introduced a binary weight-based CNN on FPGA, achieving real-time perfor-
mance at 130 MHz with 20,387,288 computing cycles and resulting in a detection iteration
time of 156,819,019 ns. As previously noted, our solution, operating at a comparable clock
rate (e.g., 140 MHz), demonstrates a significantly faster computational completion within
2,597,965 ns, thereby surpassing the performance of the referenced method.

Finally, In Table 11, the comparisons indicate that the proposed design, implemented
with a lightweight network, has fewer parameters than other architectures. This reduction
in parameters leads to decreased storage requirements. Regarding the FPGA implemen-
tation, LUT, DSP, FF, and BRAM usage in this work is significantly lower than in other
comparable models, resulting in the lowest power consumption. The efficiency reported in
this work stands at 1.126 (GOPS/W) when operating at 140 MHz.

Table 11. Hardware accelerator comparison table.

[31] [32] [33] [34] [35] This Work

Technology FPGA Altera
Stratix V FPGA VC709 FPGA ZYBO Z7 FPGA

Zynq-7000

FPGA
Zynq

XC7Z045
FPGA VC707

Algorithm F-CNN CNN CNN CNN CNN CNN

Architecture LeNet-5 LeNet LeNet-5 LeNet-5 LeNet LeNet

Dataset MNIST CIFAR10 MNIST MNIST MNIST CWRU

Parameters (K) 430 N/A 13.47 61.5 33.6 8.69

Frequency
(MHz) 150 100 100 150 N/A 5/140

Precision (bits) 32-bit 8-bit 32-bit N/A 8-bit 18-bit

Power (W) 27.3 25.2 1.8 N/A 0.029 0.342/0.616

LUT 69,510 233,215 14,659 36,798 2800 9306/9689

DSP 23 2907 125 214 5 0/0

FF 87,580 307,617 14,172 N/A 2700 5703/5703

BRAM 510 477 119.5 123 7 8.5/8.5

GOPS 62.06 424.7 0.343 N/A 0.1 0.025/0.6938

GOPS/W 2.27 16.85 0.19 N/A 3.45 0.073/1.126

Accuracy N/A 79.64% N/A 98.4% 98.68% 95.12%

5. Conclusions

This paper explores the design flow from software to hardware, applying various
quantization approaches in the software to minimize both the quantity and the bit size
of the model’s parameters. Based on the sampling rate provided by the CWRU dataset,
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the proposed design achieves real-time processing with a circuit frequency of 5 MHz. The
proposed CNN hardware accelerator is implemented with an FPGA evaluation board
(VC707). We process each image, containing 4096 values at a rate of 1.576 M samples per
second, resulting in a processing time of 2,598,984 nanoseconds per image. However, at
a circuit speed of 140 MHz, the processing time is reduced to just 2,597,965 nanoseconds
without any loss in accuracy. This study performs quantization at four levels: 50%, 75%,
87.5%, and 100%, respectively, and rounds the parameters to the nearest power of two,
facilitating operation without multiplication. We have effectively decreased memory usage
by substituting floating points with fixed points of a lower bit width. The employed
architecture is based on a lightweight network, totaling only 8.69 K parameters. For the
implementation using VC707, when the clock frequency requirement is set to 140 MHz, it
uses only 9689 LUTs, no DSPs, 5703 FFs, and 8.5 BRAMs, with a total power consumption
of 616 mW. When the clock frequency requirement is set to 5 MHz, the resource usage
slightly decreases to 9306 LUTs, with no DSPs, 5703 FFs, and 8.5 BRAMs, and the power
consumption drops to 342 mW.
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