
Citation: Chung, C.-C.; Liang, Y.-P.;

Jiang, H.-J. CNN Hardware

Accelerator for Real-Time Bearing

Fault Diagnosis. Sensors 2023, 23,

5897. https://doi.org/10.3390/

s23135897

Academic Editors: Chuan-Ming Liu

and Wei-Shinn Ku

Received: 17 May 2023

Revised: 8 June 2023

Accepted: 21 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CNN Hardware Accelerator for Real-Time Bearing Fault Diagnosis
Ching-Che Chung * , Yu-Pei Liang and Hong-Jin Jiang

Department of Computer Science and Information Engineering and Advanced Institute of Manufacturing with
High-Tech Innovations, National Chung Cheng University, Chia-Yi 621301, Taiwan;
ypliang@cs.ccu.edu.tw (Y.-P.L.); hong@s3lab.org (H.-J.J.)
* Correspondence: wildwolf@cs.ccu.edu.tw

Abstract: This paper introduces a one-dimensional convolutional neural network (CNN) hardware
accelerator. It is crafted to conduct real-time assessments of bearing conditions using economical hard-
ware components, implemented on a field-programmable gate array evaluation platform, negating
the necessity to transfer data to a cloud-based server. The adoption of the down-sampling technique
augments the visible time span of the signal in an image, thereby enhancing the accuracy of the
bearing condition diagnosis. Furthermore, the proposed method of quaternary quantization enhances
precision and shrinks the memory demand for the neural network model by an impressive 89%.
Provided that the current signal data sampling rate stands at 64 K samples/s, the proposed design
can accomplish real-time fault diagnosis at a clock frequency of 100 MHz. Impressively, the response
duration of the proposed CNN hardware system is a mere 0.28 s, with the fault diagnosis precision
reaching a remarkable 96.37%.

Keywords: fault diagnosis; convolution; neural networks; quantization; fixed-point arithmetic;
real-time systems; field-programmable gate arrays; signal sampling; digital signal processing; digital
circuits

1. Introduction

Recently, advanced manufacturing systems have relied on complex and precise equip-
ment to improve efficiency and operator safety. For example, in the industrial era, large-
scale manufacturing industries have needed to use many electric motors instead of laborers
because these motors are easy to install and operate and have a strong overload capability,
saving labor costs and avoiding human mistakes. However, the mechanical parts are
easily damaged when the motor runs for a long time. Statistical analysis reveals that the
mechanical failure of bearings accounts for 40% and 90% of large and small machines,
respectively [1]. Moreover, the inability to find the failure of mechanical parts in time
causes catastrophic chain damage to all of the equipment. In other words, how to detect
failure in time is an important issue for industries, especially with regard to bearing faults.

Typically, there are two main types of bearing fault diagnosis: (1) the remaining useful
life (RUL) and (2) fault category diagnosis. The RUL estimates how long the machine can
operate before the bearing needs to be replaced. Meanwhile, fault category diagnosis refers
to the accurate identification of the type and location of the fault. Their common goal is to
enable the effective implementation of maintenance work while preventing the shutting
down of the production line due to severe mechanical failures, causing high losses.

According to the observation of a previous study [2], localized faults in rolling bearings
produce a series of broadband impulse responses in the vibration signal when the bearing
components repeatedly strike the fault. Moreover, the exact location of the fault determines
the nature of the impulse response series, and it can be observed through the power spectral
density (or envelope spectrum). Therefore, Lessmeier et al. [2] indicated that each fault
location has a different characteristic frequency in the frequency spectrum.

Sensors 2023, 23, 5897. https://doi.org/10.3390/s23135897 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135897
https://doi.org/10.3390/s23135897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1398-4320
https://doi.org/10.3390/s23135897
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135897?type=check_update&version=2

Sensors 2023, 23, 5897 2 of 24

Nevertheless, some of the previous works [3–9] detect the bearing faults by collecting
the vibration signal and then analyzing the data to classify the fault types. In addition to the
works on the detection of bearing faults, the previous work [10] indicated that the vibration
signal would be influenced by the surface topography of raceways. In other words, some
defects of bearing components would transfer to other components; this phenomenon is
called operational heredity. Therefore, using the vibration signal for fault diagnosis may
require consideration of the influence of the topography of raceways. However, due to the
size of the accelerometer, high cost, inconvenience of installation, and the impossibility
of dismantling some bearings, the current data are gradually being considered for fault
diagnosis [1], which can be measured by installing a low-cost frequency converter or a
current transformer. In other words, to avoid the troublesome installation, the magnetic
effect of the current can be used to measure the stator current through the electromagnetic
field generated around it. The measurement consists of a current transformer with a simple
closed core and winding.

Additionally, the Mechanical Engineering Construction and Drive Technology Re-
search data center of Paderborn University [11] offers a publicly accessible dataset for
researchers. This dataset from Paderborn University (PU) includes information on fault
locations, such as the inner and outer races and a combination of the outer and inner races.
Note that, in the following paper, the dataset is referred to as the PU dataset for short. The
damage is divided into artificial damage, such as electric discharge machining and drilling
of the bearing, and real damage, which is produced by an accelerated life test, usually by
applying a higher radial force than usual when the bearing is used and setting improper
lubrication to accelerate the damage.

Being a rather comprehensive dataset, several studies [1,12–16] have attempted to
develop methodologies for fault diagnosis and to categorize fault types using the current
signal from this dataset. However, most of them are challenging to implement in the
hardware of embedded systems due to their high computational complexity. In other
words, there is no existing research on the circuit implementation of bearing fault diagnosis
using this dataset. The current signal data for the bearing condition diagnosis for this
dataset are measured with a low-cost current transducer. However, the current signal can
be more easily masked by noise than the vibration signal when the bearing is running [17].
Therefore, finding an effective method to extract the current signal features is necessary.
On the other hand, the previous works are often accompanied by high computational
overhead; therefore, they cannot be integrated into the machine tool and can only be used
for offline data analysis of bearing condition diagnosis.

To address the problems mentioned above, this work aims to perform a real-time
condition diagnosis of bearings through low-cost hardware circuits, eliminating the need
to upload data to a cloud computing server. Furthermore, implementing a hardware
accelerator to perform analysis on the sensor side can be highly integrated with the machine
tool to improve its self-monitoring capability.

The main contributions of this paper can be summarized as follows:

(1) This work is a pioneer work that considers the feasibility of circuit implementation and
the real-time response ability in bearing fault diagnosis problems using current signals.

(2) Furthermore, the signal used for diagnostics is the current signal rather than the
vibration signal. Thus, the cost of the vibration sensor can be reduced, which is also
a better solution for bearings that are difficult to disassemble. In other words, low
hardware cost is achieved without losing too much accuracy.

(3) In this work, the complex data preprocessing procedures are removed without influ-
encing the accuracy.

(4) In addition, this work converts the convolutional neural network (CNN) model from
a commonly used two-dimensional CNN to a one-dimensional CNN to further reduce
the delay in starting the operation. It is no longer necessary to wait for two rows of
data before the convolution operation; it is only necessary to wait for kernel-sized data.

Sensors 2023, 23, 5897 3 of 24

(5) On the other hand, this work proposes a new quaternary quantization method to
replace the ternary quantization method. As a result, the weight of the CNN can be
better expressed.

(6) Moreover, accuracy is improved without increasing the number of bits representing
the weight. Therefore, the cost of the circuit implementation can be reduced without
losing much accuracy.

(7) The procedure for realizing hardware circuits is introduced in this paper.
(8) The experimental results show that the proposed method can achieve similar accuracy

to that of previous works on model accuracy with a significantly lower hardware cost.

The remainder of the paper is organized as follows: Section 2 introduces the related
work on bearing fault diagnosis. Section 3 shows the proposed methodology of the bearing
fault diagnosis and the CNN architecture in both the software and the hardware implemen-
tation. Then, the experimental results are discussed in Section 4. Finally, the conclusion is
given in Section 5.

2. Related Work

Over the decades, different optimization methods and models of different architec-
tures were proposed by different parties for powerful classification tasks. On the other
hand, in the field of bearing faults diagnosis, the traditional method requires a thorough
understanding of the mechanism of the machine. However, as the machine becomes more
complex over time, the external environment’s noise makes the traditional methods inef-
ficient and difficult to apply. Therefore, research on fault diagnosis has gradually shifted
from signal analysis to autonomous neural network training models, where the training
network model does not require prior domain knowledge. Moreover, fault diagnosis can
be considered as the feature extraction and classification problem; the autoencoder (AE),
deep belief network (DBN), support vector machine (SVM), and CNN are commonly used
machine learning methods for feature extraction and classification. Therefore, several types
of research aimed to apply those methods to the bearing diagnosis area.

For example, Qin et al. [3] proposed an optimized DBN model and a logistic sigmoid
function that solves the vanishing gradient problem of the sigmoid function to improve the
accuracy of the DBN in fault diagnosis. This research also proposed a method to preprocess
the network input signal by first applying the Morlet wavelet transform to the original
vibration signal, using the kurtosis index to select impulsive components and an adaptive
soft-thresholding method to reconstruct the signal. The proposed method is better than the
empirical mode decomposition for the extraction of signal features. However, the problem
of the network optimization of the DBN still exists, making practical applications of the
DBN difficult to achieve in the industry.

On the other hand, Abid et al. [18] used the SVM method of the directed acyclic graph
(DAG) to classify faulty bearings and improved the performance of the SVM by combining
the stationary wavelet packet transform (SWPT) and the DAG. The current signal was
used, and the SWPT was applied to extract features and to overcome the shortcomings of
other wavelet transforms. Furthermore, Wen et al. [19] used the classical CNN, LeNet-5,
and proposed a method for signal image conversion. Wen’s work [19] randomly took the
segment of the vibration signal rather than the whole data in one record. These signals
were then converted into a two-dimensional image with a size of 64 × 64, which was
inputted into the CNN model. Their research has inspired a deeper investigation into
the use of CNNs for fault diagnosis. Previously, inputs based on a frequency domain or
complex feature extraction caused application difficulties. The CNN model based on the
time-domain signal enables the realization of a real-time diagnosis method.

More recently, Karpat et al. [15] used a one-dimensional CNN with a large window
size for classifying bearing faults. However, the proposed CNN model requires over 1422k
parameters and only achieves an accuracy lower than 95%. Furthermore, Zhu et al. [4]
preprocessed the raw vibration sensor data to extract nine features for the time, frequency,
and time–frequency domains. A CNN network was then applied for machine health

Sensors 2023, 23, 5897 4 of 24

monitoring. However, the proposed method with complex preprocessing is only suitable
for offline analysis applications. Moreover, Tan et al. [5] tried to reduce the amount of
training datasets with a few real damaged data and proposed two deep coupled CNN
networks for extracting features from the raw data. However, only the data of the artificial
and real damage acquired on an identical machine were tested.

Magar et al. [6] extracted 14 features from raw signals to reduce the preprocessing
overhead. However, their approach is computationally expensive and may not be suitable
for real-time fault classification. Moreover, Xu et al. [8] proposed the TCNN, which can
achieve an online fault diagnosis. TCNN is based on LeNet-5 and an offline auxiliary CNN.
Although the work achieved the online analysis, it used vibration signals as the input of
the model, which had a relatively high-cost (compared to the current signal), and all the
computation had to be conducted on an external server.

On the other hand, a few-shot learning method [7] was proposed to leverage past
data to learn new tasks quickly for fault classification. However, only 13 of the total
32 representative classes were tested. On the other hand, Hou et al. [20] proposed a signal-
to-input feature mapping to convert raw data into images. However, current and vibration
signals are required to improve the fault classification accuracy in their approach. For
real damage data generation, a one-dimensional generative adversarial network [21] was
proposed. However, the testing accuracy was lower than 70% when the CNN network
trained with real data samples was used for classifying the generated data samples.

Wang et al. [22] used small and large convolution kernels for feature extraction. How-
ever, the proposed method requires the fault frequency to determine the suitable size of
the kernel, or the classification accuracy could be lower than 70%. A lightweight and
efficient feature extraction network was presented in [23] to reduce the number of network
parameters. However, the accuracy was less than 95% in all cases.

Moreover, Sabir et al. [16] suggested a method for bearing fault diagnosis based on long
short-term memory (LSTM). Eight features were extracted from raw signals, a computation-
intensive process, making it unsuitable for real-time fault classification. Conversely, a recent
study [9], which was mindful of the computational overhead, introduced a lightweight
convolutional neural network (CNN) model for fault diagnosis that was applicable to
edge AI devices; the PU dataset was utilized for the research. However, their model only
incorporates vibration signals. As previously stated, such signals may not be appropriate for
certain bearings that cannot be disassembled, potentially limiting this work’s applicability.
Finally, Hoang et al. [12] highlighted the challenges of using a current signal as the input
to train a CNN model. They proposed a deep neural network (DNN)-based model with
information fusion to improve model accuracy. Even though this approach can yield high
accuracy, the hardware cost was not considered in this work. Therefore, this method is not
suitable for implementation in a hardware circuit.

As discussed above, many studies have shown that using a neural network for fault
detection is more accurate and stable than conventional methods and requires less compu-
tation time [3,19]. In the diagnosis of rolling bearing faults, it is also believed that some
common model-based methods, such as the SVM or k-nearest neighbor algorithm (KNN),
are unable to effectively extract and eliminate higher-dimensional features during feature
extraction [2]. Furthermore, when the training data are time-domain signals, CNN has
been more accurate than other model-based methods, such as the multilayer perceptron
(MLP) and AE [24]. However, input data preprocessing is too complicated for many of the
above networks for real-time diagnostic analysis. For example, input preprocessing using
fast Fourier or wavelet transform requires powerful hardware support to perform real-time
diagnostic analysis. To sum up, to the best of our knowledge none of the previous works
can achieve real-time analyzing requirements given the hardware implementation costs.

Sensors 2023, 23, 5897 5 of 24

3. Methodology
3.1. Overview of the Proposed Method

As previously stated, this work aims to propose a CNN-based method for bearing fault
diagnosis that achieves high accuracy, low hardware implementation costs, and real-time
responsiveness. Figure 1 presents the flowchart of the proposed design steps. As depicted
in Figure 1, the main design steps can be broadly separated into software and hardware
phases. The proposed CNN model was adjusted during the software phase to meet the
design objectives. Initially, a data preprocessing flow was used to gather data from sensors
to serve as input images for the CNN model. Following this, a sequence of experiments
on the TensorFlow platform using Python was conducted to adjust the CNN model. Note
that all the experiments in this step were performed on the TensorFlow platform with the
hyperparameters shown in Table 1, and the input data were sourced from the current data
in the PU dataset [11]. Additionally, all the analyses and discussions in this paper were
based on the PU dataset.

Sensors 2023, 23, 5897 5 of 24

using fast Fourier or wavelet transform requires powerful hardware support to perform
real-time diagnostic analysis. To sum up, to the best of our knowledge none of the previ-
ous works can achieve real-time analyzing requirements given the hardware implemen-
tation costs.

3. Methodology
3.1. Overview of the Proposed Method

As previously stated, this work aims to propose a CNN-based method for bearing
fault diagnosis that achieves high accuracy, low hardware implementation costs, and real-
time responsiveness. Figure 1 presents the flowchart of the proposed design steps. As de-
picted in Figure 1, the main design steps can be broadly separated into software and hard-
ware phases. The proposed CNN model was adjusted during the software phase to meet
the design objectives. Initially, a data preprocessing flow was used to gather data from
sensors to serve as input images for the CNN model. Following this, a sequence of exper-
iments on the TensorFlow platform using Python was conducted to adjust the CNN
model. Note that all the experiments in this step were performed on the TensorFlow plat-
form with the hyperparameters shown in Table 1, and the input data were sourced from
the current data in the PU dataset [11]. Additionally, all the analyses and discussions in
this paper were based on the PU dataset.

Figure 1. The flowchart of the proposed design method.

In the step of adjusting the CNN model, many aspects and parameters had to be de-
termined and tested, such as the CNN model architecture and the weight quantization,
among others. Every detail in the proposed design was decided upon through theoretical
assumptions and experimental testing. The proposed model’s accuracy was tested after
each step, and if the accuracy met the expectations, then the next step was carried out.
Once all the CNN model details were finalized, the last software stage step was to develop
a Python program for the final CNN model and to verify its functionality and accuracy
compared to the TensorFlow version. The proposed model’s algorithms could be

Figure 1. The flowchart of the proposed design method.

Table 1. The setting of the hyperparameters in TensorFlow while adjusting the CNN model.

Hyperparameter Setting

Epoch 300

Batch size 128

Learning rate 0.001

In the step of adjusting the CNN model, many aspects and parameters had to be
determined and tested, such as the CNN model architecture and the weight quantization,
among others. Every detail in the proposed design was decided upon through theoretical
assumptions and experimental testing. The proposed model’s accuracy was tested after
each step, and if the accuracy met the expectations, then the next step was carried out. Once
all the CNN model details were finalized, the last software stage step was to develop a

Sensors 2023, 23, 5897 6 of 24

Python program for the final CNN model and to verify its functionality and accuracy com-
pared to the TensorFlow version. The proposed model’s algorithms could be validated and
implemented into a hardware unit by developing the Python version of the CNN model.

Finally, the design moved to the hardware implementation phase, where the register
transfer level (RTL) Verilog code for the proposed CNN model was created to develop
the proposed method in the hardware. Once the hardware design was completed, the
proposed method was evaluated on an FPGA to verify the proposed method’s capabil-
ities and functionalities. The details of each step in this flowchart are explained in the
subsequent subsections.

3.2. The Proposed CNN Architecture
3.2.1. Bearing Data Preprocessing

This paper used the bearing dataset of PU [11] to train the CNN model for the analysis
of the bearing condition. Two-phase current signals were measured by a current transducer
and converted to a digital signal for storage using a 25 KHz low-pass filter and an analog-
to-digital converter with a sampling rate of 64 KHz. There were four types of classification
results, and the amount of data in each category was not the same. As shown in Table 2,
one volume of data represents a collection of 80 records with a length of 4 s. Thus, for
example, label 0 has 480 (6 × 80) records. In Table 2, the outer race fault (label 1) indicates
damage occurring on the bearing’s outer race. Similarly, inner race faults (label 2) signify
damage to the bearing’s inner race. Conversely, the third fault type (label 3) corresponds to
a situation where damage occurs on both the inner and outer race of the bearing. Finally, if
the bearing operates normally, the bearing is considered as the health status with label 0.

Table 2. Network setting label and the corresponding fault type.

Label Fault Type Data Amount

0 Healthy 6

1 Outer Race Fault (OR) 12

2 Inner Race Fault (IR) 9

3 Combined Outer and Inner Race Fault (CR) 5

More specifically, for the training and testing of the model, all the data in the dataset
were randomly divided into 80% training data and 20% test data during the CNN training
process. Note that the test data were not allowed to participate in the training process but
were only used in the inference phase to test the accuracy of the CNN model. Figure 2
shows the overview of the processing flow of the proposed one-dimensional (1-D) CNN
network with an input image size of 1 × 1600. In more detail, a conv block contains a
one-dimensional convolution, batch normalization function, and pooling operation in the
proposed method. Notably, the image size shown in Figure 2 represents the size of the
feature map after each stage. To provide a better understanding of the proposed model,
the following paragraphs introduce the detail of the model and the reasons for selecting
the parameters.

First, the input image’s size is a critical factor in CNN model design. The primary
consideration in determining the input image size is the relationship between the length of
the observation time (i.e., the time interval for collecting current data) and the accuracy.
Generally, a longer observation time may yield higher accuracy in the context of bearing
fault diagnosis. However, extended observation time leads to a larger input image due to
an increase in the number of observation points. As the image size expands, the associated
hardware costs also rise. Consequently, this work selected an appropriate image size that
balanced accuracy and hardware implementation costs.

As mentioned earlier, the challenge when deciding on the image size can initially
be simplified to the determination of the observation time. Theoretically, if a bearing

Sensors 2023, 23, 5897 7 of 24

fault occurs, it will be detected periodically due to the rotational nature of the bearing.
Moreover, the frequency at which the fault is identified may align with the ball-passing
frequency. Hence, studying the ball-passing frequency assists in the determination of the
observation time.

Sensors 2023, 23, 5897 7 of 24

Figure 2. The input image size of the proposed one-dimensional CNN in each layer.

First, the input image’s size is a critical factor in CNN model design. The primary
consideration in determining the input image size is the relationship between the length
of the observation time (i.e., the time interval for collecting current data) and the accuracy.
Generally, a longer observation time may yield higher accuracy in the context of bearing
fault diagnosis. However, extended observation time leads to a larger input image due to
an increase in the number of observation points. As the image size expands, the associated
hardware costs also rise. Consequently, this work selected an appropriate image size that
balanced accuracy and hardware implementation costs.

As mentioned earlier, the challenge when deciding on the image size can initially be
simplified to the determination of the observation time. Theoretically, if a bearing fault
occurs, it will be detected periodically due to the rotational nature of the bearing. Moreo-
ver, the frequency at which the fault is identified may align with the ball-passing fre-
quency. Hence, studying the ball-passing frequency assists in the determination of the
observation time.

The ball-passing frequency can be divided into outer race ball-passing frequency (ab-
breviated as Fo) and inner race ball-passing frequency (abbreviated as Fi). The theoretical
formula for these two types of ball-passing frequencies is illustrated in Equations (1) and
(2) [25], where Fr, n, d, D, and α, represent the rotary frequency (Hz), number of rolling
elements, ball diameter, pitch diameter, and bearing contact angle between the ball and
the cage, respectively.

Meanwhile, the dataset used in this study (i.e., the PU dataset [11]) offers data at two
rotation speeds: 900 rpm and 1500 rpm. Consequently, with Equations (1) and (2), the ball-
passing frequencies for these two rotation speeds can be calculated; they are listed in Table
3. As depicted in Table 3, the lowest frequency for the inner and outer races is 45.7 Hz.
That is to say, once a fault is detected, the fault will manifest at least once every 21 ms.
Thus, the observation time should be set to a minimum of 21 ms to detect all the types of
faults in the PU dataset. 𝐹o = 𝑛 ∙ 𝐹r2 ∙ 1 − 𝑑𝐷 ∙ 𝑐𝑜𝑠 𝛼 (1)

𝐹i = 𝑛 ∙ 𝐹r2 ∙ 1 + 𝑑𝐷 ∙ 𝑐𝑜𝑠 𝛼 (2)

Figure 2. The input image size of the proposed one-dimensional CNN in each layer.

The ball-passing frequency can be divided into outer race ball-passing frequency (ab-
breviated as Fo) and inner race ball-passing frequency (abbreviated as Fi). The theoretical
formula for these two types of ball-passing frequencies is illustrated in
Equations (1) and (2) [25], where Fr, n, d, D, and α, represent the rotary frequency (Hz), num-
ber of rolling elements, ball diameter, pitch diameter, and bearing contact angle between
the ball and the cage, respectively.

Meanwhile, the dataset used in this study (i.e., the PU dataset [11]) offers data at two
rotation speeds: 900 rpm and 1500 rpm. Consequently, with Equations (1) and (2), the
ball-passing frequencies for these two rotation speeds can be calculated; they are listed
in Table 3. As depicted in Table 3, the lowest frequency for the inner and outer races is
45.7 Hz. That is to say, once a fault is detected, the fault will manifest at least once every 21
ms. Thus, the observation time should be set to a minimum of 21 ms to detect all the types
of faults in the PU dataset.

Fo =
n·Fr

2
·
{

1 − d
D

· cos α

}
(1)

Fi =
n·Fr

2
·
{

1 +
d
D

· cos α

}
(2)

Table 3. Ball-passing frequencies corresponding to two rotational speeds.

Ball-Passing Frequency 900 rpm 1500 rpm

Fo 45.7 Hz (21 ms) 74.1 Hz (13 ms)

Fi 76.3 Hz (13 ms) 123.6 Hz (8 ms)

A series of experiments were conducted to validate the assumption mentioned above.
The CNN models were retrained with various input image sizes (observation times) and
compared to their accuracy in these experiments. Table 4 presents the accuracy results for
different input image sizes. Note that since the sample rate of the dataset used is fixed
(i.e., 64 K samples/s), the input image size can be directly calculated by multiplying the
sample rate by the observation time. Therefore, the input image size can be determined as
well. As shown in Table 4, if an image contains 625 data points, the length of the signal that
can be observed is 9.7 ms. If the time length corresponding to the sensor data contained
in the image is insufficient to identify the fault feature, the accuracy of the trained model
is considered insufficient. Table 4 shows that when the image is enlarged to 1600 data
points, a signal time of 25 ms can be seen in an image, corresponding to the cycle time of all
ball-passing frequencies, and the model’s accuracy can be increased to 96.5%. Considering

Sensors 2023, 23, 5897 8 of 24

that the input image size is proportional to the required random access memory (RAM)
and the best accuracy, the input image size was set to 1 × 1600.

Table 4. The comparison of CNN model accuracies with various input image sizes.

Image Size The Observation Time of One Image Accuracy

1 × 625 9.7 ms 87.6%

1 × 1024 16 ms 93.1%

1 × 1600 25 ms 96.5%

1 × 2500 39 ms 96.3%

1 × 3600 56 ms 95.7%

Once the input image size is determined, given the fixed sampling rate, the observation
time also becomes fixed (i.e., 25 ms in the PU dataset). However, it is typically observed
that longer observation times can enhance noise tolerance ability and further boost fault
detection accuracy. Therefore, with the image size fixed, a down-sampling process was
conducted to extend the observation time length; this is a frequently utilized method for
noise filtering and real-time processing. Figure 3 shows the process of down-sampling,
which samples the original signal at intervals with the specified down-sampling factor. For
example, when the down-sampling factor is 1, the original data are considered as output.
On the other hand, when the down-sampling factor value is 2, each sample skips the next
data point.

Sensors 2023, 23, 5897 8 of 24

Table 3. Ball-passing frequencies corresponding to two rotational speeds.

Ball-Passing Frequency 900 rpm 1500 rpm
Fo 45.7 Hz (21 ms) 74.1 Hz (13 ms)
Fi 76.3 Hz (13 ms) 123.6 Hz (8 ms)

A series of experiments were conducted to validate the assumption mentioned
above. The CNN models were retrained with various input image sizes (observation
times) and compared to their accuracy in these experiments. Table 4 presents the accuracy
results for different input image sizes. Note that since the sample rate of the dataset used
is fixed (i.e., 64 K samples/s), the input image size can be directly calculated by multiply-
ing the sample rate by the observation time. Therefore, the input image size can be deter-
mined as well. As shown in Table 4, if an image contains 625 data points, the length of the
signal that can be observed is 9.7 ms. If the time length corresponding to the sensor data
contained in the image is insufficient to identify the fault feature, the accuracy of the
trained model is considered insufficient. Table 4 shows that when the image is enlarged
to 1600 data points, a signal time of 25 ms can be seen in an image, corresponding to the
cycle time of all ball-passing frequencies, and the model’s accuracy can be increased to
96.5%. Considering that the input image size is proportional to the required random ac-
cess memory (RAM) and the best accuracy, the input image size was set to 1 × 1600.

Table 4. The comparison of CNN model accuracies with various input image sizes.

Image Size The Observation Time of One Image Accuracy
1 × 625 9.7 ms 87.6%
1 × 1024 16 ms 93.1%
1 × 1600 25 ms 96.5%
1 × 2500 39 ms 96.3%
1 × 3600 56 ms 95.7%

Once the input image size is determined, given the fixed sampling rate, the observa-
tion time also becomes fixed (i.e., 25 ms in the PU dataset). However, it is typically ob-
served that longer observation times can enhance noise tolerance ability and further boost
fault detection accuracy. Therefore, with the image size fixed, a down-sampling process
was conducted to extend the observation time length; this is a frequently utilized method
for noise filtering and real-time processing. Figure 3 shows the process of down-sampling,
which samples the original signal at intervals with the specified down-sampling factor.
For example, when the down-sampling factor is 1, the original data are considered as out-
put. On the other hand, when the down-sampling factor value is 2, each sample skips the
next data point.

Figure 3. The diagram of the down-sampling process with two examples of the down-sampling factor.

Moreover, in this paper, the down-sampling method was applied to increase the
time length of the signal that can be viewed in an image and to diagnose the bearing
condition more accurately. Therefore, the intermediate points were not discarded during
the down-sampling process in the network training. As shown in Figure 3, for an image
with a down-sampling factor of 2, sample points with even index numbers are discarded.
However, these data with even index numbers will also produce an image for the training
of the CNN model. Therefore, the total number of images for training the CNN model does
not change.

Figure 4 compares the model accuracy measured with different down-sampling factors
for processing the input data to investigate the effect of the down-sampling process. Note
that the size of the input image and the size of the CNN model were the same in each
experiment. Furthermore, two kernel sizes (i.e., 7 and 9) were used to observe the kernel
size’s influence on the accuracy of the proposed CNN model. As shown in Figure 4, the
accuracy of the CNN model can be further improved when the down-sampling method is

Sensors 2023, 23, 5897 9 of 24

used. For more detail, the best accuracy was achieved when the down-sampling factor was
10, reaching 99.34% and 99.38% for kernel sizes 7 and 9, respectively.

Sensors 2023, 23, 5897 9 of 24

Figure 3. The diagram of the down-sampling process with two examples of the down-sampling
factor.

Moreover, in this paper, the down-sampling method was applied to increase the time
length of the signal that can be viewed in an image and to diagnose the bearing condition
more accurately. Therefore, the intermediate points were not discarded during the down-
sampling process in the network training. As shown in Figure 3, for an image with a
down-sampling factor of 2, sample points with even index numbers are discarded. How-
ever, these data with even index numbers will also produce an image for the training of
the CNN model. Therefore, the total number of images for training the CNN model does
not change.

Figure 4 compares the model accuracy measured with different down-sampling fac-
tors for processing the input data to investigate the effect of the down-sampling process.
Note that the size of the input image and the size of the CNN model were the same in
each experiment. Furthermore, two kernel sizes (i.e., 7 and 9) were used to observe the
kernel size’s influence on the accuracy of the proposed CNN model. As shown in Figure
4, the accuracy of the CNN model can be further improved when the down-sampling
method is used. For more detail, the best accuracy was achieved when the down-sampling
factor was 10, reaching 99.34% and 99.38% for kernel sizes 7 and 9, respectively.

Figure 4. The comparison of the model accuracies obtained by different down-sampling factors.

On the other hand, regarding the kernel size selection, a smaller kernel size saves
memory usage for the same network structure but may reduce model accuracy. As shown
in Figure 4, the difference in the model’s accuracy between two different kernel sizes at a
down-sampling factor of 10 is only 0.04%, but using the smaller kernel can save 22% (i.e., () × 100%) of the weight memory usage. Therefore, with the hardware implementation
cost consideration, this paper used a down-sampling factor of 10 and a kernel size of 7 for
the preprocessing procedure of CNN model training.

Furthermore, in CNN model training, overlapping images can usually further im-
prove the accuracy of the CNN model. This method has a good effect on neural networks
with a small training dataset. The overlapping method means that after sampling the sig-
nal in the first image, the sampling position of the second image starts from the specific
position of the first image and so on. Generally, the overlap is about 25% of the image.
However, it should be noted that images used by the overlapping method are only used
for the training and validation dataset and not for the test dataset. Otherwise, the test
dataset may not be independent of the training dataset.

Figure 4. The comparison of the model accuracies obtained by different down-sampling factors.

On the other hand, regarding the kernel size selection, a smaller kernel size saves
memory usage for the same network structure but may reduce model accuracy. As shown
in Figure 4, the difference in the model’s accuracy between two different kernel sizes at
a down-sampling factor of 10 is only 0.04%, but using the smaller kernel can save 22%
(i.e., (9−7)

9 × 100%) of the weight memory usage. Therefore, with the hardware implemen-
tation cost consideration, this paper used a down-sampling factor of 10 and a kernel size of
7 for the preprocessing procedure of CNN model training.

Furthermore, in CNN model training, overlapping images can usually further improve
the accuracy of the CNN model. This method has a good effect on neural networks with a
small training dataset. The overlapping method means that after sampling the signal in the
first image, the sampling position of the second image starts from the specific position of
the first image and so on. Generally, the overlap is about 25% of the image. However, it
should be noted that images used by the overlapping method are only used for the training
and validation dataset and not for the test dataset. Otherwise, the test dataset may not be
independent of the training dataset.

Figure 5 compares the model accuracy trend as the kernel size changes using 20% of
the image data overlap, or when no image data overlap is used. The percentage marked on
the graph is the model’s accuracy using 20% of the image data overlap. The accuracy of
the CNN model shown in Figure 5 is the average of multiple repeated trainings. Under
different kernel sizes, the model’s accuracy was improved by using 20% of the image data
overlap. When the original sensor signal is cut into different images, the characteristic
signal may be cut into different images and ignored. The 20% image data overlap can
reduce the chance of feature signals being segmented. Therefore, this paper used a 20%
overlap of the training data in the software training, which was randomly selected for
each training.

Sensors 2023, 23, 5897 10 of 24

Sensors 2023, 23, 5897 10 of 24

Figure 5 compares the model accuracy trend as the kernel size changes using 20% of
the image data overlap, or when no image data overlap is used. The percentage marked
on the graph is the model’s accuracy using 20% of the image data overlap. The accuracy
of the CNN model shown in Figure 5 is the average of multiple repeated trainings. Under
different kernel sizes, the model’s accuracy was improved by using 20% of the image data
overlap. When the original sensor signal is cut into different images, the characteristic
signal may be cut into different images and ignored. The 20% image data overlap can
reduce the chance of feature signals being segmented. Therefore, this paper used a 20%
overlap of the training data in the software training, which was randomly selected for
each training.

Figure 5. The model accuracies were compared by different kernel sizes and overlap percentages.

3.2.2. CNN Architecture and Quaternary Quantization
After introducing the bearing data preprocessing procedure and related parameters,

this subsection shows the proposed CNN architecture and quaternary quantization
method. Table 5 shows the proposed CNN model architecture. First, a conv layer contains
zero paddings, convolution, ReLU function, and batch normalization operation, followed
by a max-pooling layer with a size of 1 × 4. Although performing the max-pooling opera-
tion, the input image’s size may not be a multiple of 4. At this time, zero values are added
to the boundary of the image to avoid losing features. After the last max-pooling opera-
tion, the output image is flattened to a size of 1 × 128 and sent to the fully connected (FC)
layer. Finally, the calculation results of the four categories are obtained, and the category
with the largest value will be the network classification result.

Table 5. The input and output image sizes of the proposed CNN.

Layer Kernel Size Input Image Size Output Image Size
Conv1 1 × 7 × 12 1 × 1600 1 × 1600 × 12

Max pooling 1 × 1600 × 12 1 × 400 × 12
Conv2 1 × 7 × 32 1 × 400 × 12 1 × 400 × 32

Max pooling 1 × 400 × 32 1 × 100 × 32
Conv3 1 × 7 × 64 1 × 100 × 32 1 × 100 × 64

Max pooling 1 × 100 × 64 1 × 25 × 64
Conv4 1 × 7 × 64 1 × 25 × 64 1 × 25 × 64

Max pooling 1 × 25 × 64 1 × 7 × 64

Figure 5. The model accuracies were compared by different kernel sizes and overlap percentages.

3.2.2. CNN Architecture and Quaternary Quantization

After introducing the bearing data preprocessing procedure and related parameters,
this subsection shows the proposed CNN architecture and quaternary quantization method.
Table 5 shows the proposed CNN model architecture. First, a conv layer contains zero
paddings, convolution, ReLU function, and batch normalization operation, followed by a
max-pooling layer with a size of 1 × 4. Although performing the max-pooling operation,
the input image’s size may not be a multiple of 4. At this time, zero values are added to
the boundary of the image to avoid losing features. After the last max-pooling operation,
the output image is flattened to a size of 1 × 128 and sent to the fully connected (FC) layer.
Finally, the calculation results of the four categories are obtained, and the category with the
largest value will be the network classification result.

Table 5. The input and output image sizes of the proposed CNN.

Layer Kernel Size Input Image Size Output Image Size

Conv1 1 × 7 × 12 1 × 1600 1 × 1600 × 12

Max pooling 1 × 1600 × 12 1 × 400 × 12

Conv2 1 × 7 × 32 1 × 400 × 12 1 × 400 × 32

Max pooling 1 × 400 × 32 1 × 100 × 32

Conv3 1 × 7 × 64 1 × 100 × 32 1 × 100 × 64

Max pooling 1 × 100 × 64 1 × 25 × 64

Conv4 1 × 7 × 64 1 × 25 × 64 1 × 25 × 64

Max pooling 1 × 25 × 64 1 × 7 × 64

Conv5 1 × 7 × 64 1 × 7 × 64 1 × 7 × 64

Max pooling 1 × 7 × 64 1 × 2 × 64

FC 1 × 128 1 × 4

Sensors 2023, 23, 5897 11 of 24

On the other hand, when calculating the CNN network, the parameters and input
values are multiplied accordingly to extract various features. However, complicated net-
work calculations lead to a long inference time. Furthermore, due to limited hardware
resources and capabilities in mobile devices and application-specified integrated circuits
that can be integrated into machine tools, the weight parameters of the network must
be quantized. Therefore, a tradeoff must be made between the model accuracy and the
hardware complexity. Generally, a quantization technique can reduce the required memory
space, the number of bits needed for computation, and the circuit’s power consumption
and simplify the hardware design’s complexity. Various quantization methods have been
adopted in previous works [26,27]; therefore, it is necessary to further investigate which
quantization method is the most suitable for the proposed model.

To understand the effect of each quantization method on the proposed CNN model,
an experiment was conducted to evaluate the capability of three quantization methods
adopted to the proposed model. Table 6 shows the results of the accuracy influenced by
the different quantization methods. Note that all the experiments used the PU dataset
in this work and that the settings of the CNN model were also identical among all the
experiments. In more detail, the binary quantization [26] is a 1-bit quantization. This means
that the converted weight has only two possible values, −1 or +1, which facilitates the
implementation of a lightweight network. The memory requirement for the weight or
activation value is only 1 bit and does not take too much memory.

Table 6. The comparison of the model accuracies with different quantizing weight methods.

Quantization Method Weight Threshold Accuracy

None Floating-point - 99.3%

Binary [26] {−1, 1} 0 74.2%

Ternary [27] {−1, 0, 1} ±0.05 83.6%

Ternary Floating [28] {−Wn, 0, Wp} ±0.05 90.8%

On the other hand, the ternary quantization [27] method converts the weight from a
32-bit full-precision representation into three values. Li et al. [27] proposed this method.
Initially, the weights are replaced by {−1, 0, 1}. However, to reduce the loss of accuracy
by using only {−1, 0, 1}, ref. [28] suggested replacing ±1 with floating-point values. The
ternary floating quantization process must divide all weights by the maximum weight to
map the weights into [−1, +1]. All layers then use the same threshold (±0.05) to classify
the weights numerically as {−1, 0, +1}. In the scaling phase, −1 is multiplied by Wn and +1
by Wp. Wp and Wn are parameters that are trained jointly with the CNN model. Different
layers of Wp and Wn are trained separately and have a special formula to calculate the
gradient. Finally, all the weights can be expressed by {−Wn, 0, Wp}.

As shown in Table 6, the accuracy of the proposed CNN model after quantization was
insufficient. There are two commonly used methods to improve the accuracy, including
(1) increasing the number of channels of each convolution layer and (2) improving the
quantization method. However, the first method increases the memory and computation re-
quirements and is therefore unsuitable for hardware with limited memory space. Therefore,
in this paper, an improved quantization method is presented.

In the previous works [27,28], the threshold values were set to ±0.05 for the ternary
quantization with {−1, 0, 1} integer weights. Thus, a trial test was performed by changing
the threshold value of the ternary quantization to find the best floating weight for the
proposed model. As a result, the threshold was no longer a fixed value but was calculated
dynamically with the weight distribution of each layer. Equation (3) defines the procedure
to set the threshold, where mean (W) and σ represent the mean and standard deviation of

Sensors 2023, 23, 5897 12 of 24

the weights in each layer, respectively. Moreover, x in the equation is a variable that varies
the threshold in the trial test. Note that each layer can have its threshold value.

wt =

Wp : W ≥ Mean(W) + x·σ

0 : Mean(W)− x·σ < W < Mean(W) + x·σ
−Wn : W ≤ Mean(W)− x·σ

(3)

Figure 6 shows the result of the trial test mentioned above. The x-axis in Figure 6
represents the different floating weights, and the y-axis denotes the variations in accuracy.
As shown in Figure 6, by changing the value of x in Equation (3), the accuracy is improved
by up to 6% compared with that of the fixed threshold method. Furthermore, the best
accuracy of 96.1% was achieved when x was 0.09 in our model. Therefore, the method of
dynamically changing the threshold value when x is 0.09 will be adopted.

Sensors 2023, 23, 5897 12 of 24

to set the threshold, where mean (W) and σ represent the mean and standard deviation of
the weights in each layer, respectively. Moreover, x in the equation is a variable that varies
the threshold in the trial test. Note that each layer can have its threshold value.

𝑤t = 𝑊 ∶ 𝑊 ≥ 𝑀𝑒𝑎𝑛(𝑊) + 𝑥 ∙ 𝜎 0 ∶ 𝑀𝑒𝑎𝑛(𝑊) − 𝑥 ∙ 𝜎 < 𝑊 < 𝑀𝑒𝑎𝑛(𝑊) + 𝑥 ∙ 𝜎−𝑊 ∶ 𝑊 ≤ 𝑀𝑒𝑎𝑛(𝑊) − 𝑥 ∙ 𝜎 (3)

Figure 6 shows the result of the trial test mentioned above. The x-axis in Figure 6
represents the different floating weights, and the y-axis denotes the variations in accuracy.
As shown in Figure 6, by changing the value of x in Equation (3), the accuracy is improved
by up to 6% compared with that of the fixed threshold method. Furthermore, the best
accuracy of 96.1% was achieved when x was 0.09 in our model. Therefore, the method of
dynamically changing the threshold value when x is 0.09 will be adopted.

Figure 6. The trend of the model accuracy using the method of determining the threshold value
according to the weight distribution of each layer.

Furthermore, when using the function provided by Tensorflow to train the neural
network model to obtain weights, the weights of each trained layer will be close to the
normal distribution. Table 7 shows the mean value of the weights of each layer before
quantization in the four tests. Moreover, the quantization methods used in this paper were
for quantization-aware training. Compared with post-training quantization, quantiza-
tion-aware training can gradually adjust the model to acceptable accuracy. However, the
average value of each layer was negative in most cases in the results of these four tests.
Therefore, this paper proposes a new quaternary quantization method to express the neg-
ative value of weight better and to retain the weights’ two-bit representation.

Table 7. The mean value of the weights of each layer before quantization.

Mean Test 1 Test 2 Test 3 Test 4
Conv1 weight 0.066 −0.056 −0.121 −0.041
Conv2 weight −0.064 0.034 −0.034 −0.094
Conv3 weight −0.056 −0.078 −0.124 0.007
Conv4 weight −0.111 −0.115 −0.012 −0.178
Conv5 weight −0.096 0.111 −0.078 0.074

Figure 6. The trend of the model accuracy using the method of determining the threshold value
according to the weight distribution of each layer.

Furthermore, when using the function provided by Tensorflow to train the neural
network model to obtain weights, the weights of each trained layer will be close to the
normal distribution. Table 7 shows the mean value of the weights of each layer before
quantization in the four tests. Moreover, the quantization methods used in this paper were
for quantization-aware training. Compared with post-training quantization, quantization-
aware training can gradually adjust the model to acceptable accuracy. However, the average
value of each layer was negative in most cases in the results of these four tests. Therefore,
this paper proposes a new quaternary quantization method to express the negative value
of weight better and to retain the weights’ two-bit representation.

In this paper, a new negative weight value of −1 was inserted into the ternary quanti-
zation to prevent the negative values near 0 from being quantized to 0 and to increase the
proportion of the negative weight. More specifically, Equation (4) defines the quaternary

Sensors 2023, 23, 5897 13 of 24

quantization method proposed in this paper. Notably, if the −Wn of a layer is not less than
−1, this means that the layer has only three weights.

wt =

Wp : W ≥ Mean(W) + x·σ

0 : Mean(W)− x·σ < W < Mean(W) + x·σ
−1 : Wn< −1 and − 1 ≥ W >Mean(W)− x·σ

−Wn : W ≤ Mean(W)− x·σ

(4)

With the proposed quantization methods, Figure 7 shows the accuracy based on the
dynamic threshold with ternary and quaternary quantization. The weights Wp and Wn
of the two methods are both floating-point numbers. As Figure 7 shows, the accuracy of
the proposed quaternary quantization outperforms that of the ternary quantization for
different thresholds. Remarkably, the most appropriate threshold value with the highest
accuracy is still when x is 0.09, and the accuracy can be increased from 96.1% to 98.5%.
However, the value of x should not be too large. Thus, the number 0.09 was adopted for x.
Because of the normal distribution of weights, many weights become 0 after quantization,
and the accuracy decreases. Therefore, this paper used the quantization method of weights
in Tensorflow training, using the quaternary quantization of the dynamic threshold with
floating-point numbers.

Table 7. The mean value of the weights of each layer before quantization.

Mean Test 1 Test 2 Test 3 Test 4

Conv1 weight 0.066 −0.056 −0.121 −0.041

Conv2 weight −0.064 0.034 −0.034 −0.094

Conv3 weight −0.056 −0.078 −0.124 0.007

Conv4 weight −0.111 −0.115 −0.012 −0.178

Conv5 weight −0.096 0.111 −0.078 0.074

Sensors 2023, 23, 5897 13 of 24

In this paper, a new negative weight value of −1 was inserted into the ternary quan-
tization to prevent the negative values near 0 from being quantized to 0 and to increase
the proportion of the negative weight. More specifically, Equation (4) defines the quater-
nary quantization method proposed in this paper. Notably, if the −Wn of a layer is not less
than −1, this means that the layer has only three weights.

𝑤t = ⎩⎨
⎧ 𝑊 ∶ 𝑊 ≥ 𝑀𝑒𝑎𝑛(𝑊) + 𝑥 ∙ 𝜎 0 ∶ 𝑀𝑒𝑎𝑛(𝑊) − 𝑥 ∙ 𝜎 < 𝑊 < 𝑀𝑒𝑎𝑛(𝑊) + 𝑥 ∙ 𝜎 −1 ∶ 𝑊 < −1 𝑎𝑛𝑑 − 1 ≥ 𝑊 > 𝑀𝑒𝑎𝑛(𝑊) − 𝑥 ∙ 𝜎 −𝑊 ∶ 𝑊 ≤ 𝑀𝑒𝑎𝑛(𝑊) − 𝑥 ∙ 𝜎 (4)

With the proposed quantization methods, Figure 7 shows the accuracy based on the
dynamic threshold with ternary and quaternary quantization. The weights Wp and Wn of
the two methods are both floating-point numbers. As Figure 7 shows, the accuracy of the
proposed quaternary quantization outperforms that of the ternary quantization for differ-
ent thresholds. Remarkably, the most appropriate threshold value with the highest accu-
racy is still when x is 0.09, and the accuracy can be increased from 96.1% to 98.5%. How-
ever, the value of x should not be too large. Thus, the number 0.09 was adopted for x.
Because of the normal distribution of weights, many weights become 0 after quantization,
and the accuracy decreases. Therefore, this paper used the quantization method of
weights in Tensorflow training, using the quaternary quantization of the dynamic thresh-
old with floating-point numbers.

Figure 7. The comparison diagram of model accuracies obtained by the dynamic threshold with
ternary and quaternary quantization.

When the weight quantization method is determined, it is necessary to reduce the
number of channels in each layer to reduce the number of parameters of the network
model and the cost of hardware implementation. The relationship between the number of
channels and the accuracy should be investigated first to choose the number of channels.
Therefore, an experiment was conducted to obtain accuracy with different settings of the
number of channels. Table 8 shows the results of the experiment. In Table 8, C1 to C5 rep-
resents the number of channels in the proposed CNN model’s first to fifth layers. On the
other hand, Table 8 also shows the number of parameters corresponding to each version
of the settings.

Figure 7. The comparison diagram of model accuracies obtained by the dynamic threshold with
ternary and quaternary quantization.

Sensors 2023, 23, 5897 14 of 24

When the weight quantization method is determined, it is necessary to reduce the
number of channels in each layer to reduce the number of parameters of the network
model and the cost of hardware implementation. The relationship between the number of
channels and the accuracy should be investigated first to choose the number of channels.
Therefore, an experiment was conducted to obtain accuracy with different settings of the
number of channels. Table 8 shows the results of the experiment. In Table 8, C1 to C5
represents the number of channels in the proposed CNN model’s first to fifth layers. On the
other hand, Table 8 also shows the number of parameters corresponding to each version of
the settings.

Table 8. The comparison of accuracies obtained by different settings of output channels number.

Version
Output Channels in Each Layer

Param # Accuracy
C1 C2 C3 C4 C5

1 8 32 32 64 64 52 K 88.6%

2 8 32 32 64 128 82 K 91.8%

3 12 16 32 64 128 78 K 93.7%

4 12 16 64 64 64 66 K 96.4%

5 12 32 32 64 128 83 K 97.6%

6 12 32 64 64 64 75 K 98.5%

7 16 32 64 64 64 76 K 98.7%

In the previous design experience, a CNN model had to have enough output chan-
nels for each layer; however, too many output channels also increased the memory and
computation time. In observations of the experimental results, the first and second layers
play an essential role in filtering noise in a CNN model. Therefore, the number of output
channels of C1 and C2 cannot be too small. Otherwise, it is difficult to improve the accuracy
of the model. Furthermore, the experimental results also show that increasing the number
of output channels layer by layer is the best method.

In terms of hardware implementation, the goal is to minimize the memory require-
ments. Therefore, the best practice is to use ping-pong RAMs to store the computed feature
maps for each layer. Moreover, the size of these two RAMs is usually determined by the
largest feature map that needs to be stored. Because the feature map size will become
smaller after the pooling operation, the largest feature map is usually the output of the first
and second layers. Therefore, if the number of output channels of C1 and C2 increases, the
ping-pong RAM size will increase accordingly.

To summarize the considerations and observations above, the number of output
channels in C1 and C2 of versions 3 and 4 was better for hardware implementation, but the
accuracy was unacceptable, as shown in Table 8. The model’s accuracy could be improved
by increasing the number of C2 output channels in versions 3 and 4, which became versions
5 and 6. Version 7 was an extension of version 6 with only the number of C1 output channels
increased, and the number of parameters did not increase excessively. However, the size
of one of the ping-pong RAMs had to be increased by 25%, but the model’s accuracy was
improved by only 0.2%. This tradeoff is not cost-effective. Therefore, this work finally
adopts the number of channels of version 6 to determine the final CNN architecture used.

During the training process in the software stage, a 32-bit floating-point operation is
often used. However, the considerable cost of floating-point operations is unacceptable
for applications with limited hardware and power consumption. Therefore, the input
signal and the trained parameters must be quantized. In other words, a tradeoff must be
made between the accuracy and the limited computational resources. To avoid decreasing
accuracy significantly, an experiment was conducted to obtain the accuracy trend with
different bit widths of the input data, and the results are shown in Figure 8. Note that, in

Sensors 2023, 23, 5897 15 of 24

this experiment, to fully express the integer digits 4 bits must be used for the integer part.
The unnecessary decimal bits can be removed by a simple signal preprocessing method.
The accuracy was 99.3% when using raw signals for training. If the decimal bit was 5 bits,
the model accuracy decreased only 0.4% compared to 6 bits, and memory space could be
saved. Therefore, 4 integer bits and 5 decimal bits were used for the input data.

Sensors 2023, 23, 5897 15 of 24

Figure 8. Accuracy trend with a different bit width of the input data.

On the other hand, speaking of the bit width of the weight value, according to the
proposed quaternary quantization method only 2 bits are needed to store a weight value
in the read-only memory (ROM). However, a lookup table corresponding to the actual
weight value must be set up. At the same time, the integer bits and decimal bits must also
be specified for these actual weight values because the convolution operation multiplies
the weight by the input value. In addition, multibit multipliers and adders cause bottle-
necks in the circuit speed and significantly increase power consumption.

Similarly, to select the proper number of bits used in the kernel table, an experiment
was also conducted, and a table was built to understand how the accuracy was influenced
by different settings. Table 9 shows the test by adjusting the number of decimal bits after
fixing the integer bits to 5 bits. Considering the accuracy objective, which was set at 98%,
and the cost of the multipliers and adders, the weight bit width of 14 bits was selected,
including 5-bit integers and 9-bit decimals.

Table 9. The comparison of accuracies with different settings of total bits of one weight in the lookup
table.

Kernel Table Bits
Accuracy

Total Bits Integer Bits Decimal Bits
11 5 6 88.71%
12 5 7 93.2%
13 5 8 97.48%
14 5 9 98.08%
15 5 10 98.25%

Moreover, since the multiplication and accumulation process of the convolution
layer takes a lot of time, two RAMs were used as ping-pong RAMs for the intermediate
storage of the feature map values. Until all the calculations of the current layer were com-
pleted, these maps were read out as the input for the next layer. Therefore, the bit width
of the map had to be set to avoid massive memory space.

Therefore, the relationship between the feature map bit number and the accuracy was
also examined by an experiment. Table 10 shows the model accuracy results of limiting
the bit number of feature maps. After testing all the patterns, the simulated extreme values
of the feature maps in each layer were 113 and −34. Therefore, 8 bits were required for the
integer bits. Subsequently, several tests were performed to determine the number of dec-
imal bits. When the decimal bits increased from 8 bits to 9 bits, the improvement in model
accuracy was minimal. Therefore, bits of the feature map were set to 8-bit integer bits and
8-bit decimal bits.

Figure 8. Accuracy trend with a different bit width of the input data.

On the other hand, speaking of the bit width of the weight value, according to the
proposed quaternary quantization method only 2 bits are needed to store a weight value in
the read-only memory (ROM). However, a lookup table corresponding to the actual weight
value must be set up. At the same time, the integer bits and decimal bits must also be
specified for these actual weight values because the convolution operation multiplies the
weight by the input value. In addition, multibit multipliers and adders cause bottlenecks
in the circuit speed and significantly increase power consumption.

Similarly, to select the proper number of bits used in the kernel table, an experiment
was also conducted, and a table was built to understand how the accuracy was influenced
by different settings. Table 9 shows the test by adjusting the number of decimal bits after
fixing the integer bits to 5 bits. Considering the accuracy objective, which was set at 98%,
and the cost of the multipliers and adders, the weight bit width of 14 bits was selected,
including 5-bit integers and 9-bit decimals.

Table 9. The comparison of accuracies with different settings of total bits of one weight in the
lookup table.

Kernel Table Bits
Accuracy

Total Bits Integer Bits Decimal Bits

11 5 6 88.71%

12 5 7 93.2%

13 5 8 97.48%

14 5 9 98.08%

15 5 10 98.25%

Moreover, since the multiplication and accumulation process of the convolution layer
takes a lot of time, two RAMs were used as ping-pong RAMs for the intermediate storage
of the feature map values. Until all the calculations of the current layer were completed,

Sensors 2023, 23, 5897 16 of 24

these maps were read out as the input for the next layer. Therefore, the bit width of the
map had to be set to avoid massive memory space.

Therefore, the relationship between the feature map bit number and the accuracy was
also examined by an experiment. Table 10 shows the model accuracy results of limiting the
bit number of feature maps. After testing all the patterns, the simulated extreme values
of the feature maps in each layer were 113 and −34. Therefore, 8 bits were required for
the integer bits. Subsequently, several tests were performed to determine the number of
decimal bits. When the decimal bits increased from 8 bits to 9 bits, the improvement in
model accuracy was minimal. Therefore, bits of the feature map were set to 8-bit integer
bits and 8-bit decimal bits.

Table 10. The comparison of model accuracies with different settings of bit number of the feature map.

Bits of One Feature Map Value
Accuracy

Total Bits Integer Bits Decimal Bits

13 8 5 92.1%

14 8 6 95.22%

15 8 7 96.62%

16 8 8 97.35%

17 8 9 97.56%

3.3. Hardware Implementation

After all the parameters in the CNN model and feature map values that needed to be
stored in the memory were expressed in fixed-point numbers, the hardware description
language was used to implement the proposed CNN hardware design. In addition, the
accuracy and performance of the CNN circuit were also tested on the field-programmable
gate array (FPGA).

Figure 9 shows the overall block diagram of the proposed CNN hardware design.
After preprocessing the PU dataset, it is converted into numerous 1 × 1600 images to train
and test the proposed CNN model. One image needs to be stored in the Input_image_RAM
before the CNN hardware circuit starts the computation. The controller continuously
fetches data from the Input_image_RAM and adds zero paddings. In each clock cycle, the
controller reads the 2-bit weight from Conv_Weight_ROM. The controller obtains the actual
14-bit weight value from the lookup tables of each layer. The quaternary quantization
is applied to the weights, and thus, the actual weight value of each layer is at most four
values. The controller then sends the input data and the actual weight to the CONV block.
The CONV block performs a one-dimensional convolution, an activation function (ReLU),
and a batch normalization (BN) operation.

The processing element, PE_c, performs a multiplication operation on the inputs and
weights, subsequently accumulating these results. The outcomes are then stored in the
registers. The multiply–accumulate (MAC) operation result enters the ReLU block until
this register has accumulated seven multiplication values. In the ReLU block, if the MAC
result’s most significant bit is 1, the output becomes 0; otherwise, the output is the MAC
result. The output of the ReLU block is sent to the BN block. As the batch normalization
operation requires γ and β, the BN_ROM reads two 19-bit values in succession. The output
of the ReLU block is multiplied by γ, then plus β by PE_b. The result of the BN operation
is 16 bits.

In the max-pooling block, 1 × 4 max-pooling operations are performed after the BN
block sends four values. The largest of them will be stored in Fmap_1, one of the ping-
pong RAM blocks. If the layer number is 2, the input reads feature maps from Fmap_1.
The following process is the same as when the layer number is 1, but the result of the
max pooling is stored in another ping-pong RAM, Fmap_2. Therefore, there is no conflict

Sensors 2023, 23, 5897 17 of 24

between the memory required for the previous layer’s output and the output of the current
layer, and lower memory usage can be achieved.

Sensors 2023, 23, 5897 16 of 24

Table 10. The comparison of model accuracies with different settings of bit number of the feature
map.

Bits of One Feature Map Value
Accuracy

Total Bits Integer Bits Decimal Bits
13 8 5 92.1%
14 8 6 95.22%
15 8 7 96.62%
16 8 8 97.35%
17 8 9 97.56%

3.3. Hardware Implementation
After all the parameters in the CNN model and feature map values that needed to be

stored in the memory were expressed in fixed-point numbers, the hardware description
language was used to implement the proposed CNN hardware design. In addition, the
accuracy and performance of the CNN circuit were also tested on the field-programmable
gate array (FPGA).

Figure 9 shows the overall block diagram of the proposed CNN hardware design.
After preprocessing the PU dataset, it is converted into numerous 1 × 1600 images to train
and test the proposed CNN model. One image needs to be stored in the Input_im-
age_RAM before the CNN hardware circuit starts the computation. The controller contin-
uously fetches data from the Input_image_RAM and adds zero paddings. In each clock
cycle, the controller reads the 2-bit weight from Conv_Weight_ROM. The controller ob-
tains the actual 14-bit weight value from the lookup tables of each layer. The quaternary
quantization is applied to the weights, and thus, the actual weight value of each layer is
at most four values. The controller then sends the input data and the actual weight to the
CONV block. The CONV block performs a one-dimensional convolution, an activation
function (ReLU), and a batch normalization (BN) operation.

Figure 9. The overall architecture of the proposed CNN hardware design.

The processing element, PE_c, performs a multiplication operation on the inputs and
weights, subsequently accumulating these results. The outcomes are then stored in the
registers. The multiply–accumulate (MAC) operation result enters the ReLU block until
this register has accumulated seven multiplication values. In the ReLU block, if the MAC
result’s most significant bit is 1, the output becomes 0; otherwise, the output is the MAC

Figure 9. The overall architecture of the proposed CNN hardware design.

In the implemented CNN hardware design, the total memory allocation is shown in
Table 11. Moreover, the memory allocation is compared to the design using 32-bit floating-
point numbers. Using the proposed quaternary quantization method for kernel weights
and FC weights, only 2 bits are required to store a single value in ROM, resulting in a
percentage memory reduction of 93.75%.

Table 11. The comparison of the memory usage after using fixed-point parameters.

Memory
Type Memory Total Bits before the

Fixed Point
Total Bits

after the Fixed Point Reduction Ratio

ROM

Conv_Weight 2,382,464 148,904 93.75%

FC_Weight 16,384 1024 93.75%

BN 15,104 8968 40.62%

RAM
Fmap_1 153,600 76,800 50%

Fmap_2 102,400 51,200 50%

The sum of all bits 2,669,952 286,896 89.25%

The accuracy test reduces the number of integer and decimal bits of the BN parameters
as much as possible. Therefore, the ROM memory can be reduced by 40.62%. Furthermore,
the word size of the two ping-pong RAMs, Fmap_1 and Fmap_2, can be reduced from
32 bits to 16 bits, which is a 50% reduction. Adding the total number of bits from ROM
and RAM, the proposed design can achieve a total memory reduction of 89.25%. The
final reduction result shows that the quantization has a significant impact on reducing the
memory space requirement.

Table 12 shows the accuracy of testing each label with the Python and RTL codes. The
model accuracy in each label is similar. For example, the test data from Label 1 are the best,
and those of Label 2 are the worst. In sum, the accuracy of the Python and RTL codes is
almost the same.

Sensors 2023, 23, 5897 18 of 24

Table 12. The comparison of accuracies of each category using Python and RTL codes.

Fault Type Label Python RTL

Healthy 0 97.49% 97.97%

OR Fault 1 99.79% 99.27%

IR Fault 2 95.69% 95.28%

CR Fault 3 96.39% 96.86%

Total - 97.34% 97.53%

4. Experimental Results

The capability of the proposed method was evaluated by conducting a series of exper-
iments. To begin with, the model accuracy, architecture, and data preprocessing methods
at the software level were compared with those of earlier studies. In this experiment,
comparisons were made with four previous works, with the experiment being carried
out on the TensorFlow platform. The hyperparameters, architectures, and parameters
were established in line with the discussions in the previous sections. Furthermore, the
hardware circuit design in the proposed work was implemented on a Xilinx FPGA, with the
ensuing results being analyzed in this section. The section wraps up with a discussion on
real-time response ability, reinforcing the fact that the proposed method indeed possesses
the property of real-time computing.

Table 13 shows the software-level comparison table with the prior works using current
data in the PU bearing dataset. Compared with [1,14], the proposed design has higher
model accuracy. In addition, the final classification results of [1,14] were obtained using
the MLP or SVM, which may cause additional computing overhead. In addition, the
input used in [14] is the feature after FFT conversion, which is only suitable for offline
analysis. In summary, the proposed method is relatively simple and achieves higher model
accuracy than these two previous works. Note that, in the results of [1], the accuracy of
training using vibration signals is 99.4% because training using vibration signals is still a
bit higher than using current signals. Nevertheless, compared with this work, the accuracy
difference between the proposed method and the vibration version in [1] is only 0.8%,
and current signals can bring additional benefits (they are especially easy to apply to real
machine tools).

Table 13. The comparison of the proposed method to related works at the software level.

[1]
IEEE Trans. Meas. ‘20

[12]
IEEE Access ‘20

[13]
INISTA ‘20

[14]
Sensors ‘19 Proposed Work

Dataset PU PU PU PU PU

Signal type Vibration Current Current Current Current Current

Architecture 2-D CNN
+ MLP 2-D Residual CNN

1-D CNN
+ LSTM
+ KNN

1-D CNN
+ SVM 1-D CNN

Datapre-processing Gray image
Normalize +

overlap
+ gray image

None Overlap + FFT
+ normalize

Reduce excess bits
+ overlap

Type of
classification

Fault location
(3 types without IR + OR combined fault)

Fault location
(3 types without IR

+ OR combined
fault)

Fault location
(3 types without IR

+ OR combined
fault)

Fault location
(3 types without IR

+ OR combined
fault)

Fault location
(4 types)

Image size 80 × 80 224 × 224 1 × 6400 N/A 1 × 1600

Accuracy 99.4% 98.3% 98.7% 88.8~98.93% 98.17% 98.58%

Moreover, as shown in Table 13, ref. [12] has higher accuracy than the proposed work.
However, the input data of [12] required normalization during preprocessing; therefore,
an additional preprocessing procedure was required, making it hard to achieve real-time
response ability. Moreover, in [13], the long-term, short-term memory (LSTM) model is

Sensors 2023, 23, 5897 19 of 24

added after the convolutional layer, and the KNN model is added after the softmax function
as the final classifier; so, it has higher accuracy. However, due to the high computing
complexity, ref. [13] is unsuitable for real-time computing.

To verify the result of the hardware implementation, after completing the Verilog
RTL code of the CNN hardware design, the Vivado software developed by Xilinx was
used to synthesize the Verilog code and the Virtex-7 VC707 evaluation board was used
to implement the circuit. Figure 10 shows the timing report after circuit implementation.
Moreover, the clock constraint during circuit implementation was 9.5 ns. The total delay of
the critical path was smaller than 10 ns. Therefore, the proposed CNN hardware circuit can
correctly operate at 100 MHz. Moreover, the power analysis report of Vivado showed that
the power consumption was only 682 mW at a clock frequency of 100 MHz.

Sensors 2023, 23, 5897 19 of 24

of the critical path was smaller than 10 ns. Therefore, the proposed CNN hardware circuit
can correctly operate at 100 MHz. Moreover, the power analysis report of Vivado showed
that the power consumption was only 682 mW at a clock frequency of 100 MHz.

Figure 10. The timing report of the proposed CNN hardware.

In the proposed CNN hardware design, the single-port ROM and RAM support the
circuit operation. The block memory generator is used to generate the ROM or RAM. Alt-
hough the maximum RAM unit is 36 Kbits, it can also be divided into two parts of RAM
with 18 Kbits. Therefore, the minimum unit of ROM and RAM is 18 Kbits. By summing
up all the memory blocks, the block memory generator must generate a total of 396 Kbits
of memory, as shown in Table 14. However, the CNN hardware circuit uses only 280.17
Kbits of memory.

Table 14. Size and composition of each memory block.

Memory Name 18 Kbits RAM 36 Kbits RAM Total Kbits
Input_image_ROM 1 0 18
Conv_Weight_ROM 0 5 180

FC_Weight_ROM 1 0 18
BN_ROM 1 0 18
Fmap_1 1 2 90
Fmap_2 0 2 72

Total 4 9 396

The test data were stored in the ROM of the FPGA to check the model accuracy of
the proposed CNN hardware design on the FPGA. However, due to a large amount of
test data, a ROM in Vivado was only sufficient for 655 test images with a size of 1 × 1600.
Therefore, each label had 655 test images for accuracy evaluation in each test while pro-
gramming the FPGA.

Table 15 shows the number of correctly predicted images after 12 tests. Each test set
had 655 test images on each label. Moreover, these test images were randomly selected
without repetition and stored in the ROM of an FPGA. The proposed CNN hardware cir-
cuit can operate at 100 MHz in these tests, which was also the fastest operating speed of
the proposed design. Compared to the RTL-level CNN design, there was an accuracy loss
of 1%. However, the accuracy loss was only 0.97% compared to that of the Python result.

Table 16 shows the corresponding accuracy at individual implementation stages.
From the Tensorflow to the FPGA implementation, the accuracy loss was about 2.2%.
Moreover, due to the hardware resource limitations of the FPGA, only 39% of the test
images were randomly selected to test the correctness of the proposed CNN hardware
circuit on FPGA.

Figure 10. The timing report of the proposed CNN hardware.

In the proposed CNN hardware design, the single-port ROM and RAM support the
circuit operation. The block memory generator is used to generate the ROM or RAM.
Although the maximum RAM unit is 36 Kbits, it can also be divided into two parts of RAM
with 18 Kbits. Therefore, the minimum unit of ROM and RAM is 18 Kbits. By summing up
all the memory blocks, the block memory generator must generate a total of 396 Kbits of
memory, as shown in Table 14. However, the CNN hardware circuit uses only 280.17 Kbits
of memory.

Table 14. Size and composition of each memory block.

Memory Name 18 Kbits RAM 36 Kbits RAM Total Kbits

Input_image_ROM 1 0 18

Conv_Weight_ROM 0 5 180

FC_Weight_ROM 1 0 18

BN_ROM 1 0 18

Fmap_1 1 2 90

Fmap_2 0 2 72

Total 4 9 396

The test data were stored in the ROM of the FPGA to check the model accuracy of the
proposed CNN hardware design on the FPGA. However, due to a large amount of test data,
a ROM in Vivado was only sufficient for 655 test images with a size of 1 × 1600. Therefore,
each label had 655 test images for accuracy evaluation in each test while programming
the FPGA.

Table 15 shows the number of correctly predicted images after 12 tests. Each test set
had 655 test images on each label. Moreover, these test images were randomly selected
without repetition and stored in the ROM of an FPGA. The proposed CNN hardware circuit
can operate at 100 MHz in these tests, which was also the fastest operating speed of the
proposed design. Compared to the RTL-level CNN design, there was an accuracy loss of
1%. However, the accuracy loss was only 0.97% compared to that of the Python result.

Sensors 2023, 23, 5897 20 of 24

Table 15. Accuracy of the CNN hardware in multiple tests on an FPGA.

Number of Correct Label 0 Label 1 Label 2 Label 3

Test set 1 642 652 625 637

Test set 2 644 644 615 634

Test set 3 637 643 614 632

Test set 4 633 647 622 641

Test set 5 623 648 619 635

Test set 6 631 643 623 624

Test set 7 628 640 627 616

Test set 8 630 652 605 627

Test set 9 615 645 632 630

Test set 10 627 638 621 636

Table 16 shows the corresponding accuracy at individual implementation stages. From
the Tensorflow to the FPGA implementation, the accuracy loss was about 2.2%. Moreover,
due to the hardware resource limitations of the FPGA, only 39% of the test images were
randomly selected to test the correctness of the proposed CNN hardware circuit on FPGA.

Table 16. Corresponding test accuracy at each implementation stage.

Each Stage Operation Accuracy

Input data fixed-point
training (9 bits) 98.58%

BN parameters fixed-point (19 bits) 98.3%

Weight value fixed-point (14 bits) 98.08%

Feature map fixed-point (16 bits) 97.34%

RTL code 97.53%

FPGA implementation 96.37%

Moreover, one of this work’s design goals is to achieve real-time response ability.
Therefore, the following paragraphs investigate whether the proposed CNN hardware
accelerator can perform real-time bearing fault diagnosis. First, Table 17 shows the clock
cycles required for each layer calculation. According to the description of the PU dataset,
the sampling rate of the current signal data was 64 K sample/s. Moreover, the proposed
design used a down-sampling factor of 10; so, the sampling rate was reduced to 6.4 K
sample/s, which means that the time to receive one sensor data point was 156,250 ns.
Therefore, the waiting time for the first image was 250,000,000 ns, as shown in Equation (5).

250, 000, 000 ns = 156, 250 ns × 1600 (5)

When the proposed CNN hardware circuit receives the first image, the data point of
the sensor continues to be entered during the CNN hardware computation. However, the
memory resource for the input image cannot be released until the CNN model calculation
is complete. Therefore, an additional buffer is needed to store the sensor data before the
previous image calculation is complete. In this paper, the highest clock frequency was
100 MHz, as shown in Figure 10. Therefore, 1600 data points of an input image require a
total of 25,000,000 cycles, and 3,624,603 cycles are required for the CNN model calculation,
as shown in Table 17. Therefore, approximately 232 data points for the next input image
must be stored in an additional buffer, as shown in Equation (6). The additional 232 × 9-bit
buffer is required for real-time fault diagnosis at the highest circuit speed. Therefore, when
the CNN model calculation for the first image is complete, the proposed CNN hardware
accelerator needs to wait for 1368 (= 1600 − 232) data points of the following input image.

Sensors 2023, 23, 5897 21 of 24

The proposed CNN hardware accelerator can then perform bearing fault diagnosis for the
next input image. Finally, the proposed CNN hardware accelerator can process and analyze
the data generated by the current sensor at a sampling rate of 64 K samples/s in real time
to enable real-time bearing failure analysis.

3, 624, 603 × 10 ÷ 156, 250 ≈ 232 (6)

In addition, the previous works did not specify the maximum time required for
diagnostics to detect bearing faults after inputting the sensor data. In this paper, a down-
sampling factor of 10 was used to increase the time length of the signal that can be viewed
in an image and to diagnose the bearing condition more accurately. Therefore, the response
time of the CNN circuit mainly involves the wait for the input of the sensor data. Thus,
adding the time to receive the sensor data and the diagnostic time of the CNN hardware
circuit, the response time of the proposed CNN hardware circuit was 0.28 s, as shown in
Equation (7).

0.28 s = 250, 000, 000 ns + 3, 624, 603 cycles × 10 ns (7)

If a down-sampling factor of 1 is used as a compromise to reduce the response time,
the model accuracy is reduced to about 96%. However, the response time can be reduced
to 0.06 s, as shown in Equations (8) and (9).

25, 000, 000 ns = 15, 625 ns × 1600 (8)

0.06 s = 25, 000, 000 ns + 3, 624, 603 cycles × 10 ns (9)

Betta [29] proposed a real-time fault detection system for rotating machinery to achieve
good diagnostic performance. However, the time the system takes from measuring the
signal to diagnosing the fault is 0.3 s. The proposed CNN hardware circuit can achieve a
faster response time than Betta’s system [29]. Therefore, the proposed design can perform
real-time fault diagnosis, prevent bearing damage, and extend the bearing’s lifetime.

Table 17. The number of cycles used in each layer calculation.

Cycles

Layer 1 134,489

Layer 2 1,077,519

Layer 3 1,445,905

Layer 4 741,393

Layer 5 + FC 225,297

Total 3,624,603

5. Conclusions

To satisfy the requirement of real-time property in bearing fault diagnosis, this paper
proposes a one-dimensional CNN architecture to reduce the response time. Furthermore,
the proposed method can be further implemented in hardware and then installed on real
machinery for real-time bearing fault diagnosis in any real-world machine tools using
bearings. More specifically, the proposed design uses a current signal instead of the
vibration signal, which reduces the cost of the vibration sensor and is a better solution for
bearings that are difficult to disassemble. Furthermore, a new quaternary quantization
method is proposed better to represent the weight values in the one-dimensional CNN
model and to achieve better accuracy than the ternary quantization method. After training
with the bearing data of PU, acceptable accuracy below the limited bit width was achieved
by testing, and the hardware cost also did not become too large.

Moreover, the feasibility of realizing the proposed CNN model in hardware was
investigated in this paper. The proposed CNN model was not only evaluated at the

Sensors 2023, 23, 5897 22 of 24

software stage but also implemented on an FPGA evaluation board to obtain classification
accuracy at the hardware level and to analyze the resources required for the proposed
design. In addition, this work also analyzed the real-time bearing fault diagnosis condition.
As a result, at the fastest clock speed of the proposed CNN hardware design, only 2088 bits
of the additional buffer were required. Finally, the accuracy of the proposed CNN hardware
design implemented on FPGA was 96.37%, which was only a loss of 2.2% compared to the
accuracy using Tensorflow.

On the other hand, in addition to the current data, the bearing data of PU also provides
simultaneous measurement of vibration signals. Therefore, in the future, the authors will
consider fault classification through multi-sensor fusion to build a neural network with
better accuracy. Moreover, a tradeoff will exist between the accuracy and the hardware cost.
Abhinav [30] proposes modular neural network architectures. In the future, the authors will
also consider using a modular neural network architecture to reduce the CNN hardware
accelerator’s model parameters and power consumption.

Author Contributions: Conceptualization, C.-C.C. and H.-J.J.; methodology, C.-C.C. and H.-J.J.; soft-
ware, H.-J.J.; validation, C.-C.C., Y.-P.L. and H.-J.J.; formal analysis, C.-C.C. and Y.-P.L.; investigation,
C.-C.C., Y.-P.L. and H.-J.J.; resources, C.-C.C.; data curation, H.-J.J.; writing—original draft prepara-
tion, C.-C.C. and Y.-P.L.; writing—review and editing, C.-C.C. and Y.-P.L.; visualization, C.-C.C. and
H.-J.J.; supervision, C.-C.C.; project administration, C.-C.C.; funding acquisition, C.-C.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the Ministry of Science and Technology of Taiwan under
Grant MOST-111-2221-E-194-049- and was financially/partially supported by the Advanced Institute
of Manufacturing with High-tech Innovations (AIM-HI) from The Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project by the Ministry of Education
(MOE) in Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the EDA tools support of the Taiwan Semicon-
ductor Research Institute (TSRI).

Conflicts of Interest: The authors declare no conflict of interest.

Glossary

Term Definition

d Ball diameter
D Pitch diameter
Fi Inner race ball-passing frequency
Fo Outer race ball-passing frequency
Fr Rotary frequency
n Number of rolling elements
Wn Quantization factors for negative weight
WP Quantization factor for positive weight
wt Quantized ternary weights
x A variable for threshold adjustment in equations
α Bearing contact angle between the ball and the cage
β Shift parameter for batch normalization
γ Scale parameter for batch normalization
σ Standard deviation of the weights in each layer

Sensors 2023, 23, 5897 23 of 24

References
1. Hoang, D.T.; Kang, H.J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion.

IEEE Trans. Instrum. Meas. 2020, 69, 3325–3333. [CrossRef]
2. Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems

by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the
European Conference of the PHM Society, Bilbao, Spain, 5–8 July 2016; Volume 3.

3. Qin, Y.; Wang, X.; Zou, J. The optimized deep belief networks with improved logistic sigmoid units and their application in fault
diagnosis for planetary gearboxes of wind turbines. IEEE Trans. Ind. Electron. 2019, 66, 3814–3824. [CrossRef]

4. Zhu, C.; Chen, Z.; Zhao, R.; Wang, J.; Yan, R. Decoupled feature-temporal CNN: Explaining deep learning-based machine health
monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 3518313. [CrossRef]

5. Tan, Y.; Guo, L.; Gao, H.; Zhang, L. Deep coupled joint distribution adaptation network: A method for intelligent fault diagnosis
between artificial and real Damages. IEEE Trans. Instrum. Meas. 2021, 70, 3507212. [CrossRef]

6. Magar, R.; Ghule, L.; Li, J.; Zhao, Y.; Farimani, A.B. FaultNet: A deep convolutional neural network for bearing fault classification.
IEEE Access 2021, 9, 25189–25199. [CrossRef]

7. Zhang, S.; Ye, F.; Wang, B.; Habetler, T.G. Few-shot bearing anomaly detection via model-agnostic meta-learning. In Proceedings
of the International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020;
pp. 1341–1346.

8. Xu, G.; Liu, M.; Jiang, Z.; Shen, W.; Huang, C. Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks.
IEEE Trans. Instrum. Meas. 2020, 69, 509–520. [CrossRef]

9. Talllon-Ballesteros, A.J. Edge analytics for bearing fault diagnosis based on convolution neural network. In Fuzzy Systems and
Data Mining VII; IOS Press BV: Amsterdam, Netherlands, 2021; Volume 340, pp. 94–103.

10. Zmarzły, P. Influence of Bearing Raceway Surface Topography on the Level of Generated Vibration as an Example of Operational
Heredity. Indian J. Eng. Mater. Sci. 2020, 27, 356–364.

11. Paderborn University Bearing Data Center Website. Available online: https://mb.uni-paderborn.de/kat/forschung/kat-
datacenter/bearing-datacenter (accessed on 10 June 2023).

12. Riaz, N.; Shah, S.I.A.; Rehman, F.; Gilani, S.O.; Udin, E. A novel 2-D current signal-based residual learning with optimized
softmax to identify faults in ball screw actuators. IEEE Access 2020, 8, 115299–115313. [CrossRef]

13. Wagner, T.; Sommer, S. Bearing fault detection using deep neural network and weighted ensemble learning for multiple motor
phase current sources. In Proceedings of the International Conference on Innovations in Intelligent Systems and Applications
(INISTA), Novi Sad, Serbia, 24–16 August 2020; pp. 1–7.

14. Liu, Y.; Yan, X.; Zhang, C.; Liu, W. An ensemble convolutional neural networks for bearing fault diagnosis using multi-sensor
data. Sensors 2019, 19, 5300. [CrossRef]

15. Karpat, F.; Kalay, O.C.; Dirik, A.E.; Doğan, O.; Korcuklu, B.; Yüce, C. Convolutional neural networks based rolling bearing
fault classification under variable operating conditions. In Proceedings of the IEEE International Symposium on Innovations in
Intelligent Systems and Applications (INISTA), Kocaeli, Turkey, 25–27 August 2021; pp. 1–6.

16. Sabir, R.; Rosato, D.; Hartmann, S.; Gühmann, C. LSTM based bearing fault diagnosis of electrical machines using motor current
signal. In Proceedings of the IEEE the International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL,
USA, 16–19 December 2019; pp. 613–618.

17. Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep learning algorithms for bearing fault diagnostics—A comprehensive review.
IEEE Access 2020, 8, 29857–29881. [CrossRef]

18. Abid, F.B.; Zgarni, S.; Braham, A. Bearing fault detection of induction motor using SWPT and DAG support vector machines. In
Proceedings of the IECON 2016 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October
2016; pp. 1476–1481.

19. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans.
Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

20. Hou, L.; Jiang, R.; Tan, Y.; Zhang, J. Input feature mappings-based deep residual networks for fault diagnosis of rolling element
bearing with complicated dataset. IEEE Access 2020, 8, 180967–180976. [CrossRef]

21. Guo, Q.; Li, Y.; Song, Y.; Wang, D.; Chen, W. Intelligent fault diagnosis method based on full 1-D convolutional generative
adversarial network. IEEE Trans. Ind. Inform. 2020, 16, 2044–2053. [CrossRef]

22. Wang, Y.; Ding, X.; Zeng, Q.; Wang, L.; Shao, Y. Intelligent rolling bearing fault diagnosis via vision ConvNet. IEEE Sens. J.
2021, 21, 6600–6609. [CrossRef]

23. Fang, H.; Deng, J.; Zhao, B.; Shi, Y.; Zhou, J.; Shao, S. LEFE-Net: A lightweight efficient feature extraction network with strong
robustness for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3513311. [CrossRef]

24. Zhao, Z.; Li, T.; Wu, J.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Deep learning algorithms for rotating machinery intelligent diagnosis:
An open source benchmark study. ISA Trans. 2020, 107, 224–255. [CrossRef]

25. Randalla, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [CrossRef]
26. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training neural networks with

weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830v3.
27. Li, F.; Zhang, B.; Liu, B. Ternary weight networks. arXiv 2016, arXiv:1605.04711v2.

https://doi.org/10.1109/TIM.2019.2933119
https://doi.org/10.1109/TIE.2018.2856205
https://doi.org/10.1109/TIM.2021.3084310
https://doi.org/10.1109/TIM.2020.3043510
https://doi.org/10.1109/ACCESS.2021.3056944
https://doi.org/10.1109/TIM.2019.2902003
https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter
https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter
https://doi.org/10.1109/ACCESS.2020.3004489
https://doi.org/10.3390/s19235300
https://doi.org/10.1109/ACCESS.2020.2972859
https://doi.org/10.1109/TIE.2017.2774777
https://doi.org/10.1109/ACCESS.2020.3028465
https://doi.org/10.1109/TII.2019.2934901
https://doi.org/10.1109/JSEN.2020.3042182
https://doi.org/10.1109/TIM.2021.3067187
https://doi.org/10.1016/j.isatra.2020.08.010
https://doi.org/10.1016/j.ymssp.2010.07.017

Sensors 2023, 23, 5897 24 of 24

28. Zhu, C.; Han, S.; Mao, H.; Dally, W.J. Trained ternary quantization. arXiv 2016, arXiv:1612.01064v3.
29. Betta, G.; Liguori, C.; Paolillo, A.; Pietrosanto, A. A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on

vibration analysis. IEEE Trans. Instrum. Meas. 2002, 51, 1316–1322. [CrossRef]
30. Goel, A.; Aghajanzadeh, S.; Tung, C.; Chen, S.-H.; Thiruvathukal, G.K.; Lu, Y.-H. Modular neural networks for low-power image

classification on embedded devices. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2020, 26, 1–35. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIM.2002.807987
https://doi.org/10.1145/3408062

	Introduction
	Related Work
	Methodology
	Overview of the Proposed Method
	The Proposed CNN Architecture
	Bearing Data Preprocessing
	CNN Architecture and Quaternary Quantization

	Hardware Implementation

	Experimental Results
	Conclusions
	References

