JER N & dh R 3Rt X
B B/t a R B - 45 | B
Automatic Synthesis of Timing-Locked Loops
for SoC Designs

RO 4 F Y
-

3
5 H

PERE AFZ £ + A

ERANA%EREFZEBHLLARAFELER
Automatic Synthesis of Timing-Locked Loops for SoC Designs

B A F Y Student : Ching-Che Chung
EHZ 2 A Ht Advisor : Dr. Chen-YilLee

B o % @ K 2
EFIRZAEFHRAT

4+ %H X

A Dissertation
Submitted to Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electronics Engineering
October 2003

Hsinchu, Taiwan, Republic of China

FPERE Lt+= F 1+ A

EY -}

#* R &

CRBTTIREAW L EMRAEFTY ROWHTHES@OR -

WA AAMBES 2B R LOHY > FLRBARL R BRAAHNET T

(1]

(2]

(3]

[4]

HEAETHRAALBAEZ LA RERGXTRUR B ERMTF
S {3 4448 18 35 (ADPLL) B & #4838 45 49 @B (ADDLL) 2 #F 50 4F » &
HxMETEARAAR R R AHEESREFHEEE | (Automatic
Synthesis of Timing-Locked Loops for SoC Designs) 4+% ADPLL/ADDLL
AFRFBREMEENTER HAAME OFANERR=ZTREF
Hih— 5700 RERFFTEAERTRFT A B F B B R REPTULE
2AE o FMMEA R AR T ¢

Jing-Jer Jong and Chen-Yi Lee, “A Novel Structure for Portable Digitally
Controlled Oscillator, * in [EEE International Symposium on Circuits and
Systems, Vol. 1, pp. 272-275, May 2001.

Ching-Che Chung and Chen-Yi Lee, “An all-digital phase-locked loop for
high-speed clock generation,” in JEEE International Symposium on Circuits and
Systems, Vol. 3, pp. 26-29, May 2002.

Hsie-Chia Chang, Ching-Che Chung, Chien-Ching Lin, and Chen-Yi Lee, “A
300 MHz Reed-Solomon decoder chip using inverionless decomposed
architecture for Euclidean algorithm, “ in 28* European Solid-State Circuits
Conf. (ESSCIRC), Florence, Italy, Sep. 2002.

Ching-Che Chung and Chen-Yi Lee, “An all-digital phase-locked loop for
high-speed clock generation,” in IEEE Journal of Solid-State Circuits, Vol. 38,
pp.347-351, Feb. 2003.

[5] Ching-Che Chung and Chen-Yi Lee, “A new DLL-based approach for all-digital
multi-phase clock generation, “ accepted by [EEE Journal of Solid-State
Cireuits.

TR S

(6]

Ching-Che Chung and Chen-Yi Lee, “An All-Digital Fast-Locking DLL for
Wide-Range Clock Deskew Applications,” submitted to IEICE Transactions on

FElectronics.

BAT S — B EAEEE P -mitzsh SEY S RIFER2
ARt E i 86 BFE KSR RAB TR W EE Cell-based
o R LM BATEAR A FRELER LSRR
HE -

WEz BEABFOHENME OHAAFRARERFA R LN EL @
ABEBHEST G HE > B gx -

#EA 27
Ay L@ASE EFIHEFR Hit i ﬁ)

E N T

AREFTIREAEFH R TN L XY

Frftsx BANA#HSH B2 RS R Adiiean

SR EALZE - Fa At ¢ ERT -

4 :
o 1 B 3
nREHR - /ELQ @ [13,\“ 7o ESQ

= 3 B o)
155 & 2. 8
2 .
BR1* e A
2 % oK &
B
% W x

f 94 _m it
w7

L2/ - f$j£% ik

[B S

S I #H iz
EN T

P ERE A+=- % + A —

Department of Electronics Engineering
& Institute of Electronics
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

Date :__2003-10-01

We have carelully read the dissertation entitled__Automatic Synthesis of
Timing-Locked Loaps for SoC Designs

submitted by Ching-Che Chung in partial fulfillment of the requirements of

the degree of DOCTOR OF PHILOSOPHY and recommend its acceptance.

Che1n Wel Jen Wei Hwang
2 & . r;;mfiiufﬁm é{jﬁh&

Jyuo—Mm Shyu JinEShyaﬂf Wang
/ o
. o
Tk Tk N \ Lty —=
Jieh-Tsorng Wu — Bin-Da Liu
wﬂwb SN
Chen-Wen Wu

Thesis Advisor :

cn-Yi Lee

S b L

Director

Sau-Gee Chen

Chairman

HHRELRXETHRLARHES

(PEEHEAZSTIV AT L E B H ZXER)

REREE TR SRR AR B R BRI R 02 4

it JUENES S me s v a

isCEE : ERR AR RRETE BB S R e E s
1R Y

LFRE HEASEEE R LY e (SME) » FFHE - #(H
FREETI B L AR pe A N SRS B A B - NI - IRPRAEEL R - LI
fi ~ e BB 2 L R SCER - SRk L5
A Al Eerm AL TR LA FERAERS TR o SR EEMEASEE T AR
L5 - BEEE ~ TEEFIED -

o EHEEIFEAMEIT AR LA - BT~ FEORAIET ESEREL RERGETREL

TR HREE -

BHEAN EFY

e
THh iﬁé%\#j A R 92 % 10 H 3 A

ARA&RRZTZzaHLsRBAEgETE

R EEY FeEHIL . BéwiEL

HE

AR U 0 RS AR AR R S A B A Bk a3 0 R
TAHBEGEME > DMETRRES T B E R A RBITER - ReXATRH G RHE
TH KO BRER AT ENRERN > B HARASARE S A SIS RBMT &
BB THBMPIRRET R TAEFRNRRGSREREAE RO 2
FAx AR D B KA 2B IE R G AR L o B LR AR W 6 A B Bk

ik FFHEEGEANLSKERER -

o3 SUE o o 4 SURAR 2B U IR 84 PR SR 42 5 AL 2B U 0 AR A A AR 4
AR B FHUL o 3835 AW AT a9 A 28 3B U o A8 4 Eo 3k 5 AR ARUE
B MG DIE R DA B S ARIPIR R BRI B Z AR ERREIY
JE R PR 09 2B R 85 40 0 B8 R 2 i A U S AR 3@ IR A 3R ITAE 0 DRV SR R BH
K AvAB R 8H AT F BB R o B ARG AT SIS IR AR 0 Bk Rk A e a2 A
AR E A B > AL S MR AE L BHR L HRBRMEABBRERAR
ERBEEERE > nBEE LR R TR BT CHTR A RE -

RERBXRETAERDEMH 0 EIR - 2 EUEBEHHEHR AL LM
RBFARE & B oy ik o AW 2844805 « 23 B8 R 2848 % 48
PRIk E A BayBEM R B EH > BT UERAREAGERAGEL - &H
SLAt 2 M AT S48 0 ~ DRI B SR B R 2B S AR BEAR A £ BT E A
et B o o sk o AR BL AR ST S B Bb RV E 89 MK -

]

I

Automatic Synthesis of Timing-L ocked L oops
for SoC Designs

Student : Ching-Che Chung Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering
& Ingtitute of Electronics

National Chiao Tung University

Abstract

In this dissertation, the designs for All-Digital Phase-Locked Loop (ADPLL) and
All-Digital Delay-Locked Loop (ADDLL) are presented. The proposed flexible
ADPLL/ADDLL architectures can easily be modified to fit different applications and
achieve fast lock-in time. The proposed automated synthesis methodology uses both
benefits of digital VSLI and cell-based design to build up user-specified ADPLL/ADDLL
inashort time, making it very suitable for System-on-Chip (SoC) applications.

This dissertation first presents a scheme to overcome the limitations of standard
cells and to build up high resolution delay cell and high sensitivity Phase and Frequency
detector (PFD). Then the proposed fine-tuning delay cell and PFD are applied to
ADPLL/ADDLL. Time-to-Digital Converter (TDC) is widely used in the proposed
ADPLL/ADDLL architecture to reduce frequency/phase acquisition time. Then design
for the proposed DLL-based All-Digital Multi-phase Clock Generator (ADMCQG) is
presented. In ADMCG design, TDC is used to choose a suitable delay range to avoid
false-lock to harmonics.

Finally, a synthesis approach for ADPLL/ADDLL/ADMCG design is presented. As
a rexult, the gatellevel Hardware Description Language (HDL) codes of
ADPLL/ADDLL/ADMCG can be automaticaly generated using standard cells from
cell-library. Hence both design time and design complexity of ADPLL/
ADDLL/ADMCG is greatly reduced by the proposed methodology.

Acknowledgments

I would like to express my deepest gratitude to my advisor Prof. Chen-Yi Lee for his
sophomore enthusiastic guidance and encouragement throughout the research, and

wholeheartedly give him and his family my best wishes.

During my research, | would like to thank National Science Council (NSC) for
supporting the project of My Ph. D work. The chip support from Chip Implementation Center
(CIC) of NSC is acknowledged, too.

| want to thank my senior Si2 group mate, Dr. Terng-Yin Hsu and Mr. Terng-Ren Hsu for
many valuable discussions and great help. Besides, | much appreciate my junior Mr. Hsuan-Yu
Liu and Mr. Chien-Ching Lin for their comments and CAD supporting. | also want to thank all
members of the Si2 group of NCTU for plenty of fruitful assistance in my graduated lives.

Finaly, | give the greatest respect and love to my family and my girl friend, JoJo Ho, and
| want to express my highest appreciation for their support and understanding. This thesis is
dedicated to them for assisting me to achieve the most important stage in my life. | never let

them down and hope them happy forever.

Contents

Chapter 1 Introduction
1.1 Motivation
1.2 Thesis Organization

Chapter 2 Timing Critical Modulesin ADPLL and ADDLL Architecture

2.1 Dedgn of High Resolution Delay Cells
2.2 High Sensitivity Phase and Frequency Detector Deign
2.3 Summary

Chapter 3 All-Digital Phase-Locked L oop Design
3.1 Overview of Phase-Locked Loop (PLL)
3.2 Dedgn Trade-Off in Different PLL Architectures
3.3 Theproposed ADPLL Architecture
3.3.1 ADPLL Architecture Overview
3.3.2 Designfor Binary Search ADPLL Controller

3.3.3 Designfor TDC-Based Fast-Locking ADPLL Controller

34 TheADPLL Circuit Design
3.4.1 Designfor Digital-Controlled Oscillator

3.4.2 Designfor Phase and Frequency Detector
3.4.3 Loop Filter Design
3.4.4 A Systematic Approach for ADPLL Design

3.5 Experimental Results for the ADPLL test chip
3.6 Summary

Chapter 4 All-Digital Delay-L ocked L oop Design
4.1 Overview of Delay-Locked Loop (DLL)
4.1 Desgn Trade-Off in Different DLL Architectures
4.2 The proposed ADDLL Architecture

11
15

16
17
21
23
23
25

26

29
29

31

31

32

33
37

38
40
42
45

4.3 TheADDLL Circuit Design
4.4 Experimental Results for the ADDLL test chip
45 Summary
Chapter 5 All-Digital Multi-Phase Clock Generator Design
5.1 The proposed ADMCG architecture
5.2 ADMCG Test Chip Desgn
5.3 Experimental Results for the ADMCG Test Chip
54 Summary
Chapter 6 Automated Synthesisof ADPLL, ADDLL, and ADMCG
for SoC Applications
6.1 Automated ADPLL Synthesis

6.1.1 Cdl Library Data Preparation
6.1.2 ADPLL Architecture Compiler
6.1.3 Automated ADPLL Synthesis Flow

6.1.4 Implementations Results

6.1.5 Test Chip Measurement Results
6.1.6 Summary

6.2

Automated ADDLL Synthesis

6.2.1 Cdl Library Data Preparation
6.2.2 ADDLL Architecture Compiler
6.2.3 Automated ADDLL Synthesis Flow

6.3

Automated ADMCG Synthesis

6.3.1 Cdl Library Data Preparation
6.3.2 ADMCG Architecture Compiler
6.3.3 Automated ADMCG Synthesis Flow

6.4

Summary

Chapter 7 Conclusionsand Future Works

Reference

50
53
59

60
62
67
69
73

74

75
75
76
78
81
83
85
86
86
87
89
90
90
90
92
93

94

97

Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig

Fig.
Fig.

Fig
Fig
Fig
Fig

Fig
Fig
Fig
Fig
Fig
Fig
Fig

Fig.

Fig
Fig
Fig
Fig
Fig

Fig

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
3.1
3.2
3.3
34
35
3.6

3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2
4.3
44
45
4.6
4.7

4.8

List of Figures

The schematic of the proposed delay cell.cooeeiiiiiiii i, 8

The CMOS circuit of the proposed delay cell.cooooiiiiiiiiiinne, 8

The proposed high resolutiondday cell.ccoviiiiiiiiiiiii, 9

The sample-based phase detector.c.ocovviiiiiiiii s 11
The proposed high sensitivity phase and frequency detector. 12
The simulation waveform of the proposed PFD.cccoviiiiiiieiennn 13
Thedigital pulseamplifier. ..., 14
The SPICE simulation waveform of the digital pulse amplifier. 14
Thegeneral PLL architeCture.ooviii v, 18
The frequency acquisition process of PLL.ccoviiiii i, 19
The phase acquisition process of PLL.ocovviiiiiiiii s 20
The proposed ADPLL architeCture.coooeviiviiiieiii i, 24
The Binary search ADPLL controller.oooviiiiiiiii e 26

The structure of the proposed TDC for fast-locking 27

The proposed cell-based DCO architecture.c.cccovviiiiiiieineenn, 29
Microphotograph of the ADPLL (TSMC 0.35UMm).oovvveiiiiiiine e, 32
Transient response of the binary search ADPLL (@200MHz2). 33
Transient response of TDC-based fast-locking ADPLL (@300MH2). 34
Compared TDC-based ADPLL to binary search ADPLL (@300MHz2). 35
Jitter histogram of the ADPLL (a) at 45MHz (b) at 450MHz. 36
Concept Of CIOCK DESKEW.vuieie i e e 39
The general DLL architeCture.coovvviiiii e e 40
The phase acquisition process of DLL.ouvviii i e, 41
Fast-Locking DLL based on TDC-DTC architecture.cc..e..e. 44
The proposed fast-locking wide-range DLL.c.ooviiiiiiiiiineenn, 45
Initial phase error eStMELOr.ocovi it e e e 46

The architecture of Time-to-Digital Converter for fast-locking ADDLL
(012 o | o PP 47

The proposed digital-controlled delay line.coooeii i, 48

-Vi -

Fig

Fig

Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig

Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig

4.10

411
4.12
4.13
4.14
4.15
4.16
5.1

52
5.3
54
5.5

5.6
5.7
5.8
5.9
5.10
6.1
6.2
6.3
6.4
6.5
6.6

(a) Fine-tuning delay cell (b) Fine-tuning delay cell with disable control (c)

Coarse-tuning delay Cell. ..o 50
Simulation waveform of DCDL (@) at 50MHz clock input (b) at 500MHz
ClOCK INPUL. ... et e e e e e e e 52
Transient response of the proposed ADDLL.c.cooviiiiiiiiini i 54
Microphotograph of the DLL test chip.cccovviviiiiii e e, 54
Measured jitter at 65MHz. (a) DLL isreset (b) DLL islocked. 55
Measured jitter at 487MHz. (a) DLL isreset (b) DLL islocked. 56
Measured long-term jitter histogram (at 125MHZ2).ccocovveiiiininnnnn. 57
Measured jitter and frequency vs. supply voltage.cccoveviieiiiiennnn 57
The proposed ADMCG architeCture.cooeveiiiiie i e e 62
The proposed ADMCG control algorithm.cccooiiiiiiiiiiiin, 63
The proposed Time-to-Digital Converter (TDC) for multi-clock generator. . 64
The architecture of onedelay Stage.covvviviiiiiii e 66
The proposed 7:1 data channel compression transceiver (a) Transmitter

[(0) 135 = 1Y/ P 68
The transient response of the ADMCG (at 85MHZ).ccoevviiiiieinnnnn. 69
The post-layout simulation of the receiver (at 85MHZz).ccvenee. 70
Measured multi-phase clock signas (at 32MHz).c.cocoveiiiiiii i, 71
Measured long-term jitter histogram of the transmitted data (at 32MHz). ... 72
Microphotograph of the ADMCG test chip.ccovvviiiiiiiiiiiiieens 73
The proposed automated ADPLL synthesisflow.ccooien. 79
The interconnection RC effects.c..covii i, 80
Power Consumption of the ADPLL for different processes. 82
Microphotograph of the ADPLL (UMC 0.18um).ccoevevvieiiniininnnn, 83

Measured long-term jitter histogram of in-phase clock output (at 144MHz). 84
Measured long-term jitter histogram of average clock output (at 166MHz).. 85

- Vii -

Table

Table

Table
Table
Table
Table

Table
Table
Table
Table

2.1

3.1

4.1
4.2
6.1
6.2

6.3
6.4
6.5
6.6

List of Tables

CONTROL CODE VS. DELAY TIME OF THE PROPOSED DELAY

CE L L. et e 10
PLL PERFORMANCE 37
COMPARISONS. ...t e

PERFORMANCE SUMMARY OF THE PROPOSED DLL. 58
DLL PERFORMANCE COMPARISONS.coiiiiiiiiiii e 58
The ADPLL SPECIFICATIONS.viiiie e e 77
DCO OUTPUT FREQUENCY RANGE FOR DIFFERENT

PROCESSES. ... i e e 81
ADPLL AREA INFORMATION FOR DIFFERENT PROCESSES. 81
The ADPLL TEST CHIP SPECIFICATIONS. ..o e 84
The ADDLL SPECIFICATIONS. ..ot e e 87
The ADMCG SPECIFICATIONS. ..o e e 91

- viii -

Chapter 1

| ntroduction

1.1 Motivation

As VLS technology grows up rapidly, the design trend goes toward system-level
integration and single-chip solution. The system-level design considerations can lead to more
cost-effective realizations, but it aso results in more design complexity and design efforts.
However, the design cycle remains the same or even shorter due to the time-to-market issue.
Thus in System-On-Chip (SoC) designs, each module should better be reusable and process
portable, so that total design time of SoC can be reduced. Unfortunately, some timing critical
blocks, such as: Phase-Locked Loops (PLLS) and Delay-Locked Loops (DLLS) often are not
reusable and process portable.

PLL and DLL are widely used in SoC designs. They are often applied to communication
applications, such as: frequency synthesizer, clock multiplier, Clock and Data Recovery (CDR)
circuit, and clock de-skew applications. They are very essential for current SoC designs, and
for different modules, they may have different design specifications or requirements for PLLS
and DLLs. Asaresult, how to design these PLLS/DLLs in a more efficient way becomes more

and more important in these days.

For example, in single chip cable modem residential gateway [47], there are seven PLLs
and over one hundred internally generated clocks used in this single chip gateway. Thus how
to design these PLLs in an efficient way becomes very important for reducing system turn
around time. And the importance to develop a systematic PLL/DLL design approach is
required in current SoC era.

The design of PLL/DLL is a trade-off among jitter performance, frequency / phase
resolution, lock-in time, area cost, power consumption, circuit complexity and design time. It
is hard to design one PLL/DLL suitable for al applications. It often needs to redesign the
PLL/DLL for target applications. If a wide-range PLL/DLL is designed for SoC applications,
it can be used in more modules without modify it. But this scheme may waste unnecessary
area cost and power consumption due to the requirement for wide-range operation. Thus a
systematic design methodology to design user-specified PLLS/DLLS in a short time is
necessarily for current SoC designs.

All-digital and cell-based approach is preferred for SoC applications. It can reduce both
design time and design complexity for PLL/DLL. And this approach is aso suitable for
automated synthesis of All-Digita Phase-Locked Loop (ADPLL) and All-Digita
Delay-Locked Loop (ADDLL).

However, due to the limitations of cell-based design, it is difficult to design a low-jitter,
low-power, and high resolution ADPLL/ADDLL. Thus how to overcome the limitations of
gandard cells to build up a high resolution delay cell and high sensitivity frequency/phase
detector (PFD) are the important design challenges for our research.

In this thesis, we propose the flexible ADPLL/ADDLL architectures for a truly portable
and cost-effective ADPLL/ADDLL [35] solution. And we explain the proposed scheme to

overcome the limitations of the standard cells and to build up high resolution delay cell and

high sensitivity phase detector.

Time-to-Digital Converter (TDC) is widely used in the proposed ADPLL/ADDLL
architecture to reduce frequency/phase acquisition time and achieve fast lock-in time. In
al-digital multi-phase clock generator (ADMCG) [46], it is used to choose a suitable delay
range to avoid false-lock to harmonics.

In thisthes's, an automated synthesis methodology for ADPLL/ADDLL/ADMCG design
is presented. Thus these modules now can be automatically generated using standard cells
from cell-library. As a result, the proposed methodology uses both benefits of digital VLSI
and cell-based design to build up user-specified ADPLL/ADDLL/ADMCG in a short time,
and reduces design time and design complexity of ADPLL/ADDLL/ADMCG, making it very

suitable for System-On-Chip (SoC) applications.

1.2 Thesis Organization

In this dissertation, we focus on agorithms, architectures, and circuits of high
performance, low power, and area efficient ADPLL/ADDLL/ADMCG designs. And for SoC
applications, we proposed an automated synthesis methodology to take design specifications
and automatically generate the gate-level netlist for ADPLL/ADDLL/ADMCG. The proposed
methodology can greatly reduce design time and design complexity of these modules in SoC
era

In chapter 2, we present the common timing critical modules design for ADPLL/ADDLL
/ADMCG. The resolution of delay cell and the sensitivity of PFD have large influences on the
jitter performance of the output clock, and they also have large effects on the final frequency

error or phase error. In this chapter, we explain the proposed scheme to overcome the

limitations of the standard cells and to build up high resolution delay cell and high sensitivity
phase detector.

In chapter 3, the design for dl-digita phase-locked loop (ADPLL) is presented. To
reduce the system turn around time for SoC design, the ADPLL using the proposed high
resolution delay cell and the proposed high sensitivity PFD is presented. The proposed
ADPLL controller can achieve fast lock-in time, and the proposed delay cell can reduce both
cost and design time for building a high resolution cell-based DCO. And the proposed PFD
can improve the jitter performance and reduce the frequency error for the output clock.
Moreover the flexible ADPLL architectures for different target applications are presented in
this chapter for a truly portable and cost-effective ADPLL-based frequency synthesizer
solution.

In chapter 4, the design for all-digital delay-locked loop (ADDLL) is presented. As the
speed and the complexity of VLS| system increases rapidly, clock skew and clock jitter effects
become more and more important now. It is difficult to design a DLL to overcome tota
effects caused by process, voltage, temperature, and loading (PVTL) variations. As in
conventional DLL, the operation range of DLL is very limited. In this chapter, we propose an
al-digital fast-locking DLL. The proposed DLL utilizes Time-to-Digita Converter (TDC)
circuit and Digital-to-Time Converter (DTC) circuit to complete coarse-tuning in one clock
cycle, resulting in less lock-in time. And the area cost for TDC and DTC can be shared with
delay line. The proposed Digital-Controlled Delay Line (DCDL) architecture can turn off
unused delay cells at high frequency operation, thus it is very suitable for wide-range clock
deskew applications demanded in system-level integration.

In chapter 5, the design for an all-digita multi-phase clock generator (ADMCG) is

presented. Multi-phase clocks are useful in many applications to process data streams at the

bit rate higher than interna clock frequencies. But there are two problems of conventional
DLLs. Oneistheir limited phase capture range, and the other is restricted Voltage-Controlled
Delay Line (VCDL) range to avoid false-lock to harmonics. Thus in this chapter, a new
DL L-based approach for multi-phase clock generation is presented. The proposed ADMCG
uses a TDC to choose a reasonable delay range rather than to use self-correcting circuit. Thus
its operation is very robust and can avoid possible false-lock as in conventional designs. The
lock-in time of the proposed ADMCG can also be reduced by adding TDC module. After
TDC operation, a fixed step search scheme is used in the ADMCG to fine-tune the output
phase accuracy.

In chapter 6, an automated synthesis design methodology for ADPLL/ADDLL /ADMCG
is presented. In SoC design, the design time for each module is restricted. Thus each module
should better be a reusable design so that the total design time for the SoC can be reduced.
However, for different applications, the ADPLL/ADDLL/ADMCG may have different
operating ranges or different lock-in time regquirements, making it hard to design one
ADPLL/ADDLL/ADMCEG suitable for all applications. As a result, it often needs to redesgn
the ADPLL/ADDLL/ADMCEG for target application and design phase becomes longer. Thus
in this chapter, a proposed automated synthesis methodology uses both benefits of digital
VLSl and cell-based design to build up user-specified ADPLL/ADDLL/ADMCG in a short
time, making it very suitable for System-On-Chip (SoC) designs.

In chapter 7, we make conclusions and describe severa design issues needed to be further

explored in the near future.

Chapter 2
Timing Critical Modules in ADPLL and

ADDLL Architecture

In this chapter, the design for delay cells and phase detectors are presented. They are the
important modules in ADPLL/ADDLL design. The resolution of the delay cells and the
sensitivity of the phase detector have large influences on the jitter performance of the output
clock. They also have large effects on the final frequency error or phase error. As a result,
they need to be designed carefully. And since we want to propose a cell-based
ADPLL/ADDLL design, how to overcome the limitations of the standard cells to build up a
high resolution delay cell and high sensitivity phase detector are the important design
challenges for our research.

The delay cells are used to construct a ring oscillator and produce the desired output
frequency in ADPLL design. In ADDLL design, delay cells are used to build a delay line and
outputs the delayed version of the input clock. The delay cell must be easy to adjust its delay
time, and the resolution of the delay cell should be sufficient enough to meet the requirements
for the output clock.

The phase detector is used in ADPLL/ADDLL design to detect the phase error between

the reference clock and output clock. The phase detector’s dead zone may cause the wrong
operations in phase acquisition process. Thus how to reduce the dead zone of the phase
detector is very important to improve the stability for the ADPLL/ADDLL and aso minimize
the static phase error.

The organization of this chapter is as follows. In section 2.1, the proposed high
resolution delay cell is presented. And how to use the standard cells to build up this delay
cells is also explained in this section. In section 2.2, the proposed high sensitivity phase and
frequency detector (PFD) is presented. The proposed PFD is also constructed by standard

cells. Findly, abrief summary is made in section 2.3.

2.1 Design of High Resolution Delay Cells

In analog delay cells, the delay cell is controlled by control voltage/current, and the
output delay time is continuous over the controllable range. But in digital-controlled delay
cell, the output delay time is quantized. And the resolution of the output delay time must be
sufficient enough to meet the design specifications.

When two nearby digital control codes are applied to the delay cell, the output delay
time difference is defined as the resolution of the delay cell. If an inverter-based (or
buffer-based) delay line is used in delay cell design, since in this architecture, the delay cell
produces different propagation delays by selecting different number of inverters (or buffers).
Then the resolution of the delay cell is limited by the delay time of one inverter (or one
buffer). And this resolution is often not sufficient to be used in ADPLL/ADDLL design.

Thus in previous designs, the phase blender is proposed in [19] to provide a better
resolution by phase interpolation. And the delay matrix, which uses parallel tri-state buffers
to enhance the resolution of the delay cell, is proposed in [8]. However, the intrinsic delay

time of the phase blender is too large to be used in high-speed gpplications. This is because

~ 7 ~

that in phase blender architecture, high resolution means the increasing of phase blender
stages. And the area cost and the power consumption for the delay matrix is too large to be
used in alow cost and low power design.

In this section, alow cost and high resolution delay cell is presented. The schematic of
the proposed delay cell is shown in Fig 2.1. The function of this delay cell acts as an inverter

regardless of (A, B) input value. And the value of (A, B) determines the delay time of the

proposed delay cell.
Al
A A A2
B1
B 1 . OUTPUT
INPUT

Fig. 2.1: The schematic of the proposed delay cell.

The CMOS circuit realization of the proposed delay cell is shown in Fig. 2.2.

INPUT —o|
INPUT _4 |o- B
INPUT _4 |o— A

OUTPUT
INPUT INPUT
I— A I— INPUT

Fig. 2.2: The CMOS circuit of the proposed delay cell.

~ 8 ~

The delay time when the input changes from 0 to 1 and the output changes from 1 to O is
defined as Tpy . Oppositely, the delay time when the input changes from 1 to 0 and the output
changesfrom 0 to 1 isdefined as Tp h.

In Fig. 2.2, when (A, B) isequal to (1, 1), the Tpy of the delay cell is always smaller
than the cases: (A, B) = (0, 1) or (1, 0). And when (A, B) = (1, 0) or (0, 1), the Tpy. Of the
delay cell isalways smaller than the case: (A, B) = (0, 0). Thisis because the change of (A, B)
value determines that how many pull-down paths will be turned on/off. So the resolution

enhancement can be achieved by using the proposed delay cell.

EN1 EN2

INPUT

OUTPUT
L g

Al B1 A2 B2

Fig. 2.3: The proposed high resolution delay cell.

In Fig. 2.1, this delay cell is named as an AOI (AND-OR-INVERSE) type delay cell,
and it isabasic cell and can be found in standard cell library. The control signals can be used
to adjust the Ty Of the AOI type delay cell. Oppositely, the OAI (OR-AND-INVERSE) type
cell can be controlled to adjust the Tp_ 4 of the delay cell.

If those two type delay cells are cascaded, the resolution of the delay cell can be further
enhanced. Fig. 2.3 shows the proposed high resolution delay cell, and it can be used to
perform fine-tuning in ADPLL/ADDLL design. Both AQI type delay cell and OAI type delay

cell are shunted with two tri-state buffers. And shunted tri-state buffers are used to increase

~ 0 ~

the controllable range of the proposed high resolution delay cell.

In the proposed high resolution delay cell, in total six bits: (EN1, Al, B1, EN2, A2, B2)
can be used to control the delay cell. Thus, in total 64 (=2°) different delays can be provided.
To design the proposed delay cell, first, the suitable standard cells must be selected from the
cell library. And the SPICE circuit simulation for the proposed delay cell must be performed
to measure the delay time (Tpn. and Teuy) Of the delay cell for al possible 64 cases. After
SPICE simulation, the lookup table for mapping the binary control code versus delay cell

control code can be created.

Table2.1: CONTROL CODE VS. DELAY TIME OF THE PROPOSED DELAY CELL
TIME UNIT: (PS), CODE: (EN1 A1B1EN2 A2 B2)

TpuL+Tp H|/CODE TpuL+TeLH/CODE Tpu+Tp H/CODE TpuL+TpLH/CODE
0802.7026 |000 011 0674.2368 (000 100 0622.3394 (010 111 0580.2200 |111 001
0777.6740 |000 010 0672.7012 (001 111 0622.0947 101 001 0578.2402 110 000
0759.8178 |000 001 0670.2695 |100 010 0620.1069 |011 111 0577.0692 |100 101
0759.3041 |001 011 0667.4821 |101 011 0613.8635 |101 000 0572.2359 111 000
0751.3155 {000 000 0666.1494 010 001 0611.3577 |100 111 0568.2607 |100 100
0736.0601 |001 010 0663.9600 |011 001 0605.6821 {110 010 0563.3331 |101 110
0718.9363 |001 001 0658.9083 |010 000 0604.3907 |010 110 0549.1761 [110111
0714.0263 |000 111 0657.2062 |011 000 0602.3159 |011 110 0549.1071 101101
0711.8740 |001 000 0655.3770 |001 110 0599.4157 |111 010 0543.4591 111111
0707.5820 010011 0650.9609 |100 001 0591.4753 |100 110 0540.5546 |101 100
0704.4837 (011 011 0642.2144 001 101 0591.0464 |010 101 0529.1033 |110 110
0697.3336 |100 011 0642.0410 (100 000 0589.1943 |011 101 0523.2402 111 110
0695.9196 |000 110 0641.0289 (101010 0586.3467 |110 001 0514.6414 |110 101
0683.6460 |010 010 0634.8068 (001 100 0583.3829 |010 100 0508.8459 |111 101
0682.2107 |000 101 0632.4963 |110 011 0583.0358 (101 111 0506.1100 {110 100
0681.0558 011 010 0626.2559 (111 011 0581.7245 |011 100 0500.2978 (111 100

Table 2.1 lists the simulated delay time of the proposed high resolution delay cell versus
delay cell control codes. In this smulation, a standard 0.35um 1PAM CMOS process cell
library is used to construct the delay cell.

If the proposed delay cdl is applied to be the fine-tuning stage of the DCO. Then the
value of (Tpy+TpLH) Means the change of the output clock period. The resolution of the
DCO can be improved to the resolution of the proposed delay cell. And in this ssimulation, the
average resolution of the proposed delay cell is about 5ps = ((802.7026 ps - 500.2978 ps)/64).

~ 10 ~

Since in the proposed delay cell, there only six standard cells are used. Thus its area cost
and power consumption is very low, and its resolution is also sufficient to be used in

ADPLL/ADDLL design.

2.2 High Sensitivity Phase and Frequency Detector Deign

The phase detector (PD) can detect the phase error between the reference clock and the
output clock. And it generates the up or down pulse to control the ADPLL/ADDLL. In analog
phase-locked loop or analog delay-locked loop, the pulse width of the up/down pulse, which
means the amount of the phase error, controls the charge/discharge time for the charge pump
capacitor. However, in ADPLL and ADDLL, only the polarity information (i.e. lead or lag) is
taken from the phase detector, and thus the pulse width information is not used. This is
because the ADPLL/ADDLL controller is a cycle-based finite state machine. Thus it is not
possible to use the pulse width information for the ADPLL/ADDLL controller unless some

circuits likes the time-to-digital converter (TDC) is used [39].

Clock A b 0 Ql
Lead
Control Lag
Logic
D 0 Q2 Lock
Clock B [

Fig. 2.4: The sample-based phase detector.

Since the phase detector used in ADPLL/ADPLL design only needs to detect the polarity

information. The sample-based phase detector is often used as in previous designs [18]. In

those phase detectors, they determine lead/lag information by using output clock as the
sampling clock to sample the reference clock.

The sample-based phase detector is shown in Fig. 2.4. Clock B is output clock and clock
A is the reference clock. Both clock B and its delayed one create a sampling window for
detecting the transition of clock A. If the sampling values (Q1, Q2) are different, the
transition of the clock A is detected. And then the control logic can use the sasmpled values to
generate the lead or lag information for the ADPLL/ADDLL controller.

But when the reference clock edge (clock A) is very close to the output clock edge
(clock B), the phase detector may produce wrong lead/lag information for the
ADPLL/ADDLL controller. The minimum phase error, which can be detected by the phase
detector, is called the dead zone of the phase detector. If standard cells are used to construct
the phase detector, the resulting dead zone is often too large to be used in ADPLL/ADDLL
design. The limitations of this type phase detector often comes from the timing requirements

(such as: setup time and hold time) for the D-Flip/Flop.

1
b Q Qu OUTU | Digital Pulse OUTBU
Amplifier l
CDN
IN v o flagU
CDN
=
\ RESET B
1 CDN ap OUTD Digital Pulse OUTBD
D Q Amplifier
CDN fla:
¥B b o/ flagh
—
FB_CLK
[l

Fig. 2.5: The proposed high sensitivity phase and frequency detector.

To overcome the disadvantages and limitations of the traditional sample-based phase

detector, a new phase and frequency detector (PFD) is presented. Fig. 2.5 shows the

schematic of the proposed high sensitivity PFD. The proposed PFD consists of one three-state
phase detector and two digital pulse amplifiers. The smulation waveform of the proposed
high sensitivity PFD is shown in Fig. 2.6. When output clock (FB) leads reference clock (IN),
flagD produces a low pulse and flagu remains at high. Oppositely, when output clock (FB)
lags reference clock (IN), flagu produces a low pulse and flagD remains at high. And those

flagU and flagD signals are used to control the operation of the ADPLL/ADDLL controller.

RESET_E

IN

FB

Qu
QD

CDN_FD

ouTu

ouTD

QOUTED

CUTED

flagUu

[= T o e TR e B e R = R = R o |

flagD

Fig. 2.6: The smulation waveform of the proposed PFD.

In Fig. 2.5, when the output clock (FB) is very close to the reference clock (IN), the
pulse width of three-state phase detector’s output (i.e. OUTU or OUTD) becomes very small.
This narrow low pulse (OUTU or OUTD) can not correctly clear the D-Flip/Flop’s output
(flagU or flagD). Thus the dead zone of the proposed PFD is limited by this minimum pulse
width requirement for the D-Flip/Flop’s clear pin (CDN). This timing requirement is often
about severa hundred pSintypical standard cell library.

To improve the sensitivity of the proposed PFD, two digital pulse amplifiers are
connected at the output of three-state phase detector (i.e. OUTU or OUTD). The schematic of

the digital pulse amplifier is shown in Fig. 2.7. It uses the cascaded two-input ANDs

~ 13 ~

architecture to increase the low pulse width of OUTU and OUTD. The output pulses are
named as OUTBU and OUTBD. The digital pulse amplifier enlarges the phase error between

reference clock (IN) and output clock (FB), thus the following D-Flip/Flops can detect it.

INPUT

OUTPUT

Fig. 2.7: The digital pulse amplifier.

Vottages (i)

JEEREE oo

- R L B Z

Vestages [in)

1]

Fig. 2.8: The SPICE simulation waveform of the digital pulse amplifier.

Fig. 2.8 shows the SPICE circuit simulation waveform of the digital pulse amplifier. The
input is delayed and is “AND” with itself, thus the pulse width of the low pulse is extended.
Idedly, increasing the number of “AND” stages can increase the sensitivity of the proposed
PFD. But when the phase error between reference clock and output clock becomes very small,
the low pulse at OUTU and OUTD may be disappeared or may be not full swing voltage. In

this case, the digital amplifier becomes useless. So the real sensitivity of the proposed PFD

~ 14 ~

can be determined after SPICE simulation.

In the ssimulation which is shown in Fig. 2.8, a standard 0.18um 1P6M CMOS process
cell library is used to construct the proposed high sensitivity PFD. From SPICE simulation,
the input low signal whose pulse width is larger than 20ps will be increased to more than
600ps to meet the minimum pulse width requirement of the D-Flip/Flop’s clear pin. As a

result, the sensitivity of the proposed PFD can be improved to £20ps, and this high

sensitivity ability is very suitable to be used in ADPLL/ADDLL design.

Besides detecting the phase error, the proposed PFD also has the ability to detect the
frequency difference between reference clock and output clock. Both flagU and flagD will be
clear to high after the next rising edge of reference clock and output clock occurs respectively.
Thus if the frequency of the output clock is higher than reference clock, the flagD will have
more numbers of low pulse than flagu, and this will cause the ADPLL controller to slow
down the DCO’s output frequency. So the proposed PFD is aso suitable to be used in ADPLL

design to detect frequency error.

2.3 Summary

In this chapter, the timing critical modules for ADPLL and ADDLL are presented. The
proposed delay cell architecture overcomes the limitations of using the standard cells to
construct the high resolution delay cell, and it also has lower cost and lower power
consumption than the traditional designs. Thus it is very suitable to be used in ADPLL and
ADDLL. The proposed high sengtivity PFD is also presented in this chapter. The proposed
PFD uses the digital pulse amplifier to improve the sensitivity of the traditional three-state
phase and frequency detector, and thus it is also very suitable to be used in the ADPLL and

ADDLL design.

~ 15 ~

Chapter 3

All-Digital Phase-L ocked Loop Design

In this chapter, the design for al-digital phase-locked loop (ADPLL) is presented. The
phase-locked loops (PLL) are widely used for many communication applications, such as
frequency synthesizer, clock multiplier, clock and data recovery circuit, or input clock jitter
filtering. It had become an essential function block for current System-On-Chip (SoC) design.
And how to design the PLL in amore efficient way is a very important design issue for chip
makers.

Dueto high integration of VLS| system, PLL often operatesin a very noisy environment.
The jitter less than 4% of the clock cycle time is typically needed to avoid functional
failures in a microprocessor [1]. However, the digital switching noise coupled through power
supply and substrate induces considerable noise into noise-sensitive analog circuits [1,3-7].

Traditionally, many analog approaches are proposed to improve the jitter performance of
PLL, such as: choosing a narrow bandwidth or using alow gain Voltage-Controlled Oscillator
(VCO) [3]. However, those analog approaches often result in long lock-in time and increasing
design complexity of PLL.

In recently years, ADPLL became more attractive since they yield better testability,

programmability, stability and portability over different processes [8,9]. And they can reduce

~ 16 ~

the system turn around time. But the jitter performance and the frequency resolution of the
traditional ADPLLsare not aswell asanaog PLLs. Thisis because it is difficult to design the
high resolution digital-controlled oscillator (DCO) and high sensitivity phase and frequency
detector (PFD).

However, the ADPLL has the ability to achieve fast-locking in a short period, and it is
very suitable for fast-locking applications. If the jitter performance of the ADPLL can be
improved, then the ADPLL can be used in more applications. Thus how to design a
fast-locking ADPLL with low-jitter performance in a short design time is the goal for this
research.

In this chapter, an ADPLL using the proposed high resolution delay cell and the
proposed high sensitivity PFD is presented. The design for the delay cell and the PFD was
aready discussed in chapter 2. The proposed delay cell can reduce both cost and design time
for building a high resolution cell-based DCO. And the proposed PFD can improve the jitter
performance and reduce the frequency error for the output clock. Moreover the flexible
ADPLL architectures for different target applications are presented in this chapter for atruly
portable and cost-effective ADPLL-based frequency synthesizer solution.

The organization of this chapter is as follows. In section 3.1, the overview of PLL is
discussed. In section 3.2, the design trade-off between different PLL architectures is
discussed. In section 3.3, the proposed ADPLL architecture is presented. In section 3.4, the
test chip which implements of the proposed ADPLL using standard 0.35um CMOS processis
presented. In section 3.5, the simulation and measurement results of the test chip are

presented. Finally, a brief summary is made in section 3.6.

3.1 Overview of Phase-Locked Loop (PLL)

The general PLL architecture is shown in Fig. 3.1. The input of PLL is reference clock

~ 17 ~

and programmable divide ratio M, and output clock outputs from the internal oscillator. The
PLL keeps tracking the frequency and the phase of reference clock, and it speeds up or dows
down the internal oscillator to minimize frequency and phase error between divided output
clock (Out_divM) and reference clock. After PLL is locked, the frequency of output clock is

M times higher than reference clock, and the phase of output clock is synchronized with

reference clock.
Reference
Clock
Frequency
Output
Detector 1 PLL . Clock
» Oscillator =
Controller
Phase I
Detector
Out_divM ﬁl Frequenc‘?/ Divider I:
M

Fig. 3.1: The general PLL architecture.

The PLL lock-in process is separated into frequency acquisition and phase acquisition.
The frequency detector detects the frequency difference between reference clock (Reference
Clock) and divided output clock (Out_divM). And the PLL controller controls the internal
oscillator’s output frequency to minimize frequency error. Thus high resolution oscillator is
needed to generate accurate frequency output. After frequency acquisition is completed, the
PLL turnsinto phase acquisition and phase maintaining mode.

The lock-in time of PLL is mainly determined by the frequency acquisition time, thus
how to reduce frequency acquisition time is very important to a fast-locking PLL design. In
previous designs, the adaptive gain control PLL [2,37] or the TDC-based ADPLL [39] are

proposed to speed up the frequency acquisition process.

~ 18 ~

t=0 t=T =27 3T

Reference
Clock — |

Out_divM m I

f——» > >

T, T

Fig. 3.2: The frequency acquisition process of PLL.

Fig. 3.2 illustrates the frequency acquisition process of PLL. If we assume the oscillator
isreset to high at every rising edge of Reference Clock, and the output period of Out_divM is
F(t), where t is time. And we assume at time=0, the frequency detector finds that output
frequency of oscillator is higher than Reference Clock. The PLL controller will control the
internal oscillator to dow down.

If step size for frequency acquisition is F_STEP, then the output period of Out_divM at
t=T becomes F(T)=T, + F_STEP, and the output period of Out _divM at t=2T becomes
F(2T)=T, + F_STEP = To+ 2*F_STEP The genera form to determine the output period of
Out_divM at timet can be expressed as Eq. 3.1.

F(nT) = F((n-1)T) — F_STEPR, if F(n-1)T) > T,
F(n-1)T)+ F_STER, if F(n-)T) <T
F(n-D)T), if F(n-)T) =T (Eg.3.1)
When F(t) becomes T or the frequency detector can not distinguish the frequency difference
between Reference Clock and Out_divM, the frequency acquisition is done.
After frequency acquisition is completed, the PLL starts to trace the phase of reference

clock. Fig. 3.3 illustrates the phase acquisition process of PLL. If we assume the frequency

~ 19 ~

error between Reference Clock and Out_divM is zero after frequency acquisition, and the
phase error between Reference Clock and Out_divM is P(t), where t istime. The initial phase
error is P(0). And we assume at time=0, the phase detector finds that Out_divM lags behind
Reference Clock. The PLL controller will control the internal oscillator to speed up.

If step size for phase acquisition is P_STEP, then the phase error at t=T becomes P(T) =
P(0) + To— T= P(0) — P_STEP. And the phase error at t=2T isP(2T) = P(T) + T:— T = P(0) —
P_STEP-2*P_STEP. The general form of phase error at timet can be expressed as Eq. 3.2.

P(nT) =P(0)-)_ n*P_STEP (Eq. 3.2)

where we assume that the Out_divM till lags behind the Reference Clock after several
updates of the oscillator frequency. When P(t) becomes negative or zero, the phase

acquisition process is completed.

=0 =T t=2T
Reference
Clock |
P(0) P(T) P(2T)
Out divM L
- T - T .

Fig. 3.3: The phase acquisition process of PLL.

After phase error is eliminated, phase acquisition process is completed. PLL controller
will restore oscillator’s frequency back to the baseline frequency which is determined by

frequency acquisition process, and the PLL turns into phase maintaining mode. In this phase

~ 20 ~

maintaining mode, the PLL keeps tracking the phase of reference clock by fine-tuning
oscillator’s output frequency.

In phase acquisition process, phase detector must provide correct phase relationship
information about reference clock and divided output clock. The dead zone of phase detector
will increase phase acquisition time and final phase error. Thus how to design a high
sensitivity phase detector is a design challenge for PLL design. Since the operating range and
output frequency accuracy is determined by the internal oscillator, the design for high

resolution oscillator is also an important design challenge for PLL design.

3.2 Design Trade-Off in Different PLL Architectures

PLL design is a trade-off among jitter performance, lock-in time, area cost power
consumption, circuit complexity and design time. Thus it is hard to design one PLL suitable
for al applications. For fast-locking frequency synthesizer applications, such as a frequency
hopping multiple access systems, the lock-in time is the most critical design issue. And for
portable or mobile applications, lock-in time is also very important since the PLL must
support fast entry and exit from power management techniques[9].

In traditional analog PLL designs, fast acquisition requires tuning of the
Voltage-Controlled Oscillator (VCO) free-running frequency near the desired frequency in
advance or to increase loop bandwidth. But increasing the loop bandwidth degrades jitter
performance, and the exact VCO tuning range is not easy to be achieved since there aways
has process variations, voltage variations, and temperature variations (PVT variations).

Thus a Digital Frequency-Difference Detector (DFDD) is proposed in [2] to convert the
frequency difference directly to the digital value, and then change the gain for VCO control
adeptively. The dual-loops PLL architecture [37] uses one loop for fast tracking the suitable

frequency range and the other loop fine-tuning the output. Both of them proposed a concept

~ 21 ~

that for fast lock-in time, the VCO gain or the loop bandwidth should be increased during the
frequency acquisition process. And after frequency is locked, it should return to its normal
value to preserve the low jitter performance. But the circuit complexity is increased due to
this adaptive gain control ability.

A different way to achieve fast lock-in time is proposed in [38]. It uses a digital hybrid
PLL (DH-PLL) with Digital Look-up Table (DLT) to shorten settling time and achieve fast
switching speed at every frequency synthesis. This design uses a DLT to directly adjust VCO
output to the desired frequency, and then uses a traditional analog PLL to fine-tune the output.
However, this digital look-up table is «ill dependent on PVT variations. As a result,
acquisition time increases in proportion to the initial frequency difference.

From the previous PLL architectures [2,37,38], the methods for fast-locking PLL design
can be classified into two types. one uses an adaptive gain control for the frequency
acquisition process, and the other uses a look-up table to speed up the frequency acquisition
process.

To further speed up the lock-in time, an all-digital phase-locked loop (ADPLL), which
uses a Time-to-Digital Converter (TDC) circuit to quantize the reference clock period into
multiples of inverter delay times, is proposed in [39]. This PLL replaces the DLT [38] by
TDC to againgt PVT variations and speeds up the frequency acquisition process. Since the
TDC and the DCO are suffered from the same PVT variations, the TDC measured vaue is
more accurately than the DLT [38], and the lock-in time of the PLL can be further reduced.
But the area cost for the TDC digital processing unit is a problem if a smal chip area is
required.

For clock multiplier applications, the phase error between reference clock and output
clock is very important. Since the ring oscillator has jitter accumulation problem, it is not

easy to minimize the phase error. In ADPLL [9], the anchor register is used to store the

~ 22 ~

basdine frequency, thus the ADPLL controller can keep tracking the phase of the reference
clock. But the phase error of the PLL-based clock multiplier may become worst when the
input jitter from the reference clock exists or the multiplication ratio is increased.

The DLL-based clock multiplier [40-42], which generates the output clock from the
delayed version of reference clock, can efficiently reduce the phase error. But it is not
suitable for a programmable design since the multi-phase delay line is not a scalable design.
So the PLL-based clock multiplier is still more flexible than the DLL-based clock multiplier.

The Digital Controlled PLL (DCPLL) [2] has been proposed to achieve fast lock-in time.
But due to low sensitivity of frequency detector and resolution limitation of D/A converter, its
jitter performance is worse than analog designs. An ADPLL proposed in [9] can achieve fine
resolution and fast lock-in time. However its DCO needs to be full-custom designed, making
it difficult for porting to different processes as design requests. A complete cell-based ADPLL
is proposed in [8], where fine-search delay matrix architecture is developed to improve
DCO's resolution. Also two DCOs are exploited to reduce output clock jitter effectively.
However the proposed fine-search delay matrix occupies large silicon area and has high
power consumption.

From the above discussions, a better ADPLL architecture should be easily modified to
fit different applications. Thus in the next section, a flexible ADPLL architecture is proposed
for most gpplications. The proposed ADPLL architecture takes the advantages of the
TDC-based ADPLL [39] and the portability of the cell-based ADPLL [8] to build up a

low-jitter, low-cog, fast-locking and cell-based ADPLL.

3.3 The proposed ADPLL Architecture

3.3.1 ADPLL Architecture Overview

~ 23 ~

P UP outpuT | AVG_CLK
REF CLK : SN DCO
- FdivN — PFD | P DOowN
— > ®) "
N ’ % . avg_|coars
= - fi
ref divN o: avejhne
- o
" TDC div |
M _
> —
o
o
coarse » O
dco_out_divM fine > ::
¥ v 2
. INNER
— FdivM |« DCO
} OUT CLK

Fig. 3.4: The proposed ADPLL architecture.

The proposed ADPLL architecture is shown in Fig. 3.4. The ADPLL consists of Phase
and Freguency Detector (PFD), Time-to-Digital Converter (TDC), ADPLL Controller,
INNER DCO, OUTPUT DCO, loop filter, input frequency divider (FdivN) and feedback
frequency divider (FdivM). M and N inputs are used for programming frequency divider and
input divider respectively.

The PFD detects the frequency difference and phase error between divided reference
clock (ref_divN) and divided INNER DCO’s output clock (dco_out_divM), and it outputs up
(P_UP) and down (P_DOWN) signa to indicate that the INNER DCO should speed up or
dow down respectively. The ADPLL controller takes those control signals from the PFD and
performs update of the DCO control code (coarse, fine). This DCO control code is also sent
to the loop filter. After ADPLL is locked, the DCO control code is converged to the
fine-tuning range. And then both frequency acquisition and phase acquisition are achieved.

The loop filter takes DCO control code from the ADPLL controller, and it detects the
variations range of the DCO control code after ADPLL is locked, and outputs average

control code (avg _coarse, avg_fine) for OUTPUT DCO. After ADPLL islocked, every time

~ 24 ~

when the PFD’s output changes from up to down or vice versa, the ADPLL controller
restores this average DCO control code from the loop filter for phase acquisition and phase
mai ntai ning.

In the proposed ADPLL architecture, the TDC is an optional module and is only used
for fast-locking ADPLL. If the lock-in time is not a critical design issue or a smaler chip
area is required, this module is removed from the architecture, and then the binary search
ADPLL controller is used for frequency acquisition.

For frequency synthesis application, the loop filter can filter out DCO control code
variations and controls OUTPUT DCO to provide alow-jitter clock output (AVG_CLK). For
clock multiplier applications, OUTPUT DCO is removed from the architecture, and in-phase

output clock directly outputs from the OUT_CLK.

3.3.2 Desgn for Binary Search ADPLL Controller

In binary search ADPLL controller, a binary search scheme is used when it searches for
the target frequency. Fig 3.5 illustrates the frequency acquisition process. The frequency
acquisition garts from middle frequency band of the DCO. If DCO can provide “n” different
frequencies, the search step is “n/4” in the initial state. When output frequency is lower than
target frequency, ADPLL controller adds current search step to DCO control code, and this
increases the output frequency of DCO. Oppositely, when output frequency is higher than
target frequency, ADPLL controller subtracts the DCO control code to lower the output
frequency of DCO.

Whenever the PFD’s output changes from up (P_UP) to down (P_DOWN) or vice versa,
the search step is divided by 2. And after the search step reducesto 1 (i.e. one fine-tuning step
of the INNER DCO), the frequency acquisition is done. Then the ADPLL controller enters

phase acquisition and phase maintaining mode. In this mode, the ADPLL controller adjusts

~ 25 ~

the fine-tuning control code of the INNER DCO to eliminate the phase error between divided
reference clock (ref_divN) and divided INNER DCO'’s output clock (dco_out divM)

whenever it receives the up (P_UP) or down (P_DOWN) from PFD.

Max. Frequency

down
Target Frequency down = down down
> up w up
)
®!
©)
=
Initial Frequency fé P
" g
9]
s
&
= Binary-Search
ADPLL Controller
Min. Frequency

Fig. 3.5: The Binary search ADPLL controller.

The ADPLL's closed-loop response time is determined by the response time of DCO,
delay time of ADPLL controller and frequency divider. Therefore DCO’s control code can
only be updated at every “m” cycles, instead of every reference clock cycle. Here “m” is
determined by closed-loop’s response time. In Fig. 3.5, it shows that the update period (T) for
DCO control code is “m” reference clock cycles. Hence, the worst-case lock-in time for this
frequency acquisition algorithm, in term of reference clock cycles can be express as Eq. 3.3.

T(n) = m*(1 + 2*logx(n/2))= m*(2*logy(n) — 1) (Eq. 3.3)

3.3.3 Desgn for TDC-Based Fast-Locking ADPLL Controller

For fast-locking applications, lock-in time is the most critical design issue. Thus in the

~ 26 ~

proposed architecture, TDC is used to quickly calculate the nearest control code for DCO to
produce the desired frequency. TDC can convert the reference clock’ s period information to
multiples of delay cell’s delay time. Hence, ADPLL controller can use this information to
quickly jump to the desired frequency band. And then ADPLL performs fine-tuning to
reduce the residual frequency error and phase error. As a result, the lock-in time can be
reduced by adding TDC module.

Fig. 3.6 shows the architecture of the proposed TDC for fast-locking ADPLL. To make
aure that the TDC measured vaue can be directly applied to DCO, the ring delay line of
TDC has a copied structure from the DCO with some reductions, and the difference is that
only three coarse-tuning delay cells are used in TDC path selector. The detail DCO structure
isdiscussed in section 3.4.1.

After system reset and with the first rising edge of reference clock, TDC is turned on
(TDC_enable=1), and ring delay line of the TDC begins to oscillate. Output clock of the ring
delay line triggers TDC counter to count up until the second rising edge of reference clock

comes. Then TDC isturned off (TDC_enable=0).

Similar delay line structure
/ copied from the DCO

<
Fine-tune U&
¥ Delay Cell TDC evel =B TDC DIV
_cycle| -

lect Path — he —
| Select Pat Counter §
@
[92]
- @,
i ®

TDC _enable M

Fig. 3.6: The structure of the proposed TDC for fast-locking ADPLL

The TDC counted value: TDC_cycle means that the reference clock’s period can be
quantized as the multiples of Trpc.ring, Where Trpcring Means the oscillation period of the
TDC ring delay line. The value of Trpc.ring Can be expressed as Eq. 3.4.

T10C-ring = 3*COARSE_UNIT+ Tedect-path + Trinetune + TRESET (Eg. 34)
where Tsdect-path 1S delay time of path selector and Trinewne IS the delay time of fine-tuning
delay cell, and Treser isthe delay time for reset stage.

If n coarse-tuning delay cells are needed in DCO’ s coarse-tuning delay stage to produce
the desired output frequency, output clock period of the DCO can be express as Eg. 3.5.

Toco= N*COARSE_UNIT + Tegect-path + Trinetune + TreSET (Eqg. 3.5)

If welet Tz = Telea-pah + Trinewne+ Treser, and the desired output frequency should be
M/N times of the reference clock frequency, and Eq. 3.6 must be satisfied.

M*Tpco= Trpcing® (TDC_cycle/N)
=> M*N*(n*COARSE_UNIT + Tz) = (3*COARSE_UNIT + Tz) * TDC_cycle
=>n= 3*(TDC _cycle/M*N) + (Tz/COARSE_UNIT)*((TDC cycle-1)/M*N) (Eg. 3.6)

To reduce the circuit complexity for TDC, TDC cycle-1 is reduced to TDC cycle, and
snce Tz contains five gate delays, TZ/COARSE_UNIT is replaced by 5. Therefore the
equation can be further reduced and expressed as Eq. 3.7.

n08*TDC_cycle/(M*N) (Eq. 3.7)

Thus digital processing unit takes the counted value (TDC cycle) from TDC counter
and performs the caculation of Eq. 3.7, and then outputs the DCO control code (TDC_DIV)
to ADPLL controller. The ADPLL controller takes this value as the initial DCO control code.
After that, it fine-tunes the output by up (P_UP) and down (P_DOWN) control signals from
PFD.

The bit width of TDC counter and TDC digital processing unit are determined by the

maximum reference clock period (i.e the lowest reference clock rate). After user specifies the

~ 28 ~

reference clock range, the bit width must be large enough to avoid overflow in TDC counter.
Since in Eq. 3.7, one divider is needed for caculation of the suitable DCO control code.
Thus when TDC module is used for the ADPLL design, the area cost is increased, but the
frequency acquisition time can be reduced.
The area cost for binary search ADPLL controller is much lower than TDC-based
fast-locking ADPLL controller. Hence binary search ADPLL controller is very suitable for a
low-cost ADPLL design and still has faster lock-in time than traditional analog PLLs. And

for fast-locking applications, the TDC-based ADPLL controller is preferred.

3.4 The ADPLL Circuit Design

In the proposed ADPLL architecture, al functional blocks are implemented with
gandard cells. Thus design time for the ADPLL is reduced by the proposed cell-based
architecture. And the limitations of the cell-based design are overcome by using the proposed

high resolution delay cell and high sensitivity PFD.
3.4.1 Desgn for Digital-Controlled Oscillator
5D o [o {2 [
wrY VNV NN NN NN N NN NV oamny
\ | |
RESET \‘
e e L e I
l
SEP[(N/16)-11\ SEP[(N/16)-2 sw[mn@%

OUT CLK

FINE-TUNE

Fig. 3.7: The proposed cell-based DCO architecture.

~ 29 ~

The proposed cell-based DCO architecture is shown in Fig. 3.7. In the test chip, the
DCO is implemented with TSMC 0.35um 1P4M CMOS standard cell library. It is separated
into two stages: coarse-tuning stage and fine-tuning stage.

In coarse-tuning stage, the coarse-tuning delay chain with 64-to-1 path selector
architecture is used to provide different delays for coarse-tuning. The 64-to-1 path selector
architecture is implemented with tri-state buffers. The DCO coarse-tuning encoder encodes 6
(=logz(64)) bits coarse-tuning control code into 64-bit one-hot path selection control signals.
This architecture has advantage of minimum intrinsic delay time in path selector to improve
maximum operating frequency of the DCO. And it can be easily modified to meet different
specifications for different applications.

To avoid large loading capacitance appearing in the path selector’s output, the path
selector is partitioned into two stages. In the first stage, every sixteen coarse-tuning delay
blocks will select a partia output. And the second stage path selector will select the final
output. The delay time difference between two neighbor paths is determined by one
coarse-tuning delay cell. The (Tpy + TpLn) Of One coarse-tuning delay cell is about 300ps in
the target process. Thus when DCO'’s coarse-tuning control code increases one or decreases
one, the amount of output clock’s period will be changed by £300ps.

To increase frequency resolution of the DCO, fine-tuning delay cell is added after
coarse-tuning stage. The circuit of fine-tuning delay cell is show in Fig. 2.3. And the detall
information about how to design the fine-tuning delay cell is discussed in section 2.1.

The controllable range of fine-tuning delay cell should cover one coarse-tuning step (i.e.
300ps). And the DCO resolution can be improved to averagely 5ps by adding fine-tuning
delay cell. The maximum output frequency of DCO is 545MHz (1.833ns) and minimum

output frequency of DCO is 41MHz (24.261ns) by SPICE circuit smulation.

~ 30 ~

3.4.2 Desgn for Phase and Frequency Detector

The circuit of cell-based PFD is shown in Fig. 2.5, and the detail information about how
to design PFD is discussed in section 2.2. After using the digital pulse amplifier to increase
the sensitivity of PFD, phase error up to £50ps can be detected in the target process. When
phase error is less than the dead zone of PFD, there will have no trigger signals sent to

ADPLL controller which remains unchanged in its previous state.

3.4.3 Loop Filter Design

After ADPLL has finished frequency acquisition and phase acquisition, INNER DCO’s
control code becomes converged to a fine-tuning range. However the control code may have
small variations due to the following factors. PFD’s dead zone, DCO's finite resolution and
reference clock jitter. To further improve jitter performance of the APDLL for frequency
synthesizer applications, loop filter is used to filter out the resultant noise into OUTPUT
DCO.

Thus the loop filter detects the maximum INNER DCO control code and minimum
INNER DCO control code within 512 reference clock cycles and then outputs (DCO control
code (maximum) + DCO control code minimum))/2 & the average DCO control code for the
OUTPUT DCO. As aresult, the jitter performance of the output clock can be improved.

But since phase relationship between OUTPUT DCO and INPUT DCO is unknown.
Thus this two DCO structure can only be used in frequency synthesizer applications, where
only accurate frequency output is needed. And for phase acquisition applications, OUTPUT
DCO is removed from the structure, and the output clock directly achieved from INNER
DCO.

The proposed loop filter circuit is very simple. It only needs two registers and one adder.

But it can greatly reduce the noise effects and reference clock jitter effects.

~ 31 ~

3.4.4 A Systematic Approach for ADPLL Design

A systematic way is provided to design the ADPLL with specified standard cell library.
Firstly, SPICE circuit simulation of the fine-tuning delay cell should be performed to
construct lookup table for mapping fine-tuning control code.

When the controllable range of fine-tuning cell is determined, a suitable coarse-tuning
cell, whose delay time (Tpu+TpLH) IS less than or equal to the controllable range of
fine-tuning delay cell, can be selected from cell library. And the specifications of output clock
range determine the number of select pathsin coarse-tuning stage.

Hardware Description Language (HDL) is used to describe ADPLL controller, frequency
divider, and loop filter. We use logic synthesizer to synthesize those modules to gate-level
circuits with TSMC 0.35um 1PAM CMOS cell library. Thus design time and complexity for
ADPLL can be reduced. And the proposed ADPLL architecture can easily be ported to

different processes in a short time.

Fig. 3.8: Microphotograph of the ADPLL (TSMC 0.35um).

~ 32 ~

Fig. 3.8 shows microphotograph of the ADPLL chip. We use Auto Placement and
Routing (APR) tools to generate the layout. Since different interconnection delays may result
in mismatches between INNER DCO and OUTPUT DCO, we use APR tools to generate one
DCO layout first and then duplicate this DCO layout in final APR process. And both DCO
and PFD should have maximum occupied area constraints to minimize the wire-loading
effects during APR. Gate count of the ADPLL is4800. The core area of the ADPLL is840um

X 840um.

3.5 Experimental Resultsfor the ADPLL test chip

Fig. 3.9 shows the transient response of the binary search ADPLL, where the reference
clock is 5SMHz, and the division ratio M is 40. Thus the output frequency is 200MHz
(=BMHZz*40). The code[11:0], which means {coarsg[5:0], fing[5:0]}, is converged to a
fine-tuning range of the INNER DCO in a short time. By using binary search step in
frequency acquisition, the ADPLL can finish frequency acquisition in 46 (= 2*(2*logy(2'9)-1))

reference clock cycles.

|
LULLTTTHTUUITA T
oot st SO AR AR R AR AR
g L

code(11:0) 2080 j

Fig. 3.9: Transient response of the binary search ADPLL (@200MHz).

Fig. 3.10 shows the transient response of TDC-based fast-locking ADPLL at 300MHz.
In this figure, the reference clock is 10MHz and M=30, N=1. After system reset, the TDC
calculates the nearest DCO control code and then outputs it to the ADPLL controller in the
1st reference clock cycle. In the 2nd reference clock cycle, the ADPLL controller updates the
DCO control code to theinitial DCO control code (TDC_DIV).

During the 1« to 3rd reference clock cycles, the DCO and the frequency divider are
reset and waiting for the update of the DCO control code is completed. In the 4th reference
clock cycle, the DCO starts to oscillate and the frequency divider dso starts to work. With
this reset control, there has no initial phase error between DCO’s output and reference clock,
and it can further reduce the time for phase acquisition. As a result, both frequency
acquisition and phase acquisition is completed at the rising edge of 4th reference clock.

After 4th reference clock, the ADPLL takes the control signals from the PFD to

fine-tune the output frequency and also keeps maintaining the phase of output clock.

/ 4 th reference clock

yd
re

delay resstl

delay resetl

doo_out_divit

CLE_OUT

1
1
1
REF_CLE]
1
1
0

tde_cycle[10:0]

tde_div|6:0] 63

0 1]

B_nowt [| |

CON_CLE 0 | | |

Pl

conrss|5:0] k- 50

fine|5:0] 2

code[11:0] 2080 2080 1232 | 3360 | 3232 [

code[11:0] 2080

TDC Phase Frequency Fine-tuning
&&

Phase Maintaining

Operation Alignment

Fig. 3.10: Transient response of TDC-based fast-locking ADPLL (@300MHz).

~ 34 ~

Fig. 3.11 compares two types of the proposed ADPLL. One uses the TDC-based
fast-locking scheme and the other use the binary search for frequency acquisition process.
From Fig. 3.11, it shows that the DCO control code for the TDC-based ADPLL has a faster
convergence rate than the binary search ADPLL. Thus the proposed TDC-based ADPLL is
very suitable for fast lock-in time gpplications.

Fig. 3.12 shows the measured output waveform of the ADPLL with noisy digital
circuitry (= 600mVpp supply noise) at 45MHz and 450MHz respectively. Due to the speed
limitation of I/O PAD, the output frequency must be lowered for testing. The signa at
Channel 2 showsthe OUT_CLK signal divided by two and the signal at Channel D shows the
long-term Py-Px jitter histogram over 200,000 sweeps. We use LeCory LC584A to measure
output signal. Rms jitter and Py-Px jitter at 46MHz is 7ps and 20ps respectively. And rms

jitter and Py-Py jitter at 450MHz is 22ps and 70ps respectively.

I |
RESET |

REF_CLE 1 |
T0C_coarse|5:0] a2l 3z |sofsep fas]so |51 sz | s3 52 51 50 - 50
ToC_fine(5:0] afl 3 63 o O O S O B N el T O O O O O e O O O T O O O O O N ol O T N O N

P = e — _
—
:
ToC_search(11:0] cosoi
U
|
I
I

Binary_coarse|5:0] 32 2 FECERT A JA0fat A a4 S FEF P PR L 54 | 53 |52)51 | S0 |49 J4a8 49 50 £1

Binary_fine[5:0] 32 32 61 bl EFEEFEEE Bdsab B E R Lelib BEFEEELEREE

1

i

| ———
Binary_search(11:0] 2000 | w

| ‘

1

i

Fig. 3.11: Compared TDC-based ADPLL to binary search ADPLL (@300MHz).

Table 3.1 lists the comparisons among different PLLS. The proposed ADPLL has shorter
lock-in time and better jitter performance than analog PLL [1] and ADPLL [9]. Although
DCPLL [2] can achieve fast locking, its jitter performance is worse than the proposed design.
And the proposed ADPLL aso has smaller area and lower power consumption than the
cell-based ADPLL [8]. The proposed binary search ADPLL can achieve fast locking in 46
reference clock cycles, and the proposed TDC-based ADPLL can achieve fast locking within

4 reference clock cycles, and the proposed architecture has the best portability than the other

designs.
Reading Floppy Disk Drive
R N R et I B s N o
EERNINEEERRIRIRERERERE
: 00§ S 9 30 Y |
| |
| |
|
|
|
b |
| |
B 50 ns 1.00 W [20 ps 18.9 #
210735 sweeps: awverage low high sigma
Freg(2) nn 2Z.57B9 IMHz 22.5164 22.B353 B.0115
duty@lvi2y 51.8 % BB .8 51.2 a.a
rms (A T ps 1 24 2
pkpk (R B.82 ns B_pe B._B38 B.o1
pkpk (22 3.7aN 3.59 3.94 0.03
AUTO
Reading Floppy Disk Oriwve
|
! |
£ A B AN AN = o S
L Y B O O IO VO A I BN
L] T N N S L W Y Y A]
YAV AV L VA VA IR VA ALV

i

B 5ne l.oov [l .1ns 958

228195 sueeps: average low high sigma
Freg(2) nn 225_985 IMHz 205.995 234.918 1.2068
duty@lv(2) BE. B % 587 B67.9 a.4
rms (R 22 ps 2 88 11
pkpk (R B.87 ns 2.01 B.33 0.04
pkpk (2 3.81 W 3.75 4.13 0.03

O auTo

Fig. 3.12: Jitter histogram of the ADPLL (a) at 45MHz (b) at 450MHz.

Table3.1: PLL PERFORMANCE COMPARISONS.

Performance| Proposed ADPLL [1] [2] [8] [9
Parameter
Process 0.35um CMOS | 0.25um CMOS | 0.60um CMOS 0.6um CMOS 0.5um CMOS
Area 0.71mm* 0.09mm* 0.83mm* 2.75mm’” 0.7 mm”®
Approach All-Digital Analog Semi-Digital All-Digital All-Digita
Cell-Based Cell-Based
Power 100mw 25mw 105mw 315mw 39.6mwW
dissipation | (@500MHz) (@400MHz) @(800MHz) @(100MH?z)
Max. Lock <46 cydes <720 cycles <16 cycles <25 cycles <50 cycles
time
Min. 45MHz 8.5MHz 300MHz 360MHz 50MHz
Freguency
Max. 510MHz 660MHz 800MHz 800MHz 550MHz
Freguency
Supply 3.3v 1.9v 3.3v 3.3v 3.3v
voltage
Output jitter 70ps 80ps 149ps 60ps 125ps
(PP
3.6 Summary

In this chapter, an all-digital phase-locked loop is presented. The ADPLL can be

implemented with standard cells. And it has good portability over different processes. The

ADPLL implemented in a TSMC 0.35um 1P4AM CMOS standard cell library, can operate

from 45MHz to 510MHz. The Py-P jitter of output clock is less than 70ps, and the rms jitter

of output clock is less than 22ps. A systematic way to design ADPLL is also presented in this

chapter. The proposed ADPLL can reduce design time and circuit complexity. Therefore it is

very suitable for SoC applications.

~ 37 ~

Chapter 4

All-Digital Delay-L ocked L oop Design

In this chapter, the design for all-digital delay-locked loop (ADDLL) is presented. Asthe
speed and the complexity of VLSI system increases rapidly, clock skew and clock jitter
effects become more and more important now. Thus how to distribute the clock for large
clock loading nets and minimize the clock skew among all modules has become a design
challenge for high-speed integrated circuits.

Wide operation frequency for the clock deskew circuit is typicaly needed for many
applications, such as I/O interface circuit and on-chip clock deskew circuit. And for portable
or mobile applications, lock-in time is very important since the clock deskew circuit must
support fast entry and exit from power management techniques. Thus how to design a
fast-locking wide-range clock deskew circuit with low-jitter performance in a short period is
the goal for this research.

Both Phase-Locked Loops (PLL's) and Delay-Locked Loops (DLL's) can be used to
solve the clock skew problems in microprocessors and high-speed 1/0 interfaces. However,
PLL accumulates phase error or clock jitter, and makes its jitter performance worse than DLL.
Since DLL tracks the reference clock cycle by cycle and doesn’'t have this accumulative

effect, it isagood alternative in clock deskew applications.

Output Remote
Reference Clock ‘ Clock

Clock L Delay Line (T) T

Feedback
Clock

A4

T T T T T Clock Buffer (T,)

DLL Controller

Phase
Detector

Y

Fig. 4.1: Concept of Clock Deskew.

Fig. 4.1 shows the general architecture of conventional DLL's. The DLL adaptively
inserts a delay between reference clock and remote clock. It selects an optimal delay (Tq) to
compensate the phase error between reference clock and remote clock. After DLL is locked,
both remote clock and feedback clock will synchronize with reference clock. Then clock
buffer delay (T.) can beignored.

The lock condition for the DLL can be expressed as Eq. 4.1.

Tioop= T delay-line® T clock-buffer (Eg.4.7)
where Tgeay-line and Tgock-nuifer denote the delay time of delay line and clock buffer
respectively. Tiop Means the tota delay time between reference clock and remote clock (or
feedback clock). After DLL is locked, Tioop becomes integer multiple of reference clock’s
period, thus there has no phase error between remote clock and reference clock.

It is difficult to design a DLL to overcome totd effects caused by process, voltage,
temperature, and loading (PVTL) variations. Asin conventional DLL, the operation range of
DLL is very limited. Thus different architectures have been proposed for different
applications. It needs to trade off phase error, clock jitter, power consumption, area cost,
portability, and lock-in time when designing a certain DLL.

In this chapter, we propose an al-digital fast-locking DLL. The proposed DLL utilizes

~ 39 ~

Time-to-Digital Converter (TDC) circuit and Digital-to-Time Converter (DTC) circuit to
complete coarse-tuning in one clock cycle, resulting in lesslock-in time. And the area cost for
TDC and DTC can be shared with delay line. The proposed Digita-Controlled Delay Line
(DCDL) architecture can turn off unused delay céls a high frequency operation, thus it is
very suitable for wide-range clock deskew applications demanded in system-level integration.

This chapter is arranged as follows: section 4.1 the overview of DLL is discussed.
Section 4.2 discusses the design trade-off between different DLL architectures. In section 4.3,
the proposed fast-locking DLL architecture is presented and the performance of the proposed
fast-locking algorithm is analyzed. In section 4.4, the implementation of the proposed DLL in
a 0.35 ym 1P4M CMOS process with standard cells is presented. Section 4.5 shows
smulation results of the proto-type chip and experimental results are also presented and

discussed. Finally, abrief summary is made in section 4.6.

4.1 Overview of Delay-L ocked Loop (DLL)

Reference Output

Clock Clock
Delay Line >

Y

A

Phase DLL
Detector Controller

Yy
y

Fig. 4.2: The general DLL architecture.

The general DLL architecture is shown in Fig. 4.2. The input of DLL is reference clock,

and output clock is a delayed version of reference clock outputs from the delay line. The DLL

~ 40 ~

keeps tracking the phase of reference clock, and DLL controller increases or decreases the
delay time of the delay line to minimize phase error between output clock and reference clock.
After DLL islocked, the phase of output clock is synchronized with reference clock.

The DLL is often used to eliminate clock skew. In this application, the fixed delay exists
at delay line output. And DLL eliminates the phase error between output clock and reference
clock by adjusting the delay time of delay line. After DLL islocked, the phase of output clock
is aligned with reference clock, and this fixed delay (i.e. clock skew) is removed.

DLL only needs to perform phase acquisition. Thus the lock-in time of DLL is
dependent on how to quickly estimate the phase error and uses the delay line to compensate it.
Thus the phase acquisition process is divided into coarse-tuning phase acquisition and
fine-tuning phase acquisition. In the coarse-tuning phase acquisition, the synchronous mirror
delay (SMD) type DLL [11,20,24] is often used to achieve fast lock-in time. And then in the
fine-tuning phase acquisition, the phase detector detects the residual phase error and controls

the delay time of delay line to eliminate the phase error.

=0 =T t=2T
Reference
Clock |
D(0) D(T) D(2T)
Output i i
Clock _ iy . -
T T

Fig. 4.3: The phase acquisition process of DLL.

~ 41 ~

Fig. 4.3 illustrates the phase acquisition process of DLL. Since output clock is a delayed
version of reference clock, the period of reference clock (Reference Clock) and output clock
(Output Clock) is the same. And since the delay line is open-loop architecture, the output
clock doesn’'t accumulate the previous phase error. Every rising edge of the output clock isa
delayed version from current rising edge of the reference clock.

Thus if we express the phase error between Reference Clock and Output Clock as D(t),
wheret istime. Theinitial phase error is D(0). And we assume at time=0, the phase detector
finds that Output Clock lags behind Reference Clock. The DLL controller will control the
delay line to reduce the delay time. If the step size for phase acquisition is D_STEP, then the
phase error at t=T becomesto D(T) = D(0) - D_STEP. And the phase error at t=2T isD(2T) =
D(T) — P_STEP = D(0) — 2*D_STEP. The general form of phase error at time t can be
expressed as EqQ. 4.2.

D(t) =D(0)-n*D_STEP (Eqg. 4.2)
where we assume that the Output Clock still lags behind the Reference Clock after several
updates of delay line's delay time. When D(t) becomes negative or zero, the phase acquisition
process is completed. And the DLL turns into phase maintaining mode. In this phase
maintaining mode, the DLL keeps tracking the phase of reference clock by fine-tuning the
delay line's delay time.

Similarly to the PLL in phase acquisition process, the phase detector must provide
correct phase relationship information about reference clock and output clock. Thus how to
design a high sensitivity phase detector is aso a design challenge for DLL design. And since
the operating range and output phase accuracy is determined by the delay line, the design for

high resolution delay line is also an important design challenge for DLL design.

4.2 Design Trade-Off in Different DLL Architectures

~ 42 ~

DLL architectures can be classified into three categories. analog DLL [12-15], digital
DLL [11,16-19], and mixed-mode DLL [20-24]. Analog DLL often has smaller phase error
than digital DLL. But when some fluctuations appear in voltage-controlled circuit, the tota
delay variation of whole delay line becomes very large and induces large jitter at output clock.
To avoid this situation, the loop filter in analog DLL must have narrow bandwidth, leading to
the fact that analog DLL often takes along time to achieve lock.

Digital DLL has good portability over different fabrication processes, and it can achieve
lock in a short time. But since the delay time is quantized, phase error and clock jitter will
increase when continuously changing the quantized delay time with supply noise and
reference clock’s jitter. So the major design chalenge of digital DLL is to improve the
resolution of delay line while maintaining an acceptable short lock-in time and power
consumption.

In mixed-mode DLL [20-24], it combines analog DLL and digital DLL and separates the
locking scheme into coarse-tuning stage and fine-tuning stage. Coarse-tuning stage is
adjusted by digital DLL. After digital DLL is locked, the phase selection of digital DLL
remains unchanged, and analog DLL with phase interpolator will interpolate the fine-tuning
stage's output and the coarse-tuning stage’s output to produce the final output. Both fast
locking and phase error minimization can be achieved by mixed-mode DLL. However, the
portability of mixed-mode DLL is less than digital DLL since analog circuits depend on
target process. And its design complexity is aso higher than digital DLL.

For system-level integration or redlization of System-On-Chip (SoC) design, it’s better
to implement the DLL with digital circuits because of less design complexity, higher
portability, and lower supply voltage than analog circuit. However, large phase error and
clock jitter are the major drawbacks of traditional digital DLL. Thusin SAR DLL [18], MOS

capacitor is used to achieve high phase resolution in low supply voltage. And binary search

~ 43 ~

agorithm is applied to reduce the lock-in time. But the delay line architecture proposed in [18]
has large intrinsic delay, and when DLL operates a high frequency, most portions of delay
line are not used. That means some unnecessary power dissipations are consumed at high
frequency operation. So the DLL architecture proposed in [18] is not suitable for wide-range
fast locking operation.

To reduce theintrinsic delay of delay line, the digital DLL [19] uses both reference clock
and inversion reference clock to reduce half of delay line length. Moreover phase blenders
are used to improve the phase resolution of delay line. But this DLL architecture needs extra
duty cycle correctors to correct the duty cycle of reference clock and output clock to exactly
50%. Otherwise there will have large phase error between reference clock and output clock.
Since the duty cycle corrector is an analog circuit, it will depend on process, so the portability

of thisDLL islessthan theall digital DLL’s proposed in [16-18].

Reference Output Remote

Clock Clock
Clock Digital-to-Time Converter (T,) » >

sop PAPEEEEREEEEE ok Butrer)

Time-to-Digital Converter (T)

| Delay Monitor (T)

START

Fig. 4.4: Fast-Locking DLL based on TDC-DTC architecture.

To further reduce the lock-in time of DLL, TDC-DTC architectureis used [11,20, 24]. In
Fig. 44, TDC and DTC ae used to estimate the phase error quickly, and immediately
compensate the phase error between reference clock and remote clock. However the
resolution limitation of TDC and DTC makes it have large phase error after the DLL is
locked. Thus it often needs to have further compensation to minimize the residue phase error.

And the TDC circuit and the DTC circuit will increase the area cost for DLL design.

From the above discussions, a better ADDLL architecture should have a fast-locking
time and also have small phase error and low power consumption for wide-range operation.
Thus in the next section, an al-digital fast-locking DLL architecture is proposed. The
proposed ADDLL architecture takes the advantages of the SAR DLL [18] and the TDC-DTC

based DLL [11,20,24] to build up alow-jitter, low-cogt, fast-locking and cell-based ADDLL.

4.3 The proposed ADDLL Architecture

Fig. 4.5 shows the proposed DLL architecture. The DLL consists of several parts,
namely: phase detector, initial phase error estimator, Time-to-Digital Converter (TDC), DLL
controller, and Digital Controlled Delay Line (DCDL). The DLL controller receives the UP
and DOWN signals from the phase detector, and then it decreases or increases the delay time
of DCDL respectively. The DLL needsto insert an optimal delay between reference clock and

remote clock. After DLL is locked, the remote clock and feedback clock will synchronize

with the reference clock.
TDC_EN TDC_EN
J » Bypass Circuit L Output Remote
Reference ;
M Clock Clock
Clock » M v
U Digital-Controlled Delay Line (T) X ‘
— Phase Error X Clock Buffer (T)
| Bstimator Lo bbbl o fome R
P_CLK Time-to-Digital
Converter
DLL
IC CODE | Controller
UP
—— Phase DOWN
Feedback —» Detector [LoteRe
Clock

Fig. 4.5: The proposed fast-locking wide-range DLL.

To achieve fast locking, the phase error between reference clock and feedback clock

should be compensated in a more efficient way. Fig. 4.6 showsthe initial phase error between

~ 45 ~

reference clock and feedback clock after system reset. Theinitial phase error estimator, which
is dso shown in Fig. 4.6, generates the “P_CLK” pulse for the next TDC stage. The pulse

width of “P_CLK” indicates the initial phase error needed to be compensated.

RESET *‘ i !
Referencem
Clock | |
Feedback [I
Clock ; i
P CILK
i<—>\: Initial Phase Error
RESET
¥ L
RESET RESET
1
— D Q » D Q
P CLK
Feedback -

Clock
s

QN r QN
Reference W

Clock (

Fig. 4.6: Initial phase error estimator.

To speed up lock-in time, TDC is applied to the proposed DLL. Fig. 4.7 shows the
architecture of the TDC module. In Fig. 4.7, “P_CLK” is st to high after system reset, thus
the output of each coarse-tuning delay unit (CDU) will be initially set to high. Then when a
low pulse is applied to “P_CLK”, this low signal will propagate through CDUs. And when
the rising edge of “P_CLK” signal comes, implying the end of the pulse, the D-Flip/Flops
will sample the current state of each CDU’s output. Thus the pulse width of “P_CLK” can be
converted to multiples of CDU'’s delay time. And the coarse-tuning control command for
DCDL can be set to this initial value (IC_CODE). Then the feedback clock becomes very

close to reference clock in afew clock cycles.

~ 46 ~

TDC_EN

- x OUT_CLK
_ U . DU cou coU CDU FDU = FDU - FoU
P_CLK X
L

ﬁvaﬁ@% > 28 e 4
O O (© = Q=
ol B
A A—

‘ TDC Encoder

IC_CODE

Fig. 4.7: The architecture of Time-to-Digital Converter for fast-locking ADDLL design.

The lock-in time for the proposed DLL can be expressed in term of reference clock
cycles as T(n)=1+m+n, where m, n denote the delay line response time, and clock buffer
delay time respectively. One extra clock cycle is needed for TDC cdculation. Thus for the
case, both delay line response time and clock buffer delay time are one clock cycle delay, t
becomes 3 (=1+1+1) clock cycles. But since the resolution of TDC is limited by the delay
time of CDU or the timing requirements of D-Flip/Flops, the lock-in time will be increased

when further update of the delay line control command is needed.

For wide-range operation, the DCDL of DLL should have large controllable range to
overcome the possble phase error in low frequency operation. But when DLL operates at
high frequency, the DLL only needs a smaller controllable range than in low frequency
operation. Thus the DCDL should have control mechanisms to turn off unused delay cellsin

high frequency operation to reduce power consumption.

In the proposed DLL, the DCDL is partitioned into coarse-tuning stage and fine-tuning
gage. And its structure is shown in Fig. 4.8. In the coarse-tuning stage, totally (N-1) CDUs

are used. The delay line controller will encode logz(N) bits coarse-tuning control command

~ 47 ~

into N paths selection control signals. Only one path will be selected corresponding to one
specific coarse-tuning control command. And every four CDUs will have one CDU with
disable control. Thus if the coarse-tuning control command is applied, those CDUs which are
not used can be turned off to minimize power consumption. The DLL controller also controls

those disable control signals.

IN CDU CDU » CDU CDU CDU
D[0] D[1] D[2] D[3] D[N-2] D[N-1]
Y v Y \
coarse ———» N-tO-l Multiplexer
OouT
FDU — FDU (= FDU —» FDU — FDU - FDU (—» FDU » FDU ——»
f ?j_f ‘ ‘
fine[0] fine[1] fine[2] fine[M-1]

Fig. 4.8: The proposed digital-controlled delay line.

In the coarse-tuning stage, totaly N different delays are achieved, and the step size of
the coarse-tuning stage is determined by the delay time of CDU. Thus the totally delay

controllable range of coarse-tuning stage IS Tcoarse= T cou™* (N-1).

To increase the phase resolution of DCDL, fine-tuning stage is added after the
coarse-tuning stage. The fine-tuning stage consists of (2Y'-1) fine-tuning delay units (FDU),
and this stage is controlled by (M) bits fine-tuning control command. Each FDU has two
different delays. fast delay and ow delay. The delay time difference between fast delay and
dow delay is denoted as Trpy. The fine-tuning stage is binary-weighted controlled, leading to

~ 48 ~

totally (2V) different delays. The step size of fine-tuning stage is determined by Tepu. Hence

the total delay controllable range of fine-tuning stage becomes Trine=Terou* (2-1).

It isimportant to keep the value of Trie larger than or equal to Tcpu. Otherwise when
the coarse-tuning control command is changed, the output of the DCDL will have a large
phase jJump. And properly choosing the fine-tuning range can also minimize the possibility to
change the coarse-tuning stage, and hence the possible glitches at path selector’s output can

be avoided.

To overcome phase error at low frequency operation, the controllable range of DCDL
should be larger than the maximum clock period of reference clock. That means Tcoarse Should

be larger than the maximum period of reference clock under PVTL variations.

The proposed DCDL architecture uses the path selector to minimize the intrinsic delay
of delay line. The fine-tuning stage, which is connected after the output of coarse-tuning
stage, can improve the phase resolution of the delay line and avoid possible glitches at path

selector’s output.

In Fig. 4.5, multiplexers (MUXSs) and bypass circuit are used to share the area cost for
TDC circuit and DTC circuit with delay line. After system reset, the output clock is switched
to the output of bypass circuit, and the input of delay line is switched to “P_CLK” signal.
Thus TDC can use the CDUs of delay line to estimate the initial phase error between

reference clock and feedback clock.

When the initial phase error has been estimated, the input of delay line is switched back
to reference clock, and then the output clock is switched to the output of delay line. Thus the
area cost of TDC circuit and DTC circuit can be reduced. In bypass circuit, it mirrors the

fastest coarse-tuning stage delay and fine-tuning stage delay. Thus the measured initial

~ 49 ~

coarse-tuning control command (IC_CODE) can be directly applied to the coarse-tuning

stage.

4.4 The ADDLL Circuit Design

For high-speed 1/O interface and on-chip clock de-skew applications, embedded DLL's
are demanded to achieve high-speed data transfer rate. The required operation range of DLL
may be different for different gpplications. To make sure that the proposed DLL can be
applied to those applications, a test chip targeting to a wide operation range (65MHz to
500MHz) is designed.

The proto-type chip of the proposed DLL has been fabricated in a standard 0.35um
1PAM CMOS process with standard cells. And we use Auto Placement and Routing (APR)
tools to generate the layout of DLL. But some critica modules, such as DCDL or phase
detector, should meet area constraints to minimize wire-loading effects during APR. Thus the

proposed DLL can easily be ported to different processes in a short time with supported

sandard cells.
1 DISABLE
N >
L
1 DISABLE
N N
L L
ouT
IN—» N FDU FDU
CON
t L .
ouT ouT
Nl DISABLE CON=0 CON=0
AND-OR-INV AND-OR-INV

(@) (b) ©
Fig. 4.9: (a) Fine-tuning delay cell (b) Fine-tuning delay cell with disable control

(c) Coarse-tuning delay cell.

~ 50 ~

Fig. 4.9(a) shows the circuit of fine-tuning delay unit (FDU). The detail information
about this fine-tuning delay cell is discussed in section 2.1. But it has some modifications for
ADDLL applications. The FDU is constructed by one AND-OR-INV (AOI) cel and two
shunted tri-gate buffers which are dways turned on. Tri-state buffers are used to reduce the
transition time of FDU to improve operation frequency of the DCDL.

The FDU is an inverter with delay time control. The delay time from “IN” to “OUT” can
be controlled by “CON”, where “CON”=1 is for fast delay and “CON”=0 is for dow delay.
The delay time difference between those two cases is 20ps in the target process. Thus the step
s ze of fine-tuning stage is 20ps (Trpu).

Fig. 4.9(b) shows the FDU with disable control. If “DISABLE”=1, the “OUT” remains
a low regardless of “IN”. This delay cell is used in coarse-tuning delay stage to turn off
redundant delay cells after this delay cell. Thus the power consumption of DCDL in high
frequency operation can be reduced. The input capacitance of this delay cell is the same as
the FDU without disable control to prevent the delay time difference between normal delay
cellsand these delay cells.

The coarse-tuning delay unit (CDU) is constructed by cascading two FDUs and is shown
in Fig. 4.9(c). The delay time from “IN” to “OUT” is 300ps, thus the step sze of
coarse-tuning stage is 300ps (Tcpu). Since the controllable range of fine-tuning stage should
be larger or equd to the step size of coarse-tuning stage, totally 15 (=2*-1) FDUs are used
(M=4), and the total delay controllable range of fine-tuning stage is about 300ps
(=20ps* (2*-1)). The maximum period of reference clock is about 15.4ns (at 65MHz). Thus
the total controllable range of DCDL (Tcoase) Should be larger than this value. Hence 63
CDUs are used (N=64), and the total controllable range of DCDL is about 18.9ns

(=300ps* (64-1)).

~ 51 ~

I
:::::: [5:0] 1f 513
fine[3:0] 7

viiny | 330w |2

wiout)

coarse[5:0]
fine[3.0]

v(in)

viout)

(b)
Fig. 4.10: Simulation waveform of DCDL (a) at 50MHz clock input (b) at 500MHz clock

input

Fig. 4.10 shows the smulation waveform of the proposed DCDL for different
frequencies input. In the proposed DCDL, since each CDU consss of two FDUs, the
output’s rise time and fall time is balanced in coarse-tuning stage. And in fine-tuning stage,
the asymmetry between output’s rise time and fall time comes from the FDU, which is
controlled by the LSB of fine-tuning control command. As aresult the output’s rise time and
fall time of the proposed DCDL is balanced, and the duty cycle of output clock is almost 50%
duty cycle.

In the ADDLL test chip, two phase detectors are used. One is coarse-tuning phase
detector, and the other is fine-tuning phase detector, where the latter has higher sensitivity.

The sample-based phase detector is used as the coarse-tuning phase detector, and it is

discussed in section 2.2. The circuit of the coarse-tuning phase detector is shown in Fig. 2.4.

~ 52 ~

When the “UP” signal is occurred, the delay time of the DCDL needs to be increased.
Oppositely, when the “DOWN” signal is occurred, the delay time of the DCDL needs to be
decreased.

The dead zone of coarse-tuning phase detector is limited by the timing requirements for
the D-Flip/Flop. And in the target process, the sensitivity of the coarse-tuning phase detector

isabout £300ps, whichis not sufficiently precise for the DLL design. After the coarse-tuning

phase detector is locked, the fine-tuning phase detector is turned on to further minimize the
phase error.

The detail discussions for the fine-tuning phase detector were presented in section 2.2.
And the schematic for the fine-tuning phase detector is shown in Fig. 2.5. The digital pulse
amplifier is used to improve the sensitivity of fine-tuning phase detector. Thus the sensitivity
of the fine-tuning phase detector can be improved to £50ps by adding the digital pulse
amplifies.

The DLL controller in the proposed DLL is described with Hardware Description
Language (HDL) and then synthesized to the final gate-level circuit. The gate count of the

proposed DLL is 5400.

4.5 Experimental Resultsfor the ADDLL test chip

Fig. 4.11 shows the transition response of the proposed ADDLL. After system reset, the
DLL starts to eliminate the phase error between reference clock (S_IN_CLK) and feedback
clock (S_FB_CLK). Theinitial phase error estimator generates P_CLK pulse and sends this
pulse to the TDC. The TDC will calculate the initial coase-tuning control code (IC_CODE)
for the DCDL. The DLL controller takes the IC_CODE as start value and counts up or down
the DCDL control code by the UP or DOWN signals from coarse-tuning or fine-tuning phase

detectors.

REZET 1
state[2:0] 0 BB E 4
LOCK. 0 [
vi{S_IN_CLK) D.DDVHHH[llll”,l'lll[ll”'l'lll[l[
v{§_FB_CLK) 3.30v l ' l | \ ' ‘ ” l | | l t | | I ‘ ‘ | I | | I
v(E_OUT_CLK) 3.30v l | \ | I | || | | \ | ' | | | ‘ | t ' I , | \ '
p_clk 1 |
up 1 I_I
DOWH]
N inERERERERER] | |
coarse[5:0] 63 63 | 59
fine[3:0] &] 12
code[9:0] 1016 10146 | 952 356

Fig. 4.11: Transient response of the proposed ADDLL.

The maximum operating speed of the proposed DLL is limited by the maximum
operating speed of the phase detector and the DCDL. From chip measurement results, the
proposed DLL can operate from 656MHz to 487MHz. And the power consumption of the

proposed DLL is210mW at 487MHz, and 50mW at 65M Hz.

i i

Hil!!
I ﬂ]illl'i

___Jﬁu L]

Fig. 4.12: Microphotograph of the DLL test chip.

~ B4 ~

Fig. 4.12 shows the microphotograph of the DLL test chip. The chip size is 2000um x
2000um, where its core size is 980um x 980um. Besides the DLL circuit, this chip aso
contains a digital-controlled oscillator (DCO) to generate the on-chip reference clock for the
DLL. And this DCO can operate from 44MHz to 500MHz. An internal delay buffer is added
to the test chip to insert different delays between output clock (OUT_CLK) and feedback
(FB_CLK). The test chip can choose the reference clock from external reference clock or
from the interna DCO. The clock buffer delay can be sdlected from external delay line or

from internal delay buffer.

Reading Flopoy Disk Orive Reading Floppy Disk Orive
g FIoERY g rioppy

R A A\“ ﬁh\\ N VA
‘ | Hii |

o e e el I VAL VIR

fions oy 210 rs 100V 11005 108 16 v 100
410 sueeps: average low high sigme 3188 suzeps: average low high signe
Freq(2) N 65.5905 IMhe 653728 £5.7929 0.057% FregZ} [N 85,4176 MHz B4.9894 65,3521 0. 1086
dutyalv(?] .37 5.8 BT D1 dutyBly(z) Bedf 0 md B
rmsth) 8 s | 21 4 rms (] 15 ps 2 48 B
pkpk (4 B.02ns 0.0 0.8 0.0l pkpk () B.odns 008 BIL Q.
o AUTD
@ (b)

Fig. 4.13: Measured jitter at 65MHz. (a) DLL isreset (b) DLL islocked.

Due to the speed limitation of the 1/0 PADs, the output of DLL must be lowered for
testing. Fig. 4.13 and Fig. 4.14 show the measured output waveform of the DLL at 65MHz
and 487MHz respectively. In Fig. 4.13, signal a Channel 1 means the reference clock, and

sgnd at Channel 2 means the feedback clock. In Fig. 4.14, signal at Channel 1 means the

reference clock divided by 2, and signal at Channel 2 means the feedback clock divided by 2.
The rms jitter and peak-to-peak jitter of the DLL's output are measured by LeCroy

LC584A. The rms and peak-to-peak jitter at 65MHz is 15ps and 40ps, at 487MHz is 8ps and

30ps respectively.

Reading Flappy Disk Orive Reading Flappy Disk Orive
\\ ‘/\\ JH\\ {r/\\ \\ l \\ {r/\ (M \\ tr/\\ lr/\\ \\ | \\ fF/‘ |) \ |
AN N RN Y RN &MMM \ M MHQ
TR Y TR \k ‘l([11 \j\ |
TV 1 R
/| 1 A L

|

L
|l =

IR ——
[]
——

L [
S
[
[T

IS S
[4

e I |
AT 'I‘\I“J\l‘\‘t
7 T T T T [T I I I
T IV VT \\
H &\l \‘l T —] T !
RN I N A O
- | i
5850 7 05y 1 5nsBEDY f Bns D50
-659 sweeps: sveragE Lo -hlgh signe 3057 sueeps: aversge low high sigme
Preqtd) M 240.005 Mz 238.140 241956 .57 il ol MRS N LA L 00
; duty@lv(2] BG.6 % G648 631 0.5
duty@lv(2) B9.7% B4 T L2
it 7ps 3 " 5 rms(f}) 8ps Z 17 2
sk (4) Bk 00l 0E ol pkpk () B.83ns 081 0.6 0.8l
AUTO el
(@ (b)

Fig. 4.14: Measured jitter at 487MHz. (a) DLL isreset (b) DLL islocked.

Fig. 4.14 shows the measured DCDL’s output divided by 2. This output signal should
have almost 50% duty cycle. Due to the unbalanced rise time and fall time in 1/0O pads, the
duty-cycle of measured signal does not approximate 50%. But the duty-cycle of the proposed
DCDL'’s output is amost 50% as shown in Fig. 4.10.

Fig. 4.15 shows the measured long-term (over 370,260 clock cycles) jitter histogram of
the proposed DLL. The measured long-term rms jitter and peak-to-peak jitter at 125MHz is

8ps and 30ps respectively.

jitter (ps)

Reading Floppy Disk Drive

|
ST .))7 4
VAV N VY A
R B RN Y A L O L
AN) R L A
AT) AT Y T ¥ AT 1Y
] RV v W VAV
|
_I |
| |
|
l |
|
[|
D. |
| |
210 ns 850 [18 ns B850 Y [] 20 ps 21.5 &
30865 sweeps: awverage law high sigma
Freq(2) 124.045 MHz 122.312 125.675 0.365
duty@lv(2) THE ¥ B9.3 72.2 0.3
rms (A 8 ps 2 21 3
pkpk (1) 0.83 ns B0.01 B.87 0.81
pkpk (2) 3860 Y 3.000 3.1258 0.015
AUTO
Fig. 4.15: Measured long-term jitter histogram (at 1225MHz).
jitter vs. supply voltage
120.0 600.0
100.0 * 500.0
\ A——A -
80.0 400.0 é
\\ / NG —=—ms jitter
60.0 3000 2 |—e—p-pjitter
\>< %). —4— Operation Frequency
40.0 2000 9o
-{. \ -
20.0 100.0
/ \I\.‘.
0.0 : : : 0.0
13 2.0 2.5 3.3 3.6

supply voltage (V)

Fig. 4.16: Measured jitter and frequency vs. supply voltage.

Fig. 4.16 shows plots of measured jitter versus supply voltage. In low supply voltage,
the resolution of the DCDL will decrease, and the sensitivity of the phase detector will also
decrease. Thus both rms jitter and peak-to-peak jitter become worse than high supply voltage.

The proposed DLL can still work at 65MHz with 1.3V supply. That means the proposed DLL

can operate with low supply voltage.

Table4.1: PERFORMANCE SUMMARY OF THE PROPOSED DL L

Technology 0.35um SPQM CMOS
Power 50mW(@65MHz)
Consumption 210mW(@487MHz)
Max. rmsjitter 16ps
Max. p-pjitter 40ps
Max. lock-in time <8 cycles
Chip Core Area 980x980uMm”

Table 4.1 summarizes the performance of the proposed DLL test chip. And table 4.2 lists
the comparisons among different DLLs. The proposed DLL can achieve fast locking in a few

clock cycles, and its jitter performance is also better than those described in [18-20]. And it

has the best portability than the other designs.

Table4.2: DLL PERFORMANCE COMPARISONS.

Performance| Proposed DLL [17] [18] [19] [20]
Parameter
Process 0.35um CMOS | 0.35um CMOS| 0.25um CMOS 0.4um CMOS 0.4um CMOS
DLL Power 210mw 3.2mw 3.3mw 340mwW 18mw
(@487MH?2) (@100MH?2) (@100MH?2) (@400MH?2) (@250MH?2)
Phase 20ps 200ps 160ps 40ps ~Ops
resolution
Max. Lock 1+m+n cycles < 5psec < 30cycles < 2.9usec <10 cycles
time (m: clock buffer
delay n: delay line
delay)
Min. 65MHz 100MHz 90MHz 250MHz 150MHz
Freguency
Max. 487MHz 100MHz 100MHz 500MHz 350MHz
Freguency
Supply 3.3V 2.0v 11v 3.3V 3.0v
voltage
Output jitter < 40ps ~0ps 95ps < 250ps <150ps
(p-p)

4.6 Summary

In this chapter, an al-digital fast-locking DLL for wide-range clock deskew applications
is presented. The proposed DLL utilizes TDC circuit to complete coarse-tuning in one clock
cycle. Moreover the proposed DCDL is extendable, and its phase resolution is determined by
fine-tuning delay cells. Both fast-locking and minimum phase error can be achieved by the
proposed DLL. The DLL can be implemented by standard cells, and hence it can be ported to
different processes in minimum design cycle. The DLL test chip fabricated in the TSMC
0.35um CMOS process can achieve a phase resolution better than 20ps, and the operation
range of the test DLL chip ranges from 656MHz to 487MHz. The maximum rms jitter and
maximum peak-to-peak jitter are less than 16ps and 40ps respectively with a 3.3V supply. For
these reasons, the proposed DLL is very suitable for wide-range clock deskew applications

demanded in system-level integration.

~ 59 ~

Chapter 5

All-Digital Multi-Phase Clock Generator Design

In this chapter, the design for al-digital multi-phase clock generator (ADMCQG) is
presented. Multi-phase clocks are useful in many applications. In high-speed seria link
applications [29,30,34], multi-phase clocks are used to process data streams at the bit rate
higher than internal clock frequencies. In clock multiplier applications [25,28,33],
multi-phase clocks are combined to produce the desire output frequency for the synthesizer.
And in microprocessors, multi-phase clocks can ease the clock congraints in pre-charged
logic to achieve higher operating speed [31]. In wireless LAN baseband design, the
multi-phase clocks can be used to find a better sampling point for the analog-to-digital
converter (ADC) to improve overal system performance.

Both Phase-Locked Loops (PLL's) [34] and Delay-Locked Loop (DLL's) can be
employed for multi-phase clocks generation. But DLL offers better jitter performance than
PLL because the noise induced by power supply or substrate noise disappears at the end of
the delay line. Oppositely, the ring oscillator of PLL accumulates jitter, and any uncertainty in
an earlier transition affects all the following transitions, and its effect persists indefinitely
[12,27,30,32]. Thus DLL is a good alternative for PLL's in multi-phase clocks generation
applications.

But there are two major drawbacks of conventional DLLs. One is their limited phase

capture range [12], and the other is restricted Voltage-Controlled Delay Line (VCDL) range
to avoid fase-lock to the harmonics [27,28]. By increasing the VCDL delay range and
changing the phase alignment algorithm, it can be extended to infinite phase capture range.
But the false-lock problem still cannot be overcome. Thusin [27,28], a self-correcting circuit
is employed to prevent the DLL locks to an incorrect delay and it can bring the DLL back
into a correct locked-state. However, this self-correcting circuit [27] is sensitive to the duty
cycle of reference clock since it makes decisions based on the sampling values of multi-phase
clock signals.

The register-controlled digital DLL is proposed in [36] to provide an all-digital solution
for the DLL design. For multi-phase clock generation applications, this DLL can overcome
the false-lock problem by setting the delay line in minimum delay time at the beginning of
phase acquisition. However, the long lock-in time makes it not suitable for wide-range
operations.

In this chapter, a new DLL-based approach for multi-phase clock generation is presented.
The proposed All-Digital Multi-Phase Clock Generator (ADMCG) uses a Time-to-Digital
Converter (TDC) to choose a reasonable delay range rather than to use self-correcting circuit.
Thus its operation is very robust and can avoid possible false-lock as in conventional designs.
The lock-in time of the proposed ADMCG can also be reduced by adding TDC module. After
TDC operation, a fixed step search scheme is used in the ADMCG to fine-tune the output
phase accuracy. The proposed architecture is al-digital and can be redlized by standard cells.
Thus it yields good testability, programmability, stability and portability over different
processes. And the design time for multi-phase clock generator can also be reduced.

This chapter is arranged as follows: Section 5.1 describes the proposed all-digital
multi-phase clock generator. Section 5.2 shows the implementation of the proposed ADMCG

using standard cells and the test chip design for a 7:1 data channel compression transceiver.

~ Bl ~

Simulation and chip measurement results of the ADMCG test chip are shown in section 5.3.

Finally, a brief summary is made in section 5.4.

5.1 The proposed ADM CG architecture

The proposed ADMCG architecture for multi-phase clock generation is shown in Fig.
51. The ADMCG consists of four maor modules namely: Phase Detector (PD),
Time-to-Digital Converter (TDC), Digital-Controlled Delay Line (DCDL), and ADMCG
controller.

The DCDL is divided into K equa-delay stages, and all delay stages are controlled by
the same control code. The TDC estimates the period of reference clock and passes it to the

ADMCG controller for selecting the suitable delay range of the DCDL.

Reference DCDL
Clock > _____ #
i Pl 1 PBil1 B A Pl Py

Y

- TDC range[M-1:0],coarse[N-1:0],fine[5:0]

UP

> ADMCG

7 PD DU > Controller

’_, LOCK _

Fig. 5.1: The proposed ADM CG architecture.

The PD detects the phase error between reference clock and the delay line output (Pk.1).

It generates UP and DOWN signal to indicate that the ADMCG controller should decrease or

~ 62 ~

increase the delay time of the DCDL respectively. When phase error between reference clock
and Px.; is less than the dead zone of PD, the LOCK signal is asserted and then multi-phase
clock signals: Py — Px.; are generated.

The delay range problem of conventional DLL is discussed in [12,27,28]. The reason
that the DLL may lock to multiples of reference clock’s period is because only the phase of
delay line output and reference clock is compared. Thus when the delay line has a wide
controllable range, the unpredictable initial delay time of delay line and unknown relationship
among delay line output and reference clock may result in locking to multiples of reference
clock’s period, and hence multi-phase clock generation becomes fail.

Since wrong operating delay range for the delay line and lacking of information for
reference clock’s period is the reason that caused fase-lock, how to dynamically adjust the
delay line's operating range to a suitable range is the challenge for multi-phase clock

generator design.

l System Reset

TDC

Estimate Reference Clock’s Period

/

ADMCG
(Phase Maintaining Mode)

DCDL
Perform Range Selection

Increase delay time
Decrease delay time
of
DCDL

Hold previous state DCDL

LOCK

ADMCG
Increase delay time of DCDL
(Phase Tracking Mode)

Up DOWN

Fig. 5.2: The proposed ADMCG control a gorithm.

Fig. 5.2 describes the proposed ADMCG control algorithm. As discussed in [12,27,28],
to avoid false-lock, the DCDL should always operate under this delay range: 0.5* Tgrer <
Toep < 1.5*Trer, Where Trer means the period of reference clock and Tpcp. means the delay
time of the delay line.

In the proposed ADMCG architecture, the TDC shown in Fig. 5.3 converts the reference
clock’s period information (Trer) into multiples of Range Delay Unit's (RDU’s) delay time.
After TDC encoder, the DCDL range selection control code (range[M-1:0]) is sent to the

ADMCG controller. Then it makes the DCDL firstly operate in this delay range: 0.5* Trer <

TocoL< Trer

PULSE IN
» RDU » RDU » RDU ———p-————— » RDU

¥ A ¥ ¥
viw viw whw) vhw!

(o= [’ o= (ol (o=
|| 5

Referencem { « V/ range[M-1:0]
Clock TDC Encoder '
PULSEIN

Fig. 5.3: The proposed Time-to-Digital Converter (TDC) for multi-clock generator.

After TDC operation, the ADMCG controller enters phase tracking mode, and it
increases the delay time of the DCDL until the residua phase error between reference clock
and Px.; is disgppeared and the PD’s output changes from DOWN to UP (or LOCK is
asserted). Then the ADMCG controller turns into phase maintaining mode, and it decreases

or increases the delay time of the DCDL according to the PD’s UP/DOWN signal

~ B4 ~

respectively.

To speedup the lock-in time, in phase tracking mode, the phase search step is set to half
of one coarse-tuning delay time. But after the ADMCG controller enters phase maintaining
mode, the phase search step is reduced to one fine-tuning step.

Since the proposed ADMCG is not dependent on the relationship among multi-phase
clock signals and it doesn't need to setup a dart-up control to avoid the false-lock, the
proposed design is very robust to Process variations, Voltage variations, and Temperature
variations (PVT variations). Moreover, it is insensitive to the duty-cycle of the reference
clock since only the rising edge of reference clock is used.

The output phase accuracy of the generated multi-phase clock signals is dependent on
the phase resolution of the DCDL and the dead zone of the PD. And the operating frequency
range of the proposed ADMCG is limited by the minimal delay time of the DCDL and the
controllable range of each delay stage.

The proposed DCDL consists of K equal delay stages, and the architecture for one delay
stage is shown in Fig. 5.4. The delay time of one delay stage is controlled by three cascading
sages: range selection stage, coarse-tuning stage, and fine-tuning stage. And they are
controlled by the range selection control code (rangefM-1:0]), coarse-tuning control code
(coarsg[N-1:0]), and fine-tuning control code (fine[5:0]) respectively.

Range selection stage and coarse-tuning stage are implemented using the path selector.
The difference between those two stages is that the RDU has larger delay than the
coarse-tuning delay unit (CDU). The (M,N) parameters are used to adjust the operating range
of the path selector by changing the number of selectable paths in the path selector. And to
improve the phase resolution, the fine-tuning delay cell, which is discussed in section 2.1, is
added after the coarse-tuning stage. In fine-tuning delay cell, it uses the six control bits: (EN1

A1l B1 EN2 A2 B2) to alter the delay time finely.

~ 65 ~

IN Range Coarse-path Fine-tune | OUT
Selection Selection DelayCell

Fig. 5.4: The architecture of one delay stage.

The proposed TDC architecture is shown in Fig. 5.3. In Fig. 5.3, all RDUs are clear to
low after system reset, and in the first reference clock cycle, the TDC's input (PULSE_IN)
persists at high. This high signal will propagate through RDUs. And when the falling edge of
PULSE_IN signa arrives, implying the end of the pulse, the D-Flip/Flops will sample the
current state of each RDU’s output. After the TDC encoder, the reference clock’s period
information (Trer) can be converted into multiples of RDU’s delay time. And the ADMCG
controller uses thisinformation to select a certain range for the DCDL.

The proposed high sensitivity PFD is used in the ADMCG design. The detail
information about the high sensitivity PFD design is discussed in section 2.2. After using the
digital amplifier in PD design, the dead zone of PD can be reduced to 50ps in the target
process.

The ADMCG controller is described using Hardware Description Language (HDL) and

then is synthesized by logic synthesizer. And al function blocks in the proposed ADMCG are

~ 66 ~

cell-based design. Thus the proposed design can be easily ported to different processes with
cell library support. And it can also reduce the design time and design complexity for

multi-phase clock generator design.

5.2ADMCG Test Chip Design

The ADMCG test chip is fabricated on a standard 0.35um 1P4AM CMOS process. To
reduce area and power consumption of the DCDL, the RDU is implemented with delay cells
provided in cell library. In those delay cells, the MOS channel length is longer than normal
cells. Therefore they have an extremely large delay than normal cells. The delay time of one
RDU is 1.6ns (Trpu) in the target process. And the delay time of coarse-tuning delay cell is
0.16ns (Tcpu). After adding the fine-tuning delay cell, the phase resolution of each delay
sage can be improved to 3ps on the average, and the tota controllable range of the
fine-tuning delay cell is0.174ns (Tang).

To avoid large phase jump when path selection of coarse-tuning stage is changed, the
value of Tene must keep larger than or equa to Tcpu. And the total controllable range of
coarse-tuning stage also needs to be larger than Trpy. Thus a 16-to-1 path selector is used in
the coarse-tuning stage (i.e. (16-1)*Tcpu > Trou). After carefully selecting the delay cells of
delay line, the jitter effect caused by the path selector can be minimized and the possibility to
change the path selection can be reduced too.

In the test chip, the proposed ADMCG is applied to design a 7:1 data channel
compression transceiver. The architecture of the transceiver is shown in Fig. 5.5. From design
specifications, the reference clock period (Trer) ranges from 50ns (20MHz) to 11.765ns
(85MHz), and a 7-phase multi-phase clock generator is needed in the transceiver design.
Thus a4-to-1 path selector is used in range selection stage to provide amaximal DCDL delay
time: 50.4ns (= (7*(4-1)* Trpu + 7*(16-1)* Tcpy) larger than Trer.

~ 67 ~

RX

RX DATA
— T/14 DCDL
X '|RX_DATA
DATA[6:0] Parallel to Serial TX_DATA
" Conversion Serial
on o DATA_OUTJ[6:0]
TX_CLK Parallel
. ;
Conversion
Reference
Clock 7-phase
ADMCG RX_CLK 7-phase
ADMCG
CLK_OUT
>
(@) ®)

Fig. 5.5: The proposed 7:1 data channel compression transceiver (a) Transmitter (b) Receiver

The transmitter (TX) and the receiver (RX) are fabricated in the same test chip. And the
transmitter’s outputs. TX_DATA and TX_CLK are sent to the receiver’s inputs: RX_DATA
and RX_CLK repectively. In the transmitter, the generated 7-phase clock signals are used to
transfer 7-bit data (DATA[6:0]) into one data channel (TX_DATA), and the transmitted data's
reference clock (TX_CLK) is aso sent to the receiver. The “TX delay mirror” shown in Fig.
5.5(a) is used to compensate the delay time of parallel-to-serial converter.

The receiver shown in Fig. 5.5(b) recovers received data stream (RX_DATA) back to
original 7-bit data (DATA_OUT][6:0]). The 2-phase ADMCG shown in Fig. 5.5(b) is used to
estimate the accurate delay of Tgrer/14. It digns two adjacent phases of the 7-phase
ADMCG's outputs (i.e. Ps and Po) to measure the Trer/14 delay, and the received data stream
will firstly be delayed by Tre/14 and then sampled by 7-phase multi-phase clock signals.
Thus those multi-phase clock signals can sample the received data stream in the center of bit
symbol boundary, and this maximizes the timing margin of the receiver circuit.

Since the RX_CLK may not have 50% duty cycle, the inverse of multi-phase clock

sgnals cannot be directly applied to sample the received data stream. Thus to make a robust

receiver, the 2-phase ADMCG is necessary for the proposed receiver circuit design.

5.3 Experimental Resultsfor the ADM CG Test Chip

Fig. 5.6 shows the post-layout simulation waveform of the proposed ADMCG. To make
aure that the proposed design would not cause a falure with a noisy reference clock, an
85MHz noisy reference clock (P«-Px jitter: £500ps) is used in this simulation. After system
reset (i.e. PDWN=1), the TDC measures the period of the reference clock, and makes the
DCDL operate in a suitable delay range (i.e. 0.5* Trer < TpepL< Trer). Then the ADMCG
controller continues fine-tuning the output phase accuracy with PD’s UP/DOWN signal. And
when the phase error between delay line's output (PHASE[6]) and reference clock (CLK _IN)

is minimized, the multi-phase clock generation is completed.

PDWN 1
TH_range[1:0] 3 1] " 3
TK_coarse[3:0] 14 15
TH_fine([5:0] 61 63
wol 1/
mcen [of T || | T || | |
men| o) [] i —
PHASE[2] 0 J I | I | I_
PHASE[3] 1 | | I | | I [
PHASE[4] 1 J I | | [|
PHASE(S) 1 ‘ | | J I L
weno| o] | I By 1 S
B TDC Operation B Range Selection= “ Phase Tracking

Fig. 5.6: The transient response of the ADMCG (at 85M Hz)

The worst-case lock-in time of the proposed ADMCG, in terms of reference clock cycles,

is equal to TUPDATE*(TTDC+(PCOARSE'1)*2), where TUPDATE means the ADMCG controller

update interval, Ttpc means the TDC operation time, and Pcoarss Means total paths in
coarse-tuning stage.

To make sure that the previous update of DCDL control code takes effects on delay
line's output, the ADMCG controller cannot update the DCDL control code a every cycle.
Hence the Tuppare is chosen as 4. And TDC only needs one clock cycle to estimate the
reference clock’s period. Therefore the total lock-in time for the 7-phase ADMCG is < 124

(=4*(1+(16-1)*2) reference clock cycles.

RCLE u I r
PHASE [0] 1 I I
PHASE[1] 1 I I
PHASE[2] 1 _I I I
PHASE [3] [1] I I
PHASE [4] 0 I I
PHASE[S] 0 I I
PHASE [6] 1 I I r
RA_DATA 1] I 0 I 1 I 0 I 1 1 l 0
INT_RA_DATA 0 I I I I I
—»] Trer
14

Fig 5.7: The post-layout simulation of the receiver (at 85MHz)

Fig. 5.7 shows the operation of the receiver. In the receiver, the 7-phase ADMCG
generates 7-phase multi-phase clock signals (PHASE[6:0]) from the data’s reference clock
(RCLK). After ADMCG is locked, the 2-phased ADMCG estimates the Trer/14 delay and
then the received data stream (RA_DATA) is delayed by Tre</14, which is aso shown in Fig.
5.7 as INT_RA_DATA. As a reault, the receiver can directly use the generated multi-phase
clock signals to sample the delayed received data stream (INT_RA_DATA) in the center of

bit symbol boundary and achieves a maximal timing margin in the receiver circuit.

~ 70 ~

PHASE[6] ~ PHASE[(] PHASE[0] PHASE][1]

/ Reading Flopfy Disk Orive
0

Reading Flopgs/Disk Drive

B1Bns 1.8V | 18ns 1.BBY] .2ns 412w Blons loav 1 10ns 108V]

1
11453 sweeps: sversge low high sigme 11654 sweeps: sversge low high sigme
Freq(2) NN 32.0038 MHz 31.7947 32.3118 ©.2235 Freqi2) NN 32.0055 MHz 31.7126 32.2967 ©.2356
adlyt2, 17 4.4Tns 4.89 4.78 9.23 adly(2.1) 4.48 ns 4.31 4.68 8.12
rmsif) 146 ps 189 138 11 rmsif) 154 ps 189 172 12
pkpk (R) 8.29 ns 8.2z 8.38 8.8z pkpk (R 8.3l ns B.25 8.36 N
pkpk (2) 36TV 3.563 3.78 8.82 pkpk (2 N 3.59 3.81 8.82
RUTD AUTD
(@) (b)

Fig. 5.8: Measured multi-phase clock signals (at 32MHz).

Fig. 5.8 shows the measured multi-phase clock signals with noisy digital circuitry (=
600mVpp supply noise). The reference clock is 32MHz oscillator with root-mean-square
(rms) jitter: 79ps and Px-Px jitter: 180ps.

Due to the limitations of digital scope, only two data channels can be displayed
smultaneoudly. Therefore PHASE[6] and PHASE[0] are shown in Fig. 5.8(a), and PHASE[0]
and PHASE[1] are shown in Fig. 5.8(b).

The long-term Px-Px jitter histogram of output multi-phase clock signals and the
measured delay time between two adjacent phases are also shown. Ideally, two adjacent
phases should be 4.464ns (=(1/32MHz)/7) apart, and the measured results show that the
maximum error is less than 0.36% (=(4.48nSpHase[0] ~ PHASETL)) — 4.464NS(1dea)))/4.464NS). And
the long-term rms jitter and P«-Px jitter of ADMCG’'s output are 154ps and 310ps
respectively.

A repetition data stream “10101010...”" is applied to the transmitter where the
transmitted data (TX_DATA) have a transition at every rising edge of multi-phase clock

sgnals. Thistest pattern is used to measure the output data jitter and check the stability of the

ADMCG's output. Thus the transmitted data looks like a clock signal and its frequency is 3.5
(=7/2) times higher than the reference clock. Fig. 5.9 shows the measured long-term Pg-Px
jitter histogram of the transmitted data. By chip measurement, the transmitted data's rms jitter

and Px-Px jitter is 254ps and 670ps respectively.

Reading Floppy Disk Drive

T 0 0 W A O W P O A
|] A Y Y A Y I A [\
] I O VY T 5 O O
| | I A S L Y
L L Pt iy iy iy
PV AW N N VS BV AN LV IR N 19
D
W 18 ns B.50 W M .1ns 3604
35774 suweeps: awverage law high sigma
Freg(2) 112.812 MHz 106.092 118.258 2.424
duty@lvi2) 2.2 X E8.3 67.4 1.6
rms ([254 ps 213 324 14
pkpk CAY B.67 ns b.58 .87 0.a3
pkpk (23 3.388 V 3.328 3.453 0.017
O AuTo

Fig. 5.9: Measured long-term jitter histogram of the transmitted data (at 32M Hz).

Since the ADMCG needs to continue tracking the phase of the reference clock, jitter of
the reference clock will influence the measurement for the output jitter of the ADMCG and
the transmitted data jitter.

Tota gate count of the transmitter and the receiver is 7343 and 9683 respectively, where
the gate count of the 7-phase ADMCG is 7203. Power consumption of the transmitter is
17.3mW at 20MHz and 75.1mW at 85M Hz. Power consumption of the receiver is 23.6mW at
20MHz and 85.5mW at 85MHz. Fig. 5.10 shows microphotograph of the test chip. And the
core area of the test chip is 1380 pm x 1380 pm.

Jopyusue.I I

REYNCRENE

Fig. 5.10: Microphotograph of the ADM CG test chip.

5.4 Summary

In this chapter, an dl-digital cell-based multi-phase clock generator is presented. The
proposed ADM CG can overcome the false-lock problem in conventional designs. And in test
chip, the ADMCG is applied to design a 7:1 data channel compression transceiver. The test
chip shows that the proposed ADMCG has a wide frequency range (20-85MHz) and very
robust to PVT variations and reference clock jitter. The proposed ADMCG can reduce both
design time and circuit complexity. Therefore it is very suitable for many digital

communication applications.

Chapter 6
Automated Synthesis of ADPLL, ADDLL,

and ADMCG for SoC Applications

In this chapter, an automated synthesis design methodology for ADPLL/ADDLL
/ADMCG is presented. In SoC design, the design time for each module is restricted. Thus
each module should better be a reusable design so that the total design time for the SoC can
be reduced. However, for different applications, the ADPLL/ADDLL/ADMCG may have
different operating ranges or different lock-in time requirements, making it hard to design
one ADPLL/ADDLL/ADMCG suitable for dl applications. As a result, it often needs to
redesign the ADPLL/ADDLL/ADMCG for target application and resulting longer design
phase.

Due to well-developed cell libraries and logic synthesis tools, most logic or agorithmic
operations, such as additions, multiplications, can easily be created using Hardware
Description Language (HDL) with logic synthesizer. Thus if the ADPLL/ADDLL/ADMCG
can also be automatic generated using standard cells from the cell-library, it can greatly
reduce the design time and the design complexity for the ADPLL/ADDLL/ADMCG, and

aso has the best portability for different processes.

~ 74 ~

An EDA tool for clock synthesis PLL generation is proposed in [44] to simplify and
accelerate all tasks associated with the design and deployment of high performance clock
synthesis PLLs. But the proposed approach [44] is to provide a compiled analog PLL.
Therefore it takes extra time to redesign analog circuits and do some custom layouts before
the PLL compiler can be used. So if the ADPLL/ADDLL/ADMCG can be generated just
using standard cells, users can quickly build up their ADPLL/ADDLL/ADMCG in a short
time. And thisisthe god for this research.

In this chapter, the proposed automated synthesis methodology provides a guideline to
take user oecifications, such as output clock range, lock-in time, and so on to build up the
suitable architecture for ADPLL/ADDLL/ADMCG design. The proposed flexible ADPLL/
ADDLL/ADMCG architecture can be easily modified to fit different applications.

As aresult, the proposed methodology uses both benefit of digital VLSI and cell-based
design to build up the user-specified ADPLL/ADDLL/ADMCG in a short time, and reduces
the design time and the design complexity of ADPLL/ADDLL/ADMCG, making it very
suitable for System-On-Chip (SoC) applications.

This chapter is arranged as follows. section 6.1 describes the automated ADPLL
synthesis flow. And the test chip measurement results are a'so shown in this section. Section
6.2 describes the automated ADDLL synthesis flow. Section 6.3 describes the automated

ADMCG synthesis flow. Finally, a brief summary is made in section 6.4.

6.1 Automated ADPLL Synthesis

6.1.1 Cell Library Data Preparation

In chapter 3, most portions of the proposed ADPLL functional blocks can be described
with behavior Hardware Description Language (HDL) code. And logic synthesizer is used to
synthesize those behavior HDL codes to the gate-level HDL code. However, due to the

~ 75 ~

limitations of the gate-delay model, the resolution of the DCO and the dead zone of the PFD
can only be determined by SPICE circuit simulation. As a result, before the automated
ADPLL synthesis flow can be used, the fine-tuning delay cell of the DCO and the PFD must
be redesigned for the target cell library.

In section 2.1, the proposed fine-tuning delay cell of the DCO is created using standard
cells. After SPICE circuit simulation, the lookup table for control the fine-tuning delay cell is
created, and the resolution of the fine-tuning delay cell can then be determined. And the
delay time of the coarse-tuning delay cell can also be determined from SPICE circuit
smulation. The ring delay line of the TDC is a copied architecture from the DCO, 0 it can
just mirror the architecture of the DCO with some reductions.

The design of the PFD is to select suitable standard cells to improve the sensitivity of
the PFD (i.e. reduce the dead zone of the PFD). Since the sensitivity of the PFD is maor
determined by the digital pulse amplifier, thus the stage numbers of the digital pulse
amplifier must be decided after SPICE circuit simulation.

After the fine-tuning delay cell of DCO and the PFD are created and the suitable
coarse-tuning delay cell is selected from the cell library, the gate-level HDL code of the
fine-tuning delay cell and the PFD is ready for the ADPLL architecture compiler. And the
timing information of those modules can be supplied to the ADPLL architecture compiler to
build up the suitable ADPLL architecture.

For different cell libraries, the design for the fine-tuning delay cell and the PFD must be
performed once. And then the ADPLL architecture compiler can be used to build up the

whole ADPLL circuit for different design specifications based on the current cell library.

6.1.2 ADPLL Architecture Compiler

The mgjor design specifications for the ADPLL design are listed in table 6.1. The

~ 76 ~

ADPLL architecture compiler takes those specifications as the design parameters for

choosing a suitable ADPLL architecture. Then it generates the HDL code for ADPLL design.

Table6.1: The ADPLL SPECIFICATIONS

Parameter Description

1 Target Process Target Foundry Process

2 Reference Clock (MHz) Min. and Max. required reference clock
frequency

3 Output Clock (MHZz) Min. and Max. required output clock
frequency

4 Programmable Input and Feedback Max. divide ratios for input and feedback

Divider divider
5 Lock-in time (# cycle) Max. reguired lock-in time

The ADPLL output frequency range is determined by the DCO. The DCO'’s output
clock period can be expressed as Eq. 6.1.

PERIOD_MAX= PERIOD_MIN + COARSE_UNIT*Ncoarse (Eq. 6.1)
where the PERIOD_MIN and PERIOD_MAX denote that the minimum and maximum clock
period of the DCO. The N iS the number of coarse-tuning delay cells used in
coarse-tuning path selector, and the step size for DCO coarse-tuning is denoted as
COARSE_UNIT. The delay time of the PERIOD_ MIN comes from the gate delay of
coarse-tuning path selector, fine-tuning delay cell and the reset stage.

The value of PERIOD_MIN and COARSE_UNIT can be gained from the cell library
timing information. And when the output clock range is specified, the needed coarse-tuning
delay cells (Neoarss) t0 cover the required output frequency range can be calculated from Eq.
6.1.

When the number of coarse-tuning delay cells (Neoase) IS determined, then the
worst-case lock-in time in term of reference clock cycles for a binary search ADPLL
controller can be calculated (see section 3.3.2). If the lock-in time of the binary search

ADPLL controller doesn’t meet the lock-in time specification, the TDC module is inserted to

~ 77 ~

reduce the ADPLL’slock-in time.

The bit width for the TDC counter and the TDC digital processing unit are determined
by the maximum reference clock period. After the reference clock range is specified, the bit
width must be large enough to avoid overflow inthe TDC counter.

The OUTPUT DCO is removed from the ADPLL circuit if only in-phase clock
multiplier is needed. And the maximum divide ratios for input and feedback divider
determine the counter bits of frequency divider.

The minimum reference clock period is used to setup the synthesis constraints for
ADPLL controller. Since the ADPLL controller updates the DCO control code at reference
clock rate. Thus the ADPLL controller needs to run at reference clock speed. Similarly, the
frequency divider should work at maximum output clock speed.

The ADPLL architecture compiler builds up the behavior HDL code of the ADPLL
controller and the frequency divider and also generates the synthesis constraints, so that the
logic synthesizer can create the gate-level circuit to meet the timing requirements. The
gate-level code of the DCO, the PFD, and the ring delay line of the TDC is generated by the
ADPLL architecture compiler. And those modules link with other modules, which are

synthesized by logic synthesizer, to generate the final gate-level HDL code.

6.1.3 Automated ADPLL Synthess Flow

The proposed automated ADPLL synthesis flow is shown in Fig. 6.1. The design
specifications and the cell library information are the inputs for the ADPLL architecture
compiler.

The ADPLL architecture compiler builds up a suitable architecture to meet the design
specifications and then generate the behavior HDL code and synthesis congraints for the

logic synthesizer. For the timing critical modules such as. DCO and PFD, gate-level HDL

~ 78 ~

code is directly generated.

In the proposed DCO architecture, path selector architecture is used to minimize the
intrinsic delay time of the DCO, and it can increase the maximum operating frequency of the
DCO. For deep-submicron processes, such as 0.18um CMOS process, the interconnection

RC has large influences on the performance of timing critical modules.

Design Specifications Accept Design Constraints
Li J L
Cell Library o ADPLL Generate Behavior HDL code
Information ~ | Architecture Compiler and Synthesizer Constraints

Logic Synthesis Build up Gate-Level

HDL Code
Timing Critical Modules |
ADPLL Module Compiler and
Module Compiler Non-Timing P&R constraints
Critical Modules
; \i
Auto P&R Auto Placement and Routing
ADPLL Final Layout

GDS-II Layout

Fig. 6.1: The proposed automated ADPLL synthesis flow.

The interconnection RC effects are illustrated in Fig. 6.2. In path selector architecture,
the coarse-tuning stage of the DCO provides different delay times by selecting different
numbers of delay cell in the delay path. Thus if the time constant R;C; is much larger than
R»C,, which means the delay time from node D1 to path selector output is much larger than

the delay time from node D2 to path selector output, the monotonic response of the DCO

~ 79 ~

may be disappear.

;ENI L N2

VVWA
L
C,~ R
I

"Path Selector
Output

Fig. 6.2: The interconnection RC effects.

Thus the layout of the DCO and the TDC should better be manually placed and routed
to minimize and balance the parasitic RC effects. But for 0.35um CMOS process, since the
performance of the DCO and TDC is not dominated by interconnection RC effects. They can
be random placed and routed by APR tools with maximum occupied area constraints.

In Fig. 6.1, the ADPLL module compiler is used to generate the layout for the timing
critical modules, and then the APR tools are used to complete the final layout of the ADPLL.
For the other non-timing critical modules, the timing-driven P&R flow is used to meet the
timing constraints. Timing constraints for those modules are translated from the logic
synthesizer.

In the proposed automated ADPLL synthesis flow, the SPICE simulation for the
fine-tuning delay cell and the PFD are needed. Then the ADPLL architecture compiler can
use cell library information to generate the gate-level HDL code of the ADPLL. The layout

of timing critical modules is generated by ADPLL module compiler, and final layout is

~ 80 ~

finished by APR tools. By the proposed automated synthesis flow, the design for the ADPLL

can be finished in avery short time.

6.1.4 Implementations Results

The proposed ADPLL is implemented with standard 0.35um, 0.25um, and 0.18um
CMOS process. Table 6.2 lists the DCO output frequency range for different processes. The
coarse-bit means the bit width of coarse-tuning control code. For example, coarse bit=6
means there are 64 (=2° paths in the DCO’s coarse-tuning stage. The maximum operating
frequency is dependent on the gate delay of the cell libraries. And the minimum operating
frequency is dependent on how many coarse-tuning delay cells are used in DCO’'s

coarse-tuning stage.

Table6.2: DCO OUTPUT FREQUENCY RANGE FOR DIFFERENT PROCESSES

DCO DCO Output Freqguency Range (unit: MHZz)
architecture 0.35 pm 0.25 pm 0.18 pm
coar se_bit Min. M ax. Min. M ax. Min. M ax.
4 136.054 571.429 166.774 424.809 281.178 746.454
5 077.220 571.429 103.753 424.809 173.212 746.454
6 041.408 571.429 059.093 424.809 097.973 746.454
7 021.482 571.429 031.755 424.809 052.427 746.454

Table6.3: ADPLL AREA INFORMATION FOR DIFFERENT PROCESSES

DCO ADPLL Chip Area (unit: pm?
architecture 0.35 um 0.25 pm 0.18 pm
coarse bit Gate Count Area Gate Count Area Gate Count Area
4 4280 258185 3621 78676 4058 51642
5 4827 296205 4036 87967 4662 58393
6 5915 361286 5138 112860 6136 77258
7 8160 503071 6087 134542 7726 98345

Table 6.3 lists the ADPLL area information for different processes. The listed area

information is not including the TDC module. This area information is the core area for the

~ 81 ~

ADPLL circuits after placement and routing. Increasing the coarse bit may increase the
frequency operating range of the ADPLL, but the area cost for the ADPLL is also increased
too.

For the same DCO architecture in different processes, the gate-count of the ADPLL is
amog the same. But the area of the ADPLL implemented in 0.18um process is much
smaller than the ADPLL implemented in 0.35um or 0.25um process.

If the TDC module is included in the ADPLL circuit, the extra gate count 2813 is
needed for the TDC circuit. This large area cost of the TDC mainly comes from the TDC

digital processing unit, which needs a divider to caculate Eq. 3.7.

ADPLL Power Consumption

200.00

181.656
180.00 A
160.00
135.072
140.00 /D’
< 120.00
E 05.300 ——0.35um
5 100 /D, 0.25um
z —0—
£ 80.00 X 0180
60.00 49;@
40.00 .
13.789 18.469
20.00 6.741 o
0.00 X=5136 ~F39% 9.776
100 200 300 400

Output Frequency (MHz)

Fig. 6.3: Power Consumption of the ADPLL for different processes.

Fig. 6.3 shows the power consumption of the proposed ADPLL at different output
frequencies. In this figure, the coarse_bit for the DCO architecture is 6. Since the parasitic
capacitances and supply voltage are both reduced in 0.18um process, the power consumption
of the ADPLL implemented in 0.18um process is much smaler than the ADPLL

~ 82 ~

implemented in 0.35um or 0.25um process. It shows that in 0.18um process, the maximum

power consumption is 9.776 mW (at 400M Hz)

6.1.5 Test Chip Measurement Results

Controller| QUTPUT
DCO

Loop
Filter| INNER

e DCO
il [T

Fig. 6.4: Microphotograph of the ADPLL (UMC 0.18um).

Fig. 6.4 shows microphotograph of one ADPLL test chip for automated ADPLL
synthesis flow. This test chip is fabricated on a standard 0.18um CMOS 1P6M process. The
core area of this test chip is 567um x 567um. The ADPLL design specifications and the
ADPLL architecture compiler synthesis parameters are listsin table 6.4.

Fig. 6.5 shows the measured long-term Px-Px jitter histogram of the in-phase clock
output (OUT_CLK). In this figure, the noisy reference clock is 36MHz (rms jitter: 60ps,
Px-Px jitter: 160ps), and M=4, N=1. Thus the output frequency should be 144MHz

(=36MHz*4). The long-term rms jitter and P«-Px jitter for the in-phase clock multiplier

applications are 169ps and 440ps respectively.

Table6.4: The ADPLL TEST CHIP SPECIFICATIONS

Parameter Description
1 Target Process UMC 0.18um 1P6M Logic
2 Reference Clock (MHZz) 1kHz-50M Hz
3 Output Clock (MHZz) 52MHz-746M Hz
4 Programmable Input and Feedback M 1ex=16383, Nmax=8
Divider
5 Lock-in time (# cycle) <50
6 coarse_hit 7
7 Automated ADPLL Synthesistime 229 sec
Reference Clock Output Clock
Readi%pg Disk Drive /
| P I 4 i
L3 1} JAR \ P e e '
L VI AT [Al {9 Iy A7 |\ [\]
A N[il I I A |
B | ¥ ol N/ L x I W 4 X H
et i ¢ T i W = { \[]]
b / _/ i B X / _A
5—7"='= | !
2 5ns 8.5V [|] 5nsB8.50V [] .2ns 22.4#
155332 sweeps: average low high sigmas
Freq(2) nn 143.786 MHz 130.313 150.943 2.377
duty@lv(2) 49.6 % 38.2 B1.8 1.2
rms (f) 169 ps 35 395 32
pkpk () B.44 ns B.18 1.21 B.18
pkpk (2) 3.283 V 3.894 3.438 B.842
AUTO

Fig. 6.5: Measured long-term jitter histogram of in-phase clock output (at 144MHz).

Since the clock multiplier needs to continue tracking the phase of the reference clock,
thus the jitter of the reference clock will influence the measurement for the output jitter of
the ADPLL. And it can be shown that after ADPLL is locked, the output clock phase is

aigned with the rising edge of the reference clock.

~ 84 ~

Fig. 6.6 shows the measured long-term Px-Px jitter histogram of the average clock
output (AVG_CLK). In this figure, the reference clock is 10.1 kHz, and M=16383, N=L1.
Thus the output frequency should be 163.99MHz (=10.1 kHz * 16383). The long-term rms
jitter and Py-Py jitter for frequency synthesis applications are 32ps and 90ps respectively. In
frequency synthesis applications, the loop filter can filter out the resultant noise into the
OUTPUT DCO, thus the jitter performance can be improved. In this chip measurement, a
very high divide ratio: 16383 is used. The measurement results show that the ADPLL can

till work at very high divide ratio.

Reading Floppy Disk Drive

(Y Fy 190 7 A Py 1w T rel o
T 1T] &l ¢

i
|
LH"“‘"%_._
| —1
]
==
| —
]
|~
]
L~
i
L~
=
=]

|
B 5nsz0.50Y M -1 ns 255 #

441642 sweeps: awerage low high sigma
Freqt2) NN 166.742 MHz 144.327 180.156 2.412
duty@lvi2) 49.6 % 34.5 61.8 1.5
rms (A 32 ps 2 292 13
pkpk R 0.09 ns .o ©.91 o4
pkpk (2 3.281 W 2,806 3.531 0.A@35

AUTO

Fig. 6.6: Measured long-term jitter histogram of average clock output (at 166MHz).

6.1.6 Summary

In section 6.1, an automated ADPLL synthesis methodology is presented. The proposed

synthesis methodology provides the guidelines for ADPLL design. And the proposed

ADPLL architecture is also very flexible and easy to be modified to meet different
specifications. The proposed ADPLL is implemented with standard cells, and the
implementations for standard 0.35um/ 0.25um/ 0.18um CMOS processes are also shown in
this section. From the chip measurement results, it shows that the proposed ADPLL can be

used in various gopplications, and it has better portability than the other designs,

6.2 Automated ADDLL Synthesis

6.2.1 Cell Library Data Preparation

In the proposed ADDLL architecture (see chapter 4), the proposed ADDLL architecture
is a cell-based design, and it can be automated synthesized. But due to the limitations of the
gate-delay model, the resolution of the DCDL and the dead zone of the PFD can only be
determined by SPICE circuit simulation. Thus the fine-tuning delay cell of the DCDL and
the PFD must be redesigned for the target cell library.

In section 4.4, the proposed fine-tuning delay cell for DCDL design is created using
gandard cells. After SPICE circuit simulation, fast delay and slow delay of the fine-tuning
delay cell can be determined, thus the phase resolution of the DCDL is determined. And
delay time of the coarse-tuning delay cell can aso be determined from SPICE circuit
smulation.

Two phase detectors (PD) ae used in the proposed ADDLL architecture. The
coarse-tuning PD can be described using behavior HDL code and then synthesized to the
gate-level HDL code. And the design for the fine-tuning PD is discussed in section 2.2.

After the fine-tuning delay cell of DCDL and the fine-tuning PD are created and the
suitable coarse-tuning delay cell is selected from the cell library, the gate-level HDL code of

the fine-tuning delay cell and the fine-tuning PD is ready for the ADDLL architecture

~ 86 ~

compiler. And the timing information of those modules can be supplied to the ADDLL
architecture compiler to build up the suitable ADDLL architecture.

For different cell libraries, the design for the fine-tuning delay cell and the fine-tuning
PD must be performed once. And then the ADDLL architecture compiler can be used to
build up the whole ADDLL circuit for different design specifications based on the current

cell library.

6.2.2 ADDL L Architecture Compiler

The major design specifications for the ADDLL design are listed in table 6.5. The
ADDLL architecture compiler takes those specifications as the design parameters for
choosing a suitable ADDLL architecture. Then it generates the HDL code for ADDLL

design.

Table6.5: The ADDLL SPECIFICATIONS

Parameter Description
1 Target Process Target Foundry Process
2 Reference Clock (MHz) Min. and Max. required reference clock
frequency
3 External buffer delay (psec) Max. delay time of external buffer tree
4 Phase error (psec) Max. phase error after DLL islocked
5 Lock-in time (# cycle) Max. reguired lock-in time

The ADDLL frequency operating range is determined by the DCDL. The DCDL’s
operating range can be expressed as Eq. 6.2.

DELAY _MAX= DELAY_MIN + DLL_COARSE_UNIT*Ng_coarse (Eq. 6.2)
where the DELAY_MIN and DELAY_MAX denote that the minimum and maximum delay
time which DCDL can provide. The Nai_coarse iS the number of coarse-tuning delay cells used
in coarse-tuning path selector, and the step size for DCDL coarse-tuning is denoted as

DLL_COARSE_UNIT. The delay time of the DELAY_MIN comes from the gate delay of

~ 87 ~

coarse-tuning path selector and the intrinsic delay time of fine-tuning delay cell.

The value of DELAY_MIN and DLL_COARSE_UNIT can be gained from the cell
library timing information. And when the operating frequency range is specified, the needed
coarse-tuning delay cells (Nai_coarse) t0 COver the required delay range can be calculated from
Eg. 6.2.

In the proposed ADDLL architecture, the TDC is used to reduce the lock-in time of the
DLL. However, when the lock-in time is not a critical design issue, the TDC can be removed
from the architecture, and the shift-register controlled ADDLL controller can be used to
reduce the area cost of the ADDLL.

The minimum reference clock period and the maximum extra buffer delay are used to
setup the synthesis constraints for ADDLL controller. The ADDLL controller can not update
the DCDL control code a every cycle. It needs to wait for the response time of the DCDL
and the delay time of the extra buffers. Thus the ADDLL architecture compiler takes those
constraints to determine the update period of the ADDLL controller.

In the proposed ADDLL architecture, two PDs are used to minimize the phase error
after the DLL is locked. If the requirement for the phase error can be achieved by just using
coarse-tuning PD, the fine-tuning PD is removed from the architecture to reduce the area cost
of the ADDLL.

The ADDLL architecture compiler builds up the behavior HDL code of the ADDLL
controller and also generates the synthesis constraints, so that the logic synthesizer can create
the gate-level circuit to meet the timing requirements. The gate-level code of the DCDL, and
the fine-tuning PD are generated by the ADDLL architecture compiler. And those modules
link with other modules, which are synthesized by logic synthesizer, to generate the final

gate-level HDL code.

6.2.3 Automated ADDLL Synthesis Flow

The proposed automated ADDLL synthesisflow is very similar to the ADPLL synthesis
flow as discussed in section 6.1.3. The difference is that the ADDLL architecture compiler
and the ADDLL module compiler isused in the automated synthesis flow.

The design specifications and the cell library information are the inputs for the ADDLL
architecture compiler. The ADDLL architecture compiler builds up a suitable architecture to
meet the design specifications and then generate the behavior HDL code and synthesis
congtraints for the logic synthesizer. For the timing critical modules such as. DCDL and
fine-tuning PD, gate-level HDL codeis directly generated.

Due to the interconnection RC effects as discussed in section 6.1.3, the layout of the
DCDL should better be manudly placed and routed to minimize and balance the parasitic
RC effects. But for 0.35um CMOS process, since the performance of the DCDL is not
dominated by interconnection RC effects. They can be random placed and routed by APR
tools with maximum occupied area constraints.

The layout for the timing critical modules is generated by ADDLL module compiler,
and then the APR tools are used to complete the final layout of the ADDLL. For the other
non-timing critical modules, the timing-driven P&R flow is used to meet the timing
constraints. Timing constraints for those modules are trand ated from the logic synthesizer.

In the proposed automated ADDLL synthesis flow, the SPICE simulation for the
fine-tuning delay cell and the fine-tuning PD are needed. Then the ADDLL architecture
compiler can use cell library information to generate the gate-level HDL code of the ADDLL.
The layout of timing critical modules is generated by ADDLL module compiler, and final
layout is finished by APR tools. By the proposed automated synthesis flow, the design for

the ADDLL can befinished in a very short time.

~ 89 ~

6.3 Automated ADM CG Synthesis

6.3.1 Cell Library Data Preparation

The proposed ADMCG architecture (see chapter 5) is a DLL-based architecture. Thus
the needed cell library datainformation is amost the same with automated ADDLL synthesis
flow discussed in section 6.2.1. The difference is that the range selection delay cell must be
determined first then the suitable coarse-tuning delay cell is selected from the cell library.

After the fine-tuning delay cell of DCDL and the fine-tuning PD are created and the
suitable range selection delay cell and coarse-tuning delay cell are selected from the cell
library, the gate-level HDL code of the fine-tuning delay cell and the fine-tuning PD is ready
for the ADMCG architecture compiler. And the timing information of those modules can be
supplied to the ADMCG architecture compiler to build up the suitable ADM CG architecture.

For different cel libraries, the design for the fine-tuning delay cell and the fine-tuning
PD must be performed once. And then the ADMCG architecture compiler can be used to
build up the whole ADMCG circuit for different design specifications based on the current

cell library.

6.3.2 ADMCG Architecture Compiler

The major design specifications for the ADMCG design are listed in table 6.6. The
ADMCG architecture compiler takes those specifications as the design parameters for
choosing a suitable ADMCG architecture. Then it generates the HDL code for ADMCG
design.

The ADMCG freguency operating range is determined by the DCDL’s range selection
stage. The DCDL’s operating range can be expressed as Eq. 6.3.

DLINE_MAX= (DLINE_MIN + RANGE _UNIT*Ngj_range)* Phase_Number (Eq. 6.3)

~ 90 ~

where DLINE_MIN denotes that the minimum delay time in each delay stage, and
DLINE_MAX denotes the max delay time which the total DCDL can provide. The Ng_range
is the number of range selection delay cells used in range sel ection path selector, and the step
size for DCDL range selection is denoted as RANGE _UNIT. DELAY _MIN comes from the
gate delay of range selection path selector, coarse-tuning path selector, and minimum delay
time of fine-tuning delay cell. And since each delay stage is controlled by the same control
code, thus the total delay time of the DCDL isthe delay time of each stage multiplies by the

phase number of multi-phase clock signas.

Table6.6: The ADMCG SPECIFICATIONS

Parameter Description
1 Target Process Target Foundry Process
2 Reference Clock (MHz) Min. and Max. required reference clock
frequency
3 Multi-Phase number Number of multi-phase clock signals
4 Phase Accuracy (psec) Phase error in each multi-phase clock
signals
5 Lock-in time (# cycle) Max. required lock-in time

The value of DLINE_MIN and RANGE_UNIT can be gained from the cell library
timing information. And when the operating frequency range is specified, the needed range
selection delay cells (Nai_range) t0 cover the required delay range can be calculated from Eq.
6.3.

In the proposed ADMCG architecture, the TDC is used to calculate the suitable delay
range of the DCDL and avoid the false-lock problem as mentioned in section 5.1. However,
when the lock-in time is not a critical design issue, the TDC can be removed from the
architecture, and the shift-register controlled ADMCG controller can be used to reduce the
area cost of the ADMCG.

The minimum reference clock period are used to setup the synthesis constraints for

~ 91 ~

ADMCG controller. Since the ADMCG controller updates the DCDL control code at
reference clock rate. Thus the ADPLL controller needs to run at reference clock speed.

The ADMCG architecture compiler builds up the behavior HDL code of the ADMCG
controller and also generates the synthesis constraints, so that the logic synthesizer can create
the gate-level circuit to meet the timing requirements. The gate-level code of the DCDL, and
the fine-tuning PD are generated by the ADMCG architecture compiler. And those modules
link with other modules, which are synthesized by logic synthesizer, to generate the final
gate-level HDL code.

In the ADMCG architecture, since the last phase is connected to the phase detector and
internal control circuits, thus the loading in the last phase is different from the other phases.
To improve the phase accuracy in multi-phase clock generation, the loading in each phase
must be balanced. Thus after the gate-level HDL code of the ADMCG is generated by the
logic synthesizer, the ADMCG architecture compiler will find out the loading cells of the last
phase and add those loading cells to the other phases as dummy loads for balance the loading

effects.

6.3.3 Automated ADMCG Synthesis Flow

The proposed automated ADMCG synthesis flow is very similar to the ADPLL
synthesis flow as discussed in section 6.1.3. The difference is that the ADMCG architecture
compiler and the ADM CG module compiler is used in the automated synthesis flow.

The design specifications and the cell library information are the inputs for the ADMCG
architecture compiler. The ADMCG architecture compiler builds up a suitable architecture to
meet the design specifications and then generate the behavior HDL code and synthesis
constraints for the logic synthesizer. For the timing critical modules such as: DCDL and

fine-tuning PD, gate-level HDL code is directly generated.

~ 92 ~

Due to the interconnection RC effects as discussed in section 6.1.3, the layout of the
DCDL should better be manudly placed and routed to minimize and balance the parasitic
RC effects. But for 0.35um CMOS process, since the performance of the DCDL is not
dominated by interconnection RC effects. They can be random placed and routed by APR
tools with maximum occupied area constraints.

The layout for the timing critical modules is generated by ADMCG module compiler,
and then the APR tools are used to complete the final layout of the ADMCG. For the other
non-timing critical modules, the timing-driven P&R flow is used to meet the timing
constraints. Timing constraints for those modules are trand ated from the logic synthesizer.

In the proposed automated ADMCG synthesis flow, the SPICE simulation for the
fine-tuning delay cell and the fine-tuning PD are needed. Then the ADMCG architecture
compiler can use cell library information to generate the gate-level HDL code of the
ADMCG. The layout of timing critical modules is generated by ADMCG module compiler,
and final layout is finished by APR tools. By the proposed automated synthesis flow, the

design for the ADDLL can be finished in avery short time.

6.4 SUummary

In this chapter, an automated ADPLL/ADDLL/ADMCG synthesis flow is presented.
The proposed design methodology provides the guidelines for ADPLL/ADDLL/ADMCG
design. And the proposed automated synthesis flow provides a fast way to build up the
ADPLL/ADDLL/ADMCG for different target applications. The proposed automated
synthesis flow reduces design time for ADPLL/ADDLL/ADMCG design. Thereforeit isvery

suitable for SoC applications.

~ 03 ~

Chapter 7

Conclusions and FutureWorks

In this dissertation, we have proposed the solutions to build up a high performance
cell-based ADPLL/ADDLL/ADMCG for practical systems. The proposed binary search or
TDC-based ADPLL can achieve fast locking time. And the proposed loop filter with two
DCOs architecture can improve the jitter performance of ADPLL. As a result, the proposed
ADPLL is very suitable for on-chip high-speed clock generation as demanded in current SoC
designs.

The proposed ADDLL utilizes TDC and DTC to complete coarse-tuning phase
acquisition in one clock cycle, resulting in less lock-in time. And the area cost is reduced by
sharing TDC and DTC with delay line. The proposed DCDL can turn off unused delay cells at
high frequency operation, thus it can save unwanted power consumptions in high frequency
operation. Thus it is very suitable for wide-range clock deskew applications demanded in
system-level integration.

The proposed DLL-based ADMCG uses a TDC to choose a reasonable delay range
rather than to use self-correcting circuit. Thus its operation is very robust to PVT variations
and can avoid possible false-lock to harmonics. The lock-in time of the proposed ADMCG can
aso be reduced by adding TDC module. The proposed ADMCG is applied to design a 7:1

~ 94 ~

data channel compression transceiver. In the proposed receiver architecture, which use a
2-phase ADMCG to estimate real value of Tree/14, can maximizes the timing margin of the
receiver circuit.

The proposed automated synthesis methodology provides a guideline to take user
specifications to build up the suitable architecture for ADPLL/ADDLL/ADMCG design. The
proposed methodology uses both benefits of digital VLS| and cell-based design to build up the
user-specified ADPLL/ADDLL/ADMCG in a short time, and reduces design time and design

complexity of ADPLL/ADDLL/ADMCG, making it very suitable for SoC designs.

Nevertheless, for some applications, which demand for very high accurate frequency
gynthesis, the proposed ADPLL architecture may be difficult to meet the required
gpecifications. Since the proposed ADPLL architecture is integer-N architecture, thus output
frequency resolution is dependent on reference frequency, and fine frequency resolution
requires a small reference frequency. However, if reference clock rate is low, it may result in
long lock-in time.

Thus the fractional-N PLL architecture [45] is a possible way to achieve a fine frequency
resolution in frequency synthesizer applications. In this architecture, the integer divide ratio is
periodicaly altered from N to N+1. The resulting average divide ratio will be increased from
N by duty cycle of the N+1 division.

But this architecture may induce severe spurious tones due to the periodic modification
of the divider modulus. It needs to be carefully designed to filter out this phase error and
preserve the benefit of fractional-N architecture. Thus, the design and implementation of
fractional-N ADPLL to achieve fine frequency resolution is the research topics remaining to

be solved.

~ 95 ~

In the proposed automated ADPLL/ADDLL/ADMCG synthesis flow, the module
compiler is needed to directly generate the layout of timing critical modules, such as. DCO
and TDC. Currently these tasks are done by manua placement and routing. But in the further,
the automatic layout generator for timing critical modules should be developed so that the
proposed automated ADPLL/ADDLL/ADMCG design flow can be used in the deep
sub-micron (< 0.18um) CMOS processes.

For low-power or mobile applications, ADPLL/ADDLL/ADMCG needs to provide a
power-saving mode so that the system can turn off the ADPLL/ADDLL/ADMCG if needed.
In those applications, the previous lock states of ADPLL/ADDLL/ADMCG can be recorded,
and when the system returns to its normal operation, the lock-in time can then be reduced.
And in frequency synthesis applications, the proposed ADPLL may periodically turn on/off
frequency and phase acquisition circuits (including INNER DCO) to save the active power.
But this scheme may worsen the performance of ADPLL. Thus a better way to save active

power consumption still needs to be investigated for further research.

~ 96 ~

Refer ences:;

[1]

[2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

Hee-Tae Ahn, and David J. Allstot, “A Low-Jitter 1.9-V CMOS PLL for UltraSPARC
Microprocessor Applications,” |EEE Journal of Solid-State Circuits, Vol. 35, pp.450-454,
May 1999.

Inchul Hwang, Soonsub Lee, Sangwon Lee, and Soowon Kim, “A Digitally Controlled
Phase-Locked Loop with Fast Locking Scheme for Clock Synthesis Application,” |IEEE
International Solid-Sate Circuits Conference, 2000, Digest of Technical Papers, pp.
168-169, Feb. 2000.

Koichiro Minami, Muneo Fukaishi, Masayuki Mizuno, Hideaki Onishi, Kenji Noda,
Kiyotaka Imai, Tadahiko Horiuchi, Hiroshi Yamaguchi, Takanori Sato, Kazuyuki
Nakamura, and Masakazu Yamashina, “A 0.1um CMOS, 1.2V, 2GHz Phase-Locked
Loop with Gain Compensation VCO,” Proceedings of IEEE Conference on Custom
Integrated Circuits, pp. 213-216, May 2001.

Adrian Maxim, Baker Scott, Edmud M. Schneider, Melvin L. Hagge, Steven Chacko,
and Dan Stiurca, “A Low-Jitter 125-1250-MHz Process-Independent and
Ripple-Poleless 0.18-um CMOS PLL Based on a Sample-Reset Loop Filter,” |EEE
International Solid-Sate Circuits Conference, 2001, Digest of Technical Papers, pp.
394-395, Feb. 2001.

lan A. Young, Monte F. Mar, and Bharat Bhushan, “A 0.35um CMOS 3-880MHz PLL
N/2 Clock Multiplier and Distribution Network with Low Jitter for Microprocessors,”

IEEE International Solid-Sate Circuits Conference, 1997, Digest of Technical Papers,
pp. 330-331, Feb. 1997.

Chang-Hyeon Lee, Jack Cornish, Kelly McClellan, and John Choma Jr., “ Design of Low
Jitter PLL for Cock Generator with Supply Noise Insensitive VCO,” Proceedings of the
1998 |EEE International Symposium on Circuits and Systems, Vol. 1, pp. 233-236, June
1998.

David W. Boerstler, “A Low-Jitter PLL Clock Generator for Microprocessors with Lock
Range of 340-612MHz,” |EEE Journal of Solid-Sate Circuits, Vol. 34, pp. 513-519, Apr.
1999.

Terng-Yin Hsu, Chung-Cheng Wang, and Chen-Yi Lee, “Design and Analysis of a
Portable High-Speed Clock Generator,” IEEE Transactions on Circuit and Systems I1:

Analog and Digital Sgnal Processing, Vol.48, pp. 367-375, Apr. 2001.

Jm Dunning, Gerald Garcia, Jim Lundberg, and Ed Nuckolls, “An All-Digital
Phase-Locked Loop with 50-Cycle Lock Time Suitable for High Performance
Microprocessors,” |EEE Journal of Solid-Sate Circuits, Vol.30, pp. 412-422, Apr. 1995.

[10] Jin-Jer Jong and Chen-Yi Lee, “A Novel Structure for Portable Digitally Controlled

Oscillator,” Proceedings of the 2001 IEEE International Symposium on Circuits and

~ 97 ~

System, Vol.1, pp.272-275, May 2001.

[11] Seeki, T., Nakaoka, Y., Fujita, M., Tanaka, A., Nagata, K., Sakakibara, K., Matano, T.,
Hoshino, Y., Miyano, K., Isa, S., Nakazawa, S., Kakehashi, E., Drynan, J.M., Komuro,
M., Fukase, T., Iwasaki, H., Takenaka, M., Sekine, J., Igeta, M., and Nakanishi, N., “A
2.5-ns Clock Access, 250-MHz, 256-Mb SDRAM with Synchronous Mirror Delay,”
IEEE Journal of Solid-Sate Circuits, Vol. 31, pp. 1656-1668, Nov. 1996.

[12] Yongsam Moon, Jongsang Choi, Kyeongho Lee, Deog-Kyoon Jeong, and Ming-Kyu
Kim, “An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for
Wide-Rang Operation and Low-Jitter Performance,” IEEE Journal of Solid-Sate
Circuits, Vol. 35, pp. 377-384, Mar. 2000.

[13] Ching-Yuan Yang, and Shen-luan Liu, “A One-Wire Approach for Skew-Compensating
Clock Distribution Based on Bidirectional Techniques,” IEEE Journal of Solid-Sate
Circuits, Vol. 36, pp. 266-272, Feb. 2001.

[14] Sungjoon Kim, Kyeongho Lee, Yongsam Moon, Deog-Kyoon Jeong, Yunho Choi, and
Hyung Kyu Lim, “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter
PLL,” IEEE Journal of Solid-Sate Circuits, Vol. 32, pp. 691-700, May 1997.

[15] Dinis M. Santos, “A CMOS Delay Locked Loop and Sub-Nanosecond Time-to-Digital
Converter Chip,” IEEE Transactions on Nuclear Science, Vol. 43, pp. 1717-1719, June
1996.

[16] Feng Lin, Jason Miller, Aaron Schoenfeld, Manny Ma, and R. Jacob Barker, “A
Register-Controlled Symmetrical DLL for Double-Data-Rate DRAM,” IEEE Journal of
Solid-Sate Circuits, Vol. 34, pp. 565-568, Apr. 1999.

[17] Bum-Sik Kim and Lee-Sup Kim, “A Low Power 100MHz All digital Delay-Locked
Loop,” Proceedings of IEEE International Symposium on Circuits and Systems, June
9-12, 1997, Hong Kong.

[18] Guang-Kaii Dehng, June-Ming Hsu, Ching-Yuan Yang, and Shen-luan Liu,
“Clock-Deskew Buffer Using a SAR-Controlled Delay-Locked Loop,” IEEE Journal of
Solid-Sate Circuits, Vol. 35, pp. 1128-1136, Aug. 2000.

[19] Bruno W. Garlepp, Kevin S. Donnelly, Jun Kim, Pak S. Chau, Jared L. Zerbe, Charles
Huang, Chanh V. Tran, Clemenz L. Portmann, Donald Stark, Yiu-Fai Chan, Thomas H.
Lee, and Mark A. Horowitz, “A Portable Digital DLL for High-Speed CMOS Interface
Circuits, “ |EEE Journal of Solid-Sate Circuits, Vol. 34, pp. 632-644, May 1999.

[20] Joo-Ho Lee, Seon-Ho Han, and Hoi-Jun Yoo, “A 330M Hz Low-Jitter and Fast-Locking
Direct Skew Compensation DLL,” IEEE International Solid-Sate Circuits Conference,
2000, Digest of Technical Papers, pp. 352-353, Feb. 2000.

[21] Stefanos Sidiropoulos and Mark Horowitz, “A Semi-Digital DLL with Unlimited Phase
Shift Capability and 0.08-400MHz Operating Range,” |EEE International Solid-Sate
Circuits Conference, 1997, Digest of Technical Papers, pp. 332-333, Feb. 1997.

~ 08 ~

[22] Joonbae Park, Yido Koo, and Wonchan Kim, “A Semi-Digital Delay Locked Loop for
Clock Skew Minimization,” Proceedings of 1999 Twelfth International Conference On
VLS Design, pp. 584-588

[23] Koichiro Minami, Masayuki Mizuno, Hiroshi Yamaguchi, Toshihiko Nakano, Yusuke
Matsushima, Yoshikazu Sumi, Takanori Sato, Hisashi Yamashida, Masakazu Yamashina,
“A 1GHz Portable Digital Delay-Locked Loop with Infinite Phase Capture Ranges,”
IEEE International Solid-Sate Circuits Conference, 2000, Digest of Technical Papers,
pp. 350-351, Feb. 2000

[24] Jae Joon Kim, Sang-Bo Lee, Tae-Sung Jung, Chang-Hyun Kim, Soo-In Cho, and
Beomsup Kim, “A Low-Jitter Mixed-Mode DLL for High-Speed DRAM Applications,”
|EEE Journal of Solid-Sate Circuits, Vol. 35, pp. 1430-1436, Oct. 2000.

[25] Dagnachew Birru, “A NOVEL DELAY-LOCKED LOOP BASED CMOS CLOCK
MULTIPLIER,” IEEE Transactions on Consumer Electronics, Vol.44, pp. 1319-1322,
Nov. 1998.

[26] Yeo-San Song and Jin-Ku Kang, “A DELAY LOCKED LOOP CIRCUIT WITH
MIXED-MODE TUNING” The First IEEE Asia Pacific Conference on ASICs, pp.
347-350, Aug. 1999.

[27] David J. Foley and Michael P. Flynn, “CMOS DLL Based 2V, 3.2ps Jitter, 1GHz Clock
Synthesizer and Temperature Compensated Tunable Oscillator,” Proceedings of IEEE
2000 Custom Integrated Circuits Conference, pp.371-374, May 2000.

[28] David J. Foley and Michael P. Flynn, “A 3.3V, 1.6GHz, Low-Jitter, Self-Correcting
DLL Based Clock Synthesizer in 0.5um CMOS,” Proceedings of IEEE International
Symposiumon Circuit and Systems, Vol.2, pp.249-252, May 2000.

[29] M.-JEdward Lee, William J. Daly, John W. Poulton, Patrick Chiang, and Stephen F.
Greenwood, “An 84-mW 4-Gb/s Clock and Data Recovery Circuit for Serial Link
Applications,” 2001 Symposium on VLS Circuits, Digest of Technical Papers,
pp.149-152, Jun. 2001.

[30] Yongsam Moon, Deog-Kyoon Jeong, and Gijung Ahn, “A 0.6-2.5-Gbaud CMOS
Tracked 3X Oversampling Transceiver With Dead-Zone Phase Detection for Robust
Clock/Data Recovery,” |EEE Journal of Solid-Sate Circuits, Vol.36, pp.1974-1983, Dec.
2001.

[31] Kouichi Yamaguchi, Muneo Fukaishi, Takehiko Sakamoto, Naoto Akiyama, and
Kazuyuki Nakamura, “A 2.5-GHz Four-Phase Clock Generator With Scalable
No-Feedback-Loop Architecutre,” IEEE Journal of Solid-Sate Circuits, Vol. 36,
pp.1666-1672, Nov. 2001.

[32] Ali Hajimiri, Sotirios Limotyrakis, and Thomas H. Lee, “Jitter and Phase Noise in Ring
Oscillators,” 1EEE Journal of Solid-Sate Circulits, Vol. 34, pp.790-804, Jun. 1999.

[33] Li Jin Cheng and Qiu Yu Lin, “The Performances Comparison Between DLL and PLL

Based RF CMOS Oscillators,” Proceedings of 4th International Conference on ASIC,
pp.827-830, Oct. 2001.

[34] Wei-Hung Chen, Guang-Kaai Dehng, Jong-Woei Chen, and Shen-luan Liu, “A CMOS
400-Mb/s Seria Link for AS-Memory Systems Using a PWM Scheme,” |EEE Journal
of Solid-Sate Circuits, Vol. 36, pp.1498-1505, Oct. 2001.

[35] Ching-Che Chung and Chen-Yi Lee, “An All-Digita Phase-Locked Loop for
High-Speed Clock Generation,” IEEE Journal of Solid-Sate Circuits, Vol. 38, pp.
347-351, Feb. 2003.

[36] A. Hatakeyama, H. Mochizuki, T. Aikawa, M. Takita, Y. Ishii, H. Tsuboi, S. Fujioka, S.
Yamaguchi, M. Koga, Y. Serizawa, K. Nishimura, K. Kawabata, Y. Okagima, M.
Kawano, H. Kojima, K. Mizutani, T. Anezaki, M. Hasegawa, and M. Taguchi, "A
256-Mb SDRAM using a register-controlled digital DLL," IEEE Journal of Solid-Sate
Circuits, Vol. 32, pp. 1728 - 1734, Nov. 1997.

[37] Chao Xu, Winslow Sargeant, Kenneh Laker, and Jan Van der Spiegel, “FULLY
INTEGRATED CMOS PHASE-LOCKED LOOP WITH 30MHZ TO 2GHZ LOCKING
RANGE AND #35PS JITTER,” Proceedings of IEEE International Electronics,
Circuits and Systems Conference, pp.55-58, Sep. 2001.

[38] Heung-Gyoon Ryu and Eung-jin Ahn, “DLT REPLACEMENT AND
SYNCHRONIZATION IN THE DIGITAL HYBIRID PLL FREQUENCY
SYNTHESIZER,” |IEEE Transactions on Consumer Electronics, Vol. 48, pp. 151-156,
Feb. 2002.

[39] Takamoto Watanabe and Shigenori Yamauchi, “An All-Digital PLL for Freguency
Multiplication by 4 to 1022 With Seven-Cycle Lock Time,” IEEE Journal of Solid-Sate
Circuits, Vol. 38, pp. 198-204, Feb. 2003.

[40] Takanori Saeki, Masafumi Mitsuishi, Hiroaki Iwaki, and Mitsuaki Tagishi, “A 1.3-Cycle
Lock Time, Non-PLL/DLL Clock Multiplier Based on Direct Clock Cycle Interpolation
for Clock on Demand,” IEEE Journal of Solid-Sate Circuits, Vol. 35, pp. 1581-1590,
Nov. 2000.

[41] George Chien and Paul R. Gray, “A 900-MHz Loca Oscillator Using a DLL-Based
Frequency Multiplier Technique for PCS Applications,” |EEE Journal of Solid-Sate
Circuits, Vol. 35, pp. 1996-1999, Dec. 2000.

[42] David J. Foley and Michael P. Flynn, “CMOS DLL-Based 2-V 3.2-ps Jitter 1-GHz
Clock Synthesizer and Temperature-Compensated Tunable Oscillator,” |EEE Journal of
Solid-Sate Circuits, Vol. 36, pp. 417-423, Mar. 2001.

[43] Terng-Yin Hsu, Terng-Ren Hsu, Chung-Cheng Wang, Yi-Chuan Liu, and Chen-Yi Lee,
“Design of a Wide-Band Frequency Synthesizer Based on TDC and DVC Techniques,”
|EEE Journal of Solid-Sate Circuits, Vol. 37, pp. 1244-1255, Oct. 2002.

[44] John Horan, John Ryan, Kay Hearne, Mark Smith, Niall Donovan, Tholom Kiely,

~ 100 ~

Ciaran Cahill, and Stephen McDonagh, “PLLXPERT: An EDA tool for clock synthesis
PLL generation,” Proceedings of IEE Workshop on Systems on a Chip, pp. 2/1-2/4,
2000.

[45] M. Stork, “NEW FRACTIONAL PHASE-LOCKED LOOP FREQUNECY
SYNTHESIZER USING A SIGMA-DELTA MODULATOR,” Proceedings of IEEE
International Conference on Digital Signal Processing, Vol.1, pp. 367-370, 2002.

[46] Ching-Che Chung and Chen-Yi Lee, “A new DLL-based approach for all-digital
multi-phase clock generation, “ to be appeared in IEEE Journal of Solid-Sate Circuits.

[47] Broadcom Corporation, “Cable Modem Residential Gateway,” web link,
http://www.broadcom.com/cablemodem-gw.html.

~ 101 ~

ZhBERBREX

L EE

Ching-Che Chung and Chen-Yi Lee, “A new DLL-based approach for
al-digita multi-phase clock generation,” to be appeared in IEEE Journal of
Solid-Sate Circuits

Ching-Che Chung and Chen-Yi Lee, “An all-digital phase-locked loop for
high-speed clock generation,” in IEEE Journal of Solid-Sate Circuits,
Vol.38, pp. 347-351, Feb. 2003.

Bt ars X

Ching-Che Chung and Chen-Yi Lee, “An all-digita phase-locked loop for
high-speed clock generation,” in IEEE International Symposium on Circuits
and Systems, Vol. 3, pp.26-29, May 2002..

Hsie-Chia Chang, Ching-Che Chung, Chien-Ching Lin, and Chen-Yi Lee,
“A 300MHz Reed-Solomon decoder chip using inversionless decomposed
architecture for Euclidean agorithm,” in 28" European Solid-Sate Circuits
Conf. (ESSCIRC), Sep. 2002.

Jin-Jer Jong and Chen-Yi Lee, “A Noved Structure for Portable Digitally
Controlled Oscillator,” in IEEE International Symposium on Circuits and
Systems, Vol. 1, pp.272-275, May 2001.

Yew-San Lee, Jin-Jer Jong, Tsyr-Shiou Perng, Li-Chyun Hsu, Ming-Yang
Jaw, and Chen-Yi Lee, “A memory-based architecture for very high
throughput variable length codec design,” in IEEE International Symposium
on Circuitsand Systems, Vol. 3, pp.9-12, June 1997.

VITA

Ching-Che Chung received the B.S. degree from National
Chiao Tung University, HsinChu, Taiwan, in 1997. Since September
1997, he has been a Ph.D. Student of the Si2 research group in the
Department of Electronics Engineering, National Chiao Tung

University. His research interests include system-on-chip design
methodologies, cell-based and fully-custom VLSI design, high-speed interface circuit
design, and wireless baseband processor design.

