
Ahigh-performancewear-
leveling algorithm for flash
memory system

Ching-Che Chung1a), Duo Sheng2, and Ning-Mi Hsueh1

1 Department of Computer Science & Information Engineering, National Chung-

Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan
2 Department of Electrical Engineering, Fu Jen Catholic University,

510 Chung-Cheng Rd. Hsin-Chung, Taipei 24205, Taiwan

a) wildwolf@cs.ccu.edu.tw

Abstract: In this paper, a low-complexity high-performance wear-
leveling algorithm which named sequential garbage collection (SGC)

for flash memory system design is presented. The proposed SGC

outperforms existing designs in terms of wear evenness and low

design complexity. The lifetime of the flash memory can be greatly

lengthened by the proposed SGC. The proposed SGC doesn’t require
any tuning threshold parameter, and thus it can be applied to various

systems without prior knowledge of the system environment for

threshold tuning. Simulation results show that the maximum block

erase count and standard deviation of the block erase count

compared to the greedy algorithm are decreased by up to 75% and

94%, respectively.
Keywords: NAND flash, wear leveling, garbage collection

Classification: Storage technology

References

[1] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file

system,” Proc USENIX Annual Technical Conference, pp. 155–164, June

1995.

[2] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a

log-structured file system,” ACM Transactions on Computers Systems, vol.

10, no. 1, pp. 26–52, Feb. 1992.

[3] J.-W. Park, et al., “An integrated mapping table for hybrid FTL with fault-

tolerant address cache,” IEICE Electron Express, vol. 6, no. 7, pp. 368–374,

April 2009.

[4] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Improving flash wear-leveling by

proactively moving static data,” IEEE Trans Comput., vol. 59, no. 1, pp.

53–65, Jan. 2010.

[5] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Endurance enhancement of flash-

memory storage systems: an efficient static wear leveling design,” Proc

ACMIEEE Design Automation Conference, pp. 212–217, June 2007.

[6] Samsung Electronics, “K9GAG08U0M 2G×8 bit NAND Flash Memory

Data Sheet,” 2006.

[7] L.-P. Chang and L.-C. Huang, “A low-cost wear-leveling algorithm for block-

mapping solid-state disks,” Proc ACM SIGPLANSIGBED Conference on

Languages Compilers Tools and Theory for Embedded Systems LCTES,

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1874

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

LETTER

pp. 31–40, April 2011.

1 Introduction

In recent years, flash memory had become an important storage system in

smartphones and ultra-thin notebooks. Flash memory has lower power

consumption, faster random access performance, and better shock

resistance than the conventional hard disks. However, it also has some

disadvantages, such as the high price cost, writing speed, and the most

important is the endurance of the flash memory.
　 There are some special characteristics in the flash memory, such as the

unit of read/program operation is a page, but the unit of erase operation is

a block. In addition, the speed in different operations has great difference.
The content of the flash memory cannot be overwritten; it must be erased

before new data can be stored. Therefore, flash memory requires a flash

translation layer (FTL) to translate the logical addresses into physical

addresses [1, 2, 3]. When data are written to the flash memory, the amount

of free pages becomes low, and thus the garbage collection (GC) operation

is performed to recycle the space occupied by invalid pages. The GC

operation collects valid pages in the selected block and copies these pages to

another free block, and then it erases the selected block. Greedy algorithm

(GA) [1] is the most effective algorithm to choose the block with highest

number of invalid pages.

2 Motivation

The chip density of the flash memory is growing up but the endurance of

flash memory is declining. Typically, each block has the endurance of 500

times (triple-level cells, TLCs) to 100,000 times (single-level cells, SLCs)
erase operations. GC operation with greedy algorithm selects blocks that

have the highest number of invalid pages. Therefore, GC operation may

wear out some blocks of the flash memory due to the localities of data

access. For example, if some blocks stored hot data, they will be invoked by

GC operation more frequently. These blocks may retire early, and this

causes the reliability problem of the flash memory. To solve this problem,
many wear leveling techniques have been proposed. The purpose of wear-
leveling algorithm is to evenly distribute block erases over the flash

memory.
　 In static wear-leveling (SW) [4, 5], a block erasing table (BET) is created

to identify which block has been erased during a given time period. When

the difference between the maximum block erase count and the minimum

block erase count is larger than the specified threshold, it will move the

static data to the hot block to balance the erase count in each block. This
algorithm prevent cold data from staying at any block for a long time, and
then the maximum block erase count difference between any two blocks can

be minimized.
　 The implementation complexity of the wear-leveling algorithms

determines the applicability of the algorithm. Existing wear-leveling
algorithms require prior knowledge of the system environment for threshold

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1875

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

tuning, and thus increasing their design complexity. However, the threshold
for various systems can be very different. Using inadequately tuned

parameters can cause unexpectedly high wear-leveling overhead or worse

performance of wear-leveling. Therefore, an on-line threshold tuning method

is proposed in [7] to reach good balance between wear evenness and

overhead. However, it makes the wear-leveling algorithm becomes more

complex and can only be implemented with a software approach.
　 In this paper, a low-complexity high-performance wear-leveling algo-
rithm which named sequential garbage collection (SGC) for flash memory

system design is presented. The proposed algorithm combines GC operation

and wear-leveling into a single process. In addition, the proposed SGC

doesn’t require any tuning threshold parameter, and thus it can be applied

to various systems without prior knowledge of the system environment. The
low-complexity low-cost SGC algorithm makes it is easy to be implemented

by firmware-based or hardware-based approaches.

3 The proposed SGC algorithm

In the flash memory system, the embedded micro-controller has very

limited memory space, and the hardware and computing resources are

constricted. Thus the proposed sequential garbage collection (SGC)

algorithm requires a low memory space and demands limited hardware

resources. The basic idea to combine GC operation and wear-leveling into a

single process is very simple that blocks should be erased in a sequential

manner.
　 Fig. 1 shows the proposed SGC algorithm. A bit vector which named

invalid page flag (IPF) is added to reduce living page copy overhead since

we didn’t use the greedy algorithm to search for the block with maximum

invalid pages. The IPF records whether a block contains more than 75%
invalid pages. For example, if IPF[index] is equal to 1, then it means the

block with index number: index contains more than 75% invalid pages.
Oppositely, if IPF[index] is equal to 0, then it means the block has less than

75% invalid pages. The IPF vector can be updated during the write

operation, and each block requires only one-bit flag. The GC operation will

erase the blocks with IPF=1 with a higher priority.

Fig. 1. The proposed SGC algorithm.

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1876

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

　 In the proposed SGC, freeblock means the number of free blocks in the

flash memory, and fcnt is the number of “1” in the IPF vector. If fcnt is not
zero, there are blocks having more than 75% invalid pages. In addition, seq
and index are the index numbers for searching for the target block for

current GC operation. If the number of free blocks becomes one, the
controller executes SGC algorithm and performs GC operation on the

selected block. In SGC algorithm, if fcnt is zero, there has no block with a

higher priority. Then the blocks are erased in a sequential manner (step 2-
6). Otherwise, if fcnt is not zero, there are blocks having more than 75%
invalid pages. The SGC algorithm searches for the block with IPF=1 and

then performs GC operation on the selected block (step 7-11).
　 The proposed SGC algorithm evenly distributes block erases over the

entire flash memory, and thus the lifetime of the flash memory can be

greatly lengthened. The proposed SGC algorithm requires a low memory

space and demands limited hardware resources, and thus it is easy to be

implemented in the flash memory system.

4 Experimental results

The proposed SGC algorithm had been verified by the Socle Technology

Corporation MDK-3D development board. The CPU is ARM1176JZF and

the frequency is up to 1GHz. The AHB frequency is up to 200MHz and it

supports the NOR-flash/NAND-flash/DDR2. We implement the SGC

algorithm in the flash controller with the field programmable gate array

(FPGA). Fig. 2 shows the verification platform. The write addresses and

flash memory commands are sent to the system controller and memory

controller with the AHB bus. After testing, the erase counts of the blocks

are sent out by the APB bus. The 2GB flash memory module has 4096

blocks, and each block has 128 pages.

　 For comparisons with existing wear-leveling algorithms, we rebuild the

GC operation with greedy algorithm [1] and named as GA. In GA, GC

operation will select blocks that have the highest number of invalid pages,
and thus GA doesn’t consider the wear-leveling problem. We also rebuild

the static wear-leveling algorithms [4, 5] (with different threshold values)

and named as SW. In the simulation, totally 200GB data are written to

verify the performance of wear-leveling algorithms. To show the effective-
ness of the IPF vector, we disable the IPF vector in the simulation for

comparison and named as SGC1. The SGC algorithm with IPF vector is

named as SGC2.

Fig. 2. The verification platform.

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1877

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

　 Lifetime is an important issue of the flash memory. In Fig. 3 (a), the
algorithm which results in a higher maximum erase count means that the

lifetime of the flash memory with that algorithm is shorter. In GA, it
performs GC operation on the blocks with highest number of invalid pages.
Therefore it may often erase on the same blocks which stored the hot data.
In SW, when the difference between the maximum block erase count and

minimum block erase count is larger than the specified threshold, SW
moves the static data to the hot block to balance the erase count in each

block. On the other hand, different threshold value will cause different

results. For example, the maximum block erase count for SW with

threshold=100 and with threshold=10 are 788 and 246, respectively. SGC1

always erases blocks in a sequential manner, and therefore it can achieve

the lowest maximum block erase count but the extra living page copy

overhead is too large. Thus SGC2 uses the IPF vector to reduce the

overhead in SGC1.

　 The overhead of the wear-leveling algorithm includes extra block erase

operations and extra living page copy operations. GA has smallest living

page copy overhead as shown in Fig. 3(b). SW still uses the greedy

algorithm to perform GC operation, but it requires extra GC operations to

balance the erase count in each block, thus it has a higher overhead than

GA. In SGC1, the efficiency of recycling the space occupied by invalid pages

is not as well as greedy algorithm, thus it causes many extra erase

operations. Therefore, SGC2 uses the IPF vector to erase the block that has

more than 75% invalid pages with a higher priority, so it can reduce the

overhead in SGC1, and then the increased ratio of the extra living page

copy is greatly reduced.
　 Fig 4 (a) shows the changes of the standard deviation of block erase

count versus the amount of written data, and the threshold for SW is 100.
As we can expect, the standard deviation in SGC1 will not have any

changes, and SGC2 also achieves a very small standard deviation. However,
in SW, the standard deviation is growing up when the amount of written

data is increased.
　 If the triple-level cell (TLC) is used in the flash memory design, the
endurance of each block is about 500 times. Thus the block with more than

500 times erase count can be treated as a bad block. Fig. 4(b) shows the

changes of the bad block number versus the amount of written data, and
the threshold for SW is 100. In GA, the bad block number is quickly over

10% at 50GB data written because GA doesn’t consider the wear-leveling

Fig. 3. (a) Maximum block erase count. (b)The increased
ratio of live page copying (%)

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1878

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

problem. In SW, it can balance the erase counts in each block thus the bad

block number reaches 10% until 180GB data written. The proposed SGC

algorithm evenly distributes block erases over the entire flash memory, and
thus the bad block number is still zero after 200GB data written.
　 Table I summarizes the performance comparisons for four methods. GA

with the greedy algorithm has the highest efficiency on recycling invalid

pages, and thus it has lowest living page copy overhead. However, it causes
the flash memory to be retired earlier due to the unbalanced block

utilization. In addition, the greedy algorithm needs to record the number of

invalid pages of the block, and therefore it also requires a lot of memory

space to keep the necessary information. SW also uses the greedy algorithm,
and it needs another block erasing table (BET) to identify which block has

been erased during a given time period. Thus SW requires more memory

space than GA. In addition, SW requires tuning the threshold parameter

very carefully. For example, in Fig. 4(a), if the threshold of SW is changed to

10, the growth of the standard deviation will be ended at 28.3, which is

much smaller than the case of that threshold equals to 100. In Fig. 4(b), if
the threshold of SW is changed to 10, since the maximum block erase count

is 246, as shown in Table I, the bad block number will be zero after 200GB

data written. As a result, SW demands more design complexity and

memory spaces than the proposed SGC algorithm.

　 The proposed SGC algorithm uses the IPF vector to records whether a

block contains more than 75% invalid pages, and thus it has the lowest

memory space requirement than the other approaches. In addition, the
proposed SGC algorithm can achieve the lowest maximum erase count and

Fig. 4. (a) changes in standard deviation. (b) changes in

bad block number.

Table I. Performance Comparisons.

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1879

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

standard deviation as compared with other approaches. As a result, the
lifetime of the flash memory can be greatly lengthened with the proposed

SGC algorithm.

5 Conclusion

In this paper, a low-complexity high-performance wear-leveling algorithm

for flash memory system design is presented. The proposed SGC algorithm

combines GC operation and wear-leveling into a single process, and it

doesn’t require any tuning threshold parameter. Simulation results show

that the proposed SGC algorithm has the lowest maximum block erase

count and smallest standard deviation. In addition, the low-complexity low-
cost SGC algorithm makes it is easy to be implemented by firmware-based
or hardware-based approaches. Thus the lifetime of the flash memory can

be greatly lengthened by the proposed SGC algorithm.

Acknowledgments

This work was supported in part by the National Science Council of

Taiwan, under Grant NSC100-2221-E-194-051. The EDA tools supported

by the National Chip Implementation Center are acknowledged as well.

IEICEElectronics Express,Vol.9, No.24, 1874-1880

1880

© IEICE 2012
DOI: 10.1587/elex.9.1874
Received October 22, 2012
Accepted November 06, 2012
Published December 28, 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2500 2500]
 /PageSize [612.000 792.000]
>> setpagedevice

