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用於系統晶片設計之自動化合成時序鎖定迴路 

 

研究生 : 鍾菁哲                           指導教授 : 李鎮宜博士 

 

國立交通大學電子工程學系電子研究所 

 

摘要 

 

在此論文中，我們針對全數位鎖相迴路及全數位延遲鎖相迴路的設計，提出

了有彈性的架構，以便可迅速配合不同應用領域進行修改。本論文所提出的架構

可有效的縮減迴路鎖定所需的時間，並且在配合所提出的自動化合成技術下，使

用數位積體電路技術和標準元件庫，可在短時間內快速的合成使用者所需求的全

數位鎖相迴路或是全數位延遲鎖相迴路。因此本論文所提出的架構和自動化設計

方法，非常適合應用於系統晶片使用。 

此論文首先提出如何克服標準元件庫的限制來提高延遲元件的解析度和相位

頻率比較器的靈敏度。接著本論文所提出的微調延遲元件和相位比較器便被應用

到全數位鎖相迴路及全數位延遲鎖相迴路的設計。時間數位量測轉換器被大量的

應用在所提出的全數位鎖相迴路及全數位延遲鎖相迴路的設計裡，以減少頻率鎖

定和相位鎖定所需的時間。接著本論文提出以延遲鎖相迴路架構為基礎的全數位

多相位時脈產生器，在此多相位時脈產生器的設計上，時間數位量測轉換器用來

選定適當的延遲範圍，以避免產生傳統電路設計會鎖定到諧波的困擾。 

最後本論文提出了合成全數位鎖相迴路、全數位延遲鎖相迴路及全數位多相

位時脈產生器的方法。因而全數位鎖相迴路、全數位延遲鎖相迴路及全數位多相

位時脈產生器的邏輯閘層次設計電路，將可以使用標準元件庫來自動產生。也因

此針對全數位鎖相迴路、全數位延遲鎖相迴路及全數位多相位時脈產生器所需的

設計時間和設計複雜度都可以因此大幅度的降低。 
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Automatic Synthesis of Timing-Locked Loops  

for SoC Designs 
 

Student : Ching-Che Chung                  Advisor : Dr. Chen-Yi Lee 

 

Department of Electronics Engineering 

& Institute of Electronics 

National Chiao Tung University 

 
Abstract 

 
In this dissertation, the designs for All-Digital Phase-Locked Loop (ADPLL) and 

All-Digital Delay-Locked Loop (ADDLL) are presented. The proposed flexible 

ADPLL/ADDLL architectures can easily be modified to fit different applications and 

achieve fast lock-in time. The proposed automated synthesis methodology uses both 

benefits of digital VSLI and cell-based design to build up user-specified ADPLL/ADDLL 

in a short time, making it very suitable for System-on-Chip (SoC) applications. 

This dissertation first presents a scheme to overcome the limitations of standard 

cells and to build up high resolution delay cell and high sensitivity Phase and Frequency 

detector (PFD). Then the proposed fine-tuning delay cell and PFD are applied to 

ADPLL/ADDLL. Time-to-Digital Converter (TDC) is widely used in the proposed 

ADPLL/ADDLL architecture to reduce frequency/phase acquisition time. Then design 

for the proposed DLL-based All-Digital Multi-phase Clock Generator (ADMCG) is 

presented. In ADMCG design, TDC is used to choose a suitable delay range to avoid 

false-lock to harmonics. 

Finally, a synthesis approach for ADPLL/ADDLL/ADMCG design is presented. As 

a result, the gate-level Hardware Description Language (HDL) codes of 

ADPLL/ADDLL/ADMCG can be automatically generated using standard cells from 

cell-library. Hence both design time and design complexity of ADPLL/ 

ADDLL/ADMCG is greatly reduced by the proposed methodology. 
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Chapter 1 

Introduction 
 

1.1 Motivation 

As VLSI technology grows up rapidly, the design trend goes toward system-level 

integration and single-chip solution. The system-level design considerations can lead to more 

cost-effective realizations, but it also results in more design complexity and design efforts. 

However, the design cycle remains the same or even shorter due to the time-to-market issue. 

Thus in System-On-Chip (SoC) designs, each module should better be reusable and process 

portable, so that total design time of SoC can be reduced. Unfortunately, some timing critical 

blocks, such as: Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs) often are not 

reusable and process portable. 

PLL and DLL are widely used in SoC designs. They are often applied to communication 

applications, such as: frequency synthesizer, clock multiplier, Clock and Data Recovery (CDR) 

circuit, and clock de-skew applications. They are very essential for current SoC designs, and 

for different modules, they may have different design specifications or requirements for PLLs 

and DLLs. As a result, how to design these PLLs/DLLs in a more efficient way becomes more 

and more important in these days. 
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For example, in single chip cable modem residential gateway [47], there are seven PLLs 

and over one hundred internally generated clocks used in this single chip gateway. Thus how 

to design these PLLs in an efficient way becomes very important for reducing system turn 

around time. And the importance to develop a systematic PLL/DLL design approach is 

required in current SoC era. 

The design of PLL/DLL is a trade-off among jitter performance, frequency / phase 

resolution, lock-in time, area cost, power consumption, circuit complexity and design time. It 

is hard to design one PLL/DLL suitable for all applications. It often needs to redesign the 

PLL/DLL for target applications. If a wide-range PLL/DLL is designed for SoC applications, 

it can be used in more modules without modify it. But this scheme may waste unnecessary 

area cost and power consumption due to the requirement for wide-range operation. Thus a 

systematic design methodology to design user-specified PLLs/DLLs in a short time is 

necessarily for current SoC designs. 

All-digital and cell-based approach is preferred for SoC applications. It can reduce both 

design time and design complexity for PLL/DLL. And this approach is also suitable for 

automated synthesis of All-Digital Phase-Locked Loop (ADPLL) and All-Digital 

Delay-Locked Loop (ADDLL). 

However, due to the limitations of cell-based design, it is difficult to design a low-jitter, 

low-power, and high resolution ADPLL/ADDLL. Thus how to overcome the limitations of 

standard cells to build up a high resolution delay cell and high sensitivity frequency/phase 

detector (PFD) are the important design challenges for our research. 

In this thesis, we propose the flexible ADPLL/ADDLL architectures for a truly portable 

and cost-effective ADPLL/ADDLL [35] solution. And we explain the proposed scheme to 

overcome the limitations of the standard cells and to build up high resolution delay cell and 
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high sensitivity phase detector. 

Time-to-Digital Converter (TDC) is widely used in the proposed ADPLL/ADDLL 

architecture to reduce frequency/phase acquisition time and achieve fast lock-in time. In 

all-digital multi-phase clock generator (ADMCG) [46], it is used to choose a suitable delay 

range to avoid false-lock to harmonics. 

In this thesis, an automated synthesis methodology for ADPLL/ADDLL/ADMCG design 

is presented. Thus these modules now can be automatically generated using standard cells 

from cell-library. As a result, the proposed methodology uses both benefits of digital VLSI 

and cell-based design to build up user-specified ADPLL/ADDLL/ADMCG in a short time, 

and reduces design time and design complexity of ADPLL/ADDLL/ADMCG, making it very 

suitable for System-On-Chip (SoC) applications. 

 

1.2 Thesis Organization 

In this dissertation, we focus on algorithms, architectures, and circuits of high 

performance, low power, and area efficient ADPLL/ADDLL/ADMCG designs. And for SoC 

applications, we proposed an automated synthesis methodology to take design specifications 

and automatically generate the gate-level netlist for ADPLL/ADDLL/ADMCG. The proposed 

methodology can greatly reduce design time and design complexity of these modules in SoC 

era. 

In chapter 2, we present the common timing critical modules design for ADPLL/ADDLL 

/ADMCG. The resolution of delay cell and the sensitivity of PFD have large influences on the 

jitter performance of the output clock, and they also have large effects on the final frequency 

error or phase error. In this chapter, we explain the proposed scheme to overcome the 



 ～ 4 ～ 

limitations of the standard cells and to build up high resolution delay cell and high sensitivity 

phase detector. 

In chapter 3, the design for all-digital phase-locked loop (ADPLL) is presented. To 

reduce the system turn around time for SoC design, the ADPLL using the proposed high 

resolution delay cell and the proposed high sensitivity PFD is presented. The proposed 

ADPLL controller can achieve fast lock-in time, and the proposed delay cell can reduce both 

cost and design time for building a high resolution cell-based DCO. And the proposed PFD 

can improve the jitter performance and reduce the frequency error for the output clock. 

Moreover the flexible ADPLL architectures for different target applications are presented in 

this chapter for a truly portable and cost-effective ADPLL-based frequency synthesizer 

solution. 

In chapter 4, the design for all-digital delay-locked loop (ADDLL) is presented. As the 

speed and the complexity of VLSI system increases rapidly, clock skew and clock jitter effects 

become more and more important now. It is difficult to design a DLL to overcome total 

effects caused by process, voltage, temperature, and loading (PVTL) variations. As in 

conventional DLL, the operation range of DLL is very limited. In this chapter, we propose an 

all-digital fast-locking DLL. The proposed DLL utilizes Time-to-Digital Converter (TDC) 

circuit and Digital-to-Time Converter (DTC) circuit to complete coarse-tuning in one clock 

cycle, resulting in less lock-in time. And the area cost for TDC and DTC can be shared with 

delay line. The proposed Digital-Controlled Delay Line (DCDL) architecture can turn off 

unused delay cells at high frequency operation, thus it is very suitable for wide-range clock 

deskew applications demanded in system-level integration. 

In chapter 5, the design for an all-digital multi-phase clock generator (ADMCG) is 

presented. Multi-phase clocks are useful in many applications to process data streams at the 
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bit rate higher than internal clock frequencies. But there are two problems of conventional 

DLLs. One is their limited phase capture range, and the other is restricted Voltage-Controlled 

Delay Line (VCDL) range to avoid false-lock to harmonics. Thus in this chapter, a new 

DLL-based approach for multi-phase clock generation is presented. The proposed ADMCG 

uses a TDC to choose a reasonable delay range rather than to use self-correcting circuit. Thus 

its operation is very robust and can avoid possible false-lock as in conventional designs. The 

lock-in time of the proposed ADMCG can also be reduced by adding TDC module. After 

TDC operation, a fixed step search scheme is used in the ADMCG to fine-tune the output 

phase accuracy. 

In chapter 6, an automated synthesis design methodology for ADPLL/ADDLL /ADMCG 

is presented. In SoC design, the design time for each module is restricted. Thus each module 

should better be a reusable design so that the total design time for the SoC can be reduced. 

However, for different applications, the ADPLL/ADDLL/ADMCG may have different 

operating ranges or different lock-in time requirements, making it hard to design one 

ADPLL/ADDLL/ADMCG suitable for all applications. As a result, it often needs to redesign 

the ADPLL/ADDLL/ADMCG for target application and design phase becomes longer. Thus 

in this chapter, a proposed automated synthesis methodology uses both benefits of digital 

VLSI and cell-based design to build up user-specified ADPLL/ADDLL/ADMCG in a short 

time, making it very suitable for System-On-Chip (SoC) designs. 

In chapter 7, we make conclusions and describe several design issues needed to be further 

explored in the near future. 
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Chapter 2 

Timing Critical Modules in ADPLL and 

ADDLL Architecture 

 

In this chapter, the design for delay cells and phase detectors are presented. They are the 

important modules in ADPLL/ADDLL design. The resolution of the delay cells and the 

sensitivity of the phase detector have large influences on the jitter performance of the output 

clock. They also have large effects on the final frequency error or phase error. As a result, 

they need to be designed carefully. And since we want to propose a cell-based 

ADPLL/ADDLL design, how to overcome the limitations of the standard cells to build up a 

high resolution delay cell and high sensitivity phase detector are the important design 

challenges for our research. 

The delay cells are used to construct a ring oscillator and produce the desired output 

frequency in ADPLL design. In ADDLL design, delay cells are used to build a delay line and 

outputs the delayed version of the input clock. The delay cell must be easy to adjust its delay 

time, and the resolution of the delay cell should be sufficient enough to meet the requirements 

for the output clock. 

The phase detector is used in ADPLL/ADDLL design to detect the phase error between 
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the reference clock and output clock. The phase detector’s dead zone may cause the wrong 

operations in phase acquisition process. Thus how to reduce the dead zone of the phase 

detector is very important to improve the stability for the ADPLL/ADDLL and also minimize 

the static phase error. 

    The organization of this chapter is as follows. In section 2.1, the proposed high 

resolution delay cell is presented. And how to use the standard cells to build up this delay 

cells is also explained in this section. In section 2.2, the proposed high sensitivity phase and 

frequency detector (PFD) is presented. The proposed PFD is also constructed by standard 

cells. Finally, a brief summary is made in section 2.3. 

 

2.1 Design of High Resolution Delay Cells 

In analog delay cells, the delay cell is controlled by control voltage/current, and the 

output delay time is continuous over the controllable range. But in digital-controlled delay 

cell, the output delay time is quantized. And the resolution of the output delay time must be 

sufficient enough to meet the design specifications. 

When two nearby digital control codes are applied to the delay cell, the output delay 

time difference is defined as the resolution of the delay cell. If an inverter-based (or 

buffer-based) delay line is used in delay cell design, since in this architecture, the delay cell 

produces different propagation delays by selecting different number of inverters (or buffers). 

Then the resolution of the delay cell is limited by the delay time of one inverter (or one 

buffer). And this resolution is often not sufficient to be used in ADPLL/ADDLL design.  

Thus in previous designs, the phase blender is proposed in [19] to provide a better 

resolution by phase interpolation. And the delay matrix, which uses parallel tri-state buffers 

to enhance the resolution of the delay cell, is proposed in [8]. However, the intrinsic delay 

time of the phase blender is too large to be used in high-speed applications. This is because 
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that in phase blender architecture, high resolution means the increasing of phase blender 

stages. And the area cost and the power consumption for the delay matrix is too large to be 

used in a low cost and low power design.  

In this section, a low cost and high resolution delay cell is presented. The schematic of 

the proposed delay cell is shown in Fig 2.1. The function of this delay cell acts as an inverter 

regardless of (A, B) input value. And the value of (A, B) determines the delay time of the 

proposed delay cell. 

 

 

Fig. 2.1: The schematic of the proposed delay cell. 

 

The CMOS circuit realization of the proposed delay cell is shown in Fig. 2.2.  

 

 

Fig. 2.2: The CMOS circuit of the proposed delay cell. 
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The delay time when the input changes from 0 to 1 and the output changes from 1 to 0 is 

defined as TPHL. Oppositely, the delay time when the input changes from 1 to 0 and the output 

changes from 0 to 1 is defined as TPLH.  

In Fig. 2.2, when (A, B) is equal to (1, 1), the TPHL of the delay cell is always smaller 

than the cases: (A, B) = (0, 1) or (1, 0). And when (A, B) = (1, 0) or (0, 1), the TPHL of the 

delay cell is always smaller than the case: (A, B) = (0, 0). This is because the change of (A, B) 

value determines that how many pull-down paths will be turned on/off. So the resolution 

enhancement can be achieved by using the proposed delay cell. 

 

 

Fig. 2.3: The proposed high resolution delay cell. 

In Fig. 2.1, this delay cell is named as an AOI (AND-OR-INVERSE) type delay cell, 

and it is a basic cell and can be found in standard cell library. The control signals can be used 

to adjust the TPHL of the AOI type delay cell. Oppositely, the OAI (OR-AND-INVERSE) type 

cell can be controlled to adjust the TPLH of the delay cell.  

If those two type delay cells are cascaded, the resolution of the delay cell can be further 

enhanced. Fig. 2.3 shows the proposed high resolution delay cell, and it can be used to 

perform fine-tuning in ADPLL/ADDLL design. Both AOI type delay cell and OAI type delay 

cell are shunted with two tri-state buffers. And shunted tri-state buffers are used to increase 
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the controllable range of the proposed high resolution delay cell. 

In the proposed high resolution delay cell, in total six bits: (EN1, A1, B1, EN2, A2, B2) 

can be used to control the delay cell. Thus, in total 64 (=26) different delays can be provided. 

To design the proposed delay cell, first, the suitable standard cells must be selected from the 

cell library. And the SPICE circuit simulation for the proposed delay cell must be performed 

to measure the delay time (TPHL and TPLH) of the delay cell for all possible 64 cases. After 

SPICE simulation, the lookup table for mapping the binary control code versus delay cell 

control code can be created. 

 

Table 2.1: CONTROL CODE VS. DELAY TIME OF THE PROPOSED DELAY CELL 
        TIME UNIT: (PS), CODE: (EN1 A1 B1 EN2 A2 B2) 

TPHL+TPLH CODE TPHL+TPLH CODE TPHL+TPLH CODE TPHL+TPLH CODE 
0802.7026 000 011 0674.2368 000 100 0622.3394 010 111 0580.2200 111 001 
0777.6740 000 010 0672.7012 001 111 0622.0947 101 001 0578.2402 110 000 
0759.8178 000 001 0670.2695 100 010 0620.1069 011 111 0577.0692 100 101 
0759.3041 001 011 0667.4821 101 011 0613.8635 101 000 0572.2359 111 000 
0751.3155 000 000 0666.1494 010 001 0611.3577 100 111 0568.2607 100 100 
0736.0601 001 010 0663.9600 011 001 0605.6821 110 010 0563.3331 101 110 
0718.9363 001 001 0658.9083 010 000 0604.3907 010 110 0549.1761 110 111 
0714.0263 000 111 0657.2062 011 000 0602.3159 011 110 0549.1071 101 101 
0711.8740 001 000 0655.3770 001 110 0599.4157 111 010 0543.4591 111 111 
0707.5820 010 011 0650.9609 100 001 0591.4753 100 110 0540.5546 101 100 
0704.4837 011 011 0642.2144 001 101 0591.0464 010 101 0529.1033 110 110 
0697.3336 100 011 0642.0410 100 000 0589.1943 011 101 0523.2402 111 110 
0695.9196 000 110 0641.0289 101 010 0586.3467 110 001 0514.6414 110 101 
0683.6460 010 010 0634.8068 001 100 0583.3829 010 100 0508.8459 111 101 
0682.2107 000 101 0632.4963 110 011 0583.0358 101 111 0506.1100 110 100 
0681.0558 011 010 0626.2559 111 011 0581.7245 011 100 0500.2978 111 100 

 

Table 2.1 lists the simulated delay time of the proposed high resolution delay cell versus 

delay cell control codes. In this simulation, a standard 0.35µm 1P4M CMOS process cell 

library is used to construct the delay cell.  

If the proposed delay cell is applied to be the fine-tuning stage of the DCO. Then the 

value of (TPHL+TPLH) means the change of the output clock period. The resolution of the 

DCO can be improved to the resolution of the proposed delay cell. And in this simulation, the 

average resolution of the proposed delay cell is about 5ps = ((802.7026 ps - 500.2978 ps)/64). 
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Since in the proposed delay cell, there only six standard cells are used. Thus its area cost 

and power consumption is very low, and its resolution is also sufficient to be used in 

ADPLL/ADDLL design. 

 

2.2 High Sensitivity Phase and Frequency Detector Deign 

    The phase detector (PD) can detect the phase error between the reference clock and the 

output clock. And it generates the up or down pulse to control the ADPLL/ADDLL. In analog 

phase-locked loop or analog delay-locked loop, the pulse width of the up/down pulse, which 

means the amount of the phase error, controls the charge/discharge time for the charge pump 

capacitor. However, in ADPLL and ADDLL, only the polarity information (i.e. lead or lag) is 

taken from the phase detector, and thus the pulse width information is not used. This is 

because the ADPLL/ADDLL controller is a cycle-based finite state machine. Thus it is not 

possible to use the pulse width information for the ADPLL/ADDLL controller unless some 

circuits likes the time-to-digital converter (TDC) is used [39]. 

 

 

Fig. 2.4: The sample-based phase detector. 

 

 Since the phase detector used in ADPLL/ADPLL design only needs to detect the polarity 

information. The sample-based phase detector is often used as in previous designs [18]. In 



 ～ 12 ～ 

those phase detectors, they determine lead/lag information by using output clock as the 

sampling clock to sample the reference clock. 

The sample-based phase detector is shown in Fig. 2.4. Clock B is output clock and clock 

A is the reference clock. Both clock B and its delayed one create a sampling window for 

detecting the transition of clock A. If the sampling values (Q1, Q2) are different, the 

transition of the clock A is detected. And then the control logic can use the sampled values to 

generate the lead or lag information for the ADPLL/ADDLL controller. 

But when the reference clock edge (clock A) is very close to the output clock edge 

(clock B), the phase detector may produce wrong lead/lag information for the 

ADPLL/ADDLL controller. The minimum phase error, which can be detected by the phase 

detector, is called the dead zone of the phase detector. If standard cells are used to construct 

the phase detector, the resulting dead zone is often too large to be used in ADPLL/ADDLL 

design. The limitations of this type phase detector often comes from the timing requirements 

(such as: setup time and hold time) for the D-Flip/Flop. 

 

 

Fig. 2.5: The proposed high sensitivity phase and frequency detector. 

 

To overcome the disadvantages and limitations of the traditional sample-based phase 

detector, a new phase and frequency detector (PFD) is presented. Fig. 2.5 shows the 
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schematic of the proposed high sensitivity PFD. The proposed PFD consists of one three-state 

phase detector and two digital pulse amplifiers. The simulation waveform of the proposed 

high sensitivity PFD is shown in Fig. 2.6. When output clock (FB) leads reference clock (IN), 

flagD produces a low pulse and flagU remains at high. Oppositely, when output clock (FB) 

lags reference clock (IN), flagU produces a low pulse and flagD remains at high. And those 

flagU and flagD signals are used to control the operation of the ADPLL/ADDLL controller. 

 

 

Fig. 2.6: The simulation waveform of the proposed PFD. 

 

In Fig. 2.5, when the output clock (FB) is very close to the reference clock (IN), the 

pulse width of three-state phase detector’s output (i.e. OUTU or OUTD) becomes very small. 

This narrow low pulse (OUTU or OUTD) can not correctly clear the D-Flip/Flop’s output 

(flagU or flagD). Thus the dead zone of the proposed PFD is limited by this minimum pulse 

width requirement for the D-Flip/Flop’s clear pin (CDN). This timing requirement is often 

about several hundred pS in typical standard cell library. 

To improve the sensitivity of the proposed PFD, two digital pulse amplifiers are 

connected at the output of three-state phase detector (i.e. OUTU or OUTD). The schematic of 

the digital pulse amplifier is shown in Fig. 2.7. It uses the cascaded two-input ANDs 
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architecture to increase the low pulse width of OUTU and OUTD. The output pulses are 

named as OUTBU and OUTBD. The digital pulse amplifier enlarges the phase error between 

reference clock (IN) and output clock (FB), thus the following D-Flip/Flops can detect it. 

 

 

Fig. 2.7: The digital pulse amplifier. 

 

 

Fig. 2.8: The SPICE simulation waveform of the digital pulse amplifier. 

 

Fig. 2.8 shows the SPICE circuit simulation waveform of the digital pulse amplifier. The 

input is delayed and is “AND” with itself, thus the pulse width of the low pulse is extended. 

Ideally, increasing the number of “AND” stages can increase the sensitivity of the proposed 

PFD. But when the phase error between reference clock and output clock becomes very small, 

the low pulse at OUTU and OUTD may be disappeared or may be not full swing voltage. In 

this case, the digital amplifier becomes useless. So the real sensitivity of the proposed PFD 
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can be determined after SPICE simulation. 

In the simulation which is shown in Fig. 2.8, a standard 0.18µm 1P6M CMOS process 

cell library is used to construct the proposed high sensitivity PFD. From SPICE simulation, 

the input low signal whose pulse width is larger than 20ps will be increased to more than 

600ps to meet the minimum pulse width requirement of the D-Flip/Flop’s clear pin. As a 

result, the sensitivity of the proposed PFD can be improved to ±20ps, and this high 

sensitivity ability is very suitable to be used in ADPLL/ADDLL design. 

Besides detecting the phase error, the proposed PFD also has the ability to detect the 

frequency difference between reference clock and output clock. Both flagU and flagD will be 

clear to high after the next rising edge of reference clock and output clock occurs respectively. 

Thus if the frequency of the output clock is higher than reference clock, the flagD will have 

more numbers of low pulse than flagU, and this will cause the ADPLL controller to slow 

down the DCO’s output frequency. So the proposed PFD is also suitable to be used in ADPLL 

design to detect frequency error. 

 

2.3 Summary 

In this chapter, the timing critical modules for ADPLL and ADDLL are presented. The 

proposed delay cell architecture overcomes the limitations of using the standard cells to 

construct the high resolution delay cell, and it also has lower cost and lower power 

consumption than the traditional designs. Thus it is very suitable to be used in ADPLL and 

ADDLL. The proposed high sensitivity PFD is also presented in this chapter. The proposed 

PFD uses the digital pulse amplifier to improve the sensitivity of the traditional three-state 

phase and frequency detector, and thus it is also very suitable to be used in the ADPLL and 

ADDLL design. 
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Chapter 3 

All-Digital Phase-Locked Loop Design  

 

In this chapter, the design for all-digital phase-locked loop (ADPLL) is presented. The 

phase-locked loops (PLL) are widely used for many communication applications, such as 

frequency synthesizer, clock multiplier, clock and data recovery circuit, or input clock jitter 

filtering. It had become an essential function block for current System-On-Chip (SoC) design. 

And how to design the PLL in a more efficient way is a very important design issue for chip 

makers. 

Due to high integration of VLSI system, PLL often operates in a very noisy environment. 

The jitter less than ±4% of the clock cycle time is typically needed to avoid functional 

failures in a microprocessor [1]. However, the digital switching noise coupled through power 

supply and substrate induces considerable noise into noise-sensitive analog circuits [1,3-7].  

Traditionally, many analog approaches are proposed to improve the jitter performance of 

PLL, such as: choosing a narrow bandwidth or using a low gain Voltage-Controlled Oscillator 

(VCO) [3]. However, those analog approaches often result in long lock-in time and increasing 

design complexity of PLL. 

In recently years, ADPLL became more attractive since they yield better testability, 

programmability, stability and portability over different processes [8,9]. And they can reduce 
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the system turn around time. But the jitter performance and the frequency resolution of the 

traditional ADPLLs are not as well as analog PLLs. This is because it is difficult to design the 

high resolution digital-controlled oscillator (DCO) and high sensitivity phase and frequency 

detector (PFD).  

However, the ADPLL has the ability to achieve fast-locking in a short period, and it is 

very suitable for fast-locking applications. If the jitter performance of the ADPLL can be 

improved, then the ADPLL can be used in more applications. Thus how to design a 

fast-locking ADPLL with low-jitter performance in a short design time is the goal for this 

research. 

In this chapter, an ADPLL using the proposed high resolution delay cell and the 

proposed high sensitivity PFD is presented. The design for the delay cell and the PFD was 

already discussed in chapter 2. The proposed delay cell can reduce both cost and design time 

for building a high resolution cell-based DCO. And the proposed PFD can improve the jitter 

performance and reduce the frequency error for the output clock. Moreover the flexible 

ADPLL architectures for different target applications are presented in this chapter for a truly 

portable and cost-effective ADPLL-based frequency synthesizer solution. 

    The organization of this chapter is as follows. In section 3.1, the overview of PLL is 

discussed. In section 3.2, the design trade-off between different PLL architectures is 

discussed. In section 3.3, the proposed ADPLL architecture is presented. In section 3.4, the 

test chip which implements of the proposed ADPLL using standard 0.35µm CMOS process is 

presented. In section 3.5, the simulation and measurement results of the test chip are 

presented. Finally, a brief summary is made in section 3.6. 

 

3.1 Overview of Phase-Locked Loop (PLL) 

The general PLL architecture is shown in Fig. 3.1. The input of PLL is reference clock 
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and programmable divide ratio M, and output clock outputs from the internal oscillator. The 

PLL keeps tracking the frequency and the phase of reference clock, and it speeds up or slows 

down the internal oscillator to minimize frequency and phase error between divided output 

clock (Out_divM) and reference clock. After PLL is locked, the frequency of output clock is 

M times higher than reference clock, and the phase of output clock is synchronized with 

reference clock. 

 

 

Fig. 3.1: The general PLL architecture. 

 

The PLL lock-in process is separated into frequency acquisition and phase acquisition. 

The frequency detector detects the frequency difference between reference clock (Reference 

Clock) and divided output clock (Out_divM). And the PLL controller controls the internal 

oscillator’s output frequency to minimize frequency error. Thus high resolution oscillator is 

needed to generate accurate frequency output. After frequency acquisition is completed, the 

PLL turns into phase acquisition and phase maintaining mode. 

The lock-in time of PLL is mainly determined by the frequency acquisition time, thus 

how to reduce frequency acquisition time is very important to a fast-locking PLL design. In 

previous designs, the adaptive gain control PLL [2,37] or the TDC-based ADPLL [39] are 

proposed to speed up the frequency acquisition process. 
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Fig. 3.2: The frequency acquisition process of PLL. 

 

 Fig. 3.2 illustrates the frequency acquisition process of PLL. If we assume the oscillator 

is reset to high at every rising edge of Reference Clock, and the output period of Out_divM is 

F(t), where t is time. And we assume at time=0, the frequency detector finds that output 

frequency of oscillator is higher than Reference Clock. The PLL controller will control the 

internal oscillator to slow down. 

 If step size for frequency acquisition is F_STEP, then the output period of Out_divM at 

t=T becomes F(T)=T0 + F_STEP, and the output period of Out_divM at t=2T becomes 

F(2T)= T1 + F_STEP = T0 + 2*F_STEP. The general form to determine the output period of 

Out_divM at time t can be expressed as Eq. 3.1. 

F(nT) = F((n-1)T) – F_STEP, if F((n-1)T) > T, 

F((n-1)T) + F_STEP, if F((n-1)T) < T 

F((n-1)T), if F((n-1)T) = T            (Eq. 3.1) 

When F(t) becomes T or the frequency detector can not distinguish the frequency difference 

between Reference Clock and Out_divM, the frequency acquisition is done. 

After frequency acquisition is completed, the PLL starts to trace the phase of reference 

clock. Fig. 3.3 illustrates the phase acquisition process of PLL. If we assume the frequency 
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error between Reference Clock and Out_divM is zero after frequency acquisition, and the 

phase error between Reference Clock and Out_divM is P(t), where t is time. The initial phase 

error is P(0). And we assume at time=0, the phase detector finds that Out_divM lags behind 

Reference Clock. The PLL controller will control the internal oscillator to speed up. 

If step size for phase acquisition is P_STEP, then the phase error at t=T becomes P(T) = 

P(0) + T0 – T= P(0) – P_STEP. And the phase error at t=2T is P(2T) = P(T) + T1 – T = P(0) – 

P_STEP – 2*P_STEP. The general form of phase error at time t can be expressed as Eq. 3.2. 

∑−=
n

STEPPnPnTP _*)0()(                    (Eq. 3.2) 

where we assume that the Out_divM still lags behind the Reference Clock after several 

updates of the oscillator frequency. When P(t) becomes negative or zero, the phase 

acquisition process is completed. 

 

 

Fig. 3.3: The phase acquisition process of PLL. 

 

After phase error is eliminated, phase acquisition process is completed. PLL controller 

will restore oscillator’s frequency back to the baseline frequency which is determined by 

frequency acquisition process, and the PLL turns into phase maintaining mode. In this phase 
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maintaining mode, the PLL keeps tracking the phase of reference clock by fine-tuning 

oscillator’s output frequency. 

In phase acquisition process, phase detector must provide correct phase relationship 

information about reference clock and divided output clock. The dead zone of phase detector 

will increase phase acquisition time and final phase error. Thus how to design a high 

sensitivity phase detector is a design challenge for PLL design. Since the operating range and 

output frequency accuracy is determined by the internal oscillator, the design for high 

resolution oscillator is also an important design challenge for PLL design. 

 

3.2 Design Trade-Off in Different PLL Architectures 

PLL design is a trade-off among jitter performance, lock-in time, area cost power 

consumption, circuit complexity and design time. Thus it is hard to design one PLL suitable 

for all applications. For fast-locking frequency synthesizer applications, such as a frequency 

hopping multiple access systems, the lock-in time is the most critical design issue. And for 

portable or mobile applications, lock-in time is also very important since the PLL must 

support fast entry and exit from power management techniques [9]. 

In traditional analog PLL designs, fast acquisition requires tuning of the 

Voltage-Controlled Oscillator (VCO) free-running frequency near the desired frequency in 

advance or to increase loop bandwidth. But increasing the loop bandwidth degrades jitter 

performance, and the exact VCO tuning range is not easy to be achieved since there always 

has process variations, voltage variations, and temperature variations (PVT variations).  

Thus a Digital Frequency-Difference Detector (DFDD) is proposed in [2] to convert the 

frequency difference directly to the digital value, and then change the gain for VCO control 

adaptively. The dual-loops PLL architecture [37] uses one loop for fast tracking the suitable 

frequency range and the other loop fine-tuning the output. Both of them proposed a concept 
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that for fast lock-in time, the VCO gain or the loop bandwidth should be increased during the 

frequency acquisition process. And after frequency is locked, it should return to its normal 

value to preserve the low jitter performance. But the circuit complexity is increased due to 

this adaptive gain control ability. 

A different way to achieve fast lock-in time is proposed in [38]. It uses a digital hybrid 

PLL (DH-PLL) with Digital Look-up Table (DLT) to shorten settling time and achieve fast 

switching speed at every frequency synthesis. This design uses a DLT to directly adjust VCO 

output to the desired frequency, and then uses a traditional analog PLL to fine-tune the output. 

However, this digital look-up table is still dependent on PVT variations. As a result, 

acquisition time increases in proportion to the initial frequency difference. 

From the previous PLL architectures [2,37,38], the methods for fast-locking PLL design 

can be classified into two types: one uses an adaptive gain control for the frequency 

acquisition process, and the other uses a look-up table to speed up the frequency acquisition 

process.  

To further speed up the lock-in time, an all-digital phase-locked loop (ADPLL), which 

uses a Time-to-Digital Converter (TDC) circuit to quantize the reference clock period into 

multiples of inverter delay times, is proposed in [39]. This PLL replaces the DLT [38] by 

TDC to against PVT variations and speeds up the frequency acquisition process. Since the 

TDC and the DCO are suffered from the same PVT variations, the TDC measured value is 

more accurately than the DLT [38], and the lock-in time of the PLL can be further reduced. 

But the area cost for the TDC digital processing unit is a problem if a small chip area is 

required. 

For clock multiplier applications, the phase error between reference clock and output 

clock is very important. Since the ring oscillator has jitter accumulation problem, it is not 

easy to minimize the phase error. In ADPLL [9], the anchor register is used to store the 
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baseline frequency, thus the ADPLL controller can keep tracking the phase of the reference 

clock. But the phase error of the PLL-based clock multiplier may become worst when the 

input jitter from the reference clock exists or the multiplication ratio is increased. 

The DLL-based clock multiplier [40-42], which generates the output clock from the 

delayed version of reference clock, can efficiently reduce the phase error. But it is not 

suitable for a programmable design since the multi-phase delay line is not a scalable design. 

So the PLL-based clock multiplier is still more flexible than the DLL-based clock multiplier. 

The Digital Controlled PLL (DCPLL) [2] has been proposed to achieve fast lock-in time. 

But due to low sensitivity of frequency detector and resolution limitation of D/A converter, its 

jitter performance is worse than analog designs. An ADPLL proposed in [9] can achieve fine 

resolution and fast lock-in time. However its DCO needs to be full-custom designed, making 

it difficult for porting to different processes as design requests. A complete cell-based ADPLL 

is proposed in [8], where fine-search delay matrix architecture is developed to improve 

DCO’s resolution. Also two DCOs are exploited to reduce output clock jitter effectively. 

However the proposed fine-search delay matrix occupies large silicon area and has high 

power consumption. 

 From the above discussions, a better ADPLL architecture should be easily modified to 

fit different applications. Thus in the next section, a flexible ADPLL architecture is proposed 

for most applications. The proposed ADPLL architecture takes the advantages of the 

TDC-based ADPLL [39] and the portability of the cell-based ADPLL [8] to build up a 

low-jitter, low-cost, fast-locking and cell-based ADPLL. 

 

3.3 The proposed ADPLL Architecture 

3.3.1 ADPLL Architecture Overview 
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Fig. 3.4: The proposed ADPLL architecture. 

 

The proposed ADPLL architecture is shown in Fig. 3.4. The ADPLL consists of Phase 

and Frequency Detector (PFD), Time-to-Digital Converter (TDC), ADPLL Controller, 

INNER DCO, OUTPUT DCO, loop filter, input frequency divider (FdivN) and feedback 

frequency divider (FdivM). M and N inputs are used for programming frequency divider and 

input divider respectively. 

The PFD detects the frequency difference and phase error between divided reference 

clock (ref_divN) and divided INNER DCO’s output clock (dco_out_divM), and it outputs up 

(P_UP) and down (P_DOWN) signal to indicate that the INNER DCO should speed up or 

slow down respectively. The ADPLL controller takes those control signals from the PFD and 

performs update of the DCO control code (coarse, fine). This DCO control code is also sent 

to the loop filter. After ADPLL is locked, the DCO control code is converged to the 

fine-tuning range. And then both frequency acquisition and phase acquisition are achieved. 

The loop filter takes DCO control code from the ADPLL controller, and it detects the 

variations range of the DCO control code after ADPLL is locked, and outputs average 

control code (avg_coarse, avg_fine) for OUTPUT DCO. After ADPLL is locked, every time 
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when the PFD’s output changes from up to down or vice versa, the ADPLL controller 

restores this average DCO control code from the loop filter for phase acquisition and phase 

maintaining. 

In the proposed ADPLL architecture, the TDC is an optional module and is only used 

for fast-locking ADPLL. If the lock-in time is not a critical design issue or a smaller chip 

area is required, this module is removed from the architecture, and then the binary search 

ADPLL controller is used for frequency acquisition.  

For frequency synthesis application, the loop filter can filter out DCO control code 

variations and controls OUTPUT DCO to provide a low-jitter clock output (AVG_CLK). For 

clock multiplier applications, OUTPUT DCO is removed from the architecture, and in-phase 

output clock directly outputs from the OUT_CLK. 

 

3.3.2 Design for Binary Search ADPLL Controller 

In binary search ADPLL controller, a binary search scheme is used when it searches for 

the target frequency. Fig 3.5 illustrates the frequency acquisition process. The frequency 

acquisition starts from middle frequency band of the DCO. If DCO can provide “n” different 

frequencies, the search step is “n/4” in the initial state. When output frequency is lower than 

target frequency, ADPLL controller adds current search step to DCO control code, and this 

increases the output frequency of DCO. Oppositely, when output frequency is higher than 

target frequency, ADPLL controller subtracts the DCO control code to lower the output 

frequency of DCO. 

Whenever the PFD’s output changes from up (P_UP) to down (P_DOWN) or vice versa, 

the search step is divided by 2. And after the search step reduces to 1 (i.e. one fine-tuning step 

of the INNER DCO), the frequency acquisition is done. Then the ADPLL controller enters 

phase acquisition and phase maintaining mode. In this mode, the ADPLL controller adjusts 
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the fine-tuning control code of the INNER DCO to eliminate the phase error between divided 

reference clock (ref_divN) and divided INNER DCO’s output clock (dco_out_divM) 

whenever it receives the up (P_UP) or down (P_DOWN) from PFD. 

 

  

Fig. 3.5: The Binary search ADPLL controller. 

 

The ADPLL’s closed-loop response time is determined by the response time of DCO, 

delay time of ADPLL controller and frequency divider. Therefore DCO’s control code can 

only be updated at every “m” cycles, instead of every reference clock cycle. Here “m” is 

determined by closed-loop’s response time. In Fig. 3.5, it shows that the update period (T) for 

DCO control code is “m” reference clock cycles. Hence, the worst-case lock-in time for this 

frequency acquisition algorithm, in term of reference clock cycles can be express as Eq. 3.3. 

T(n) = m*(1 + 2*log2(n/2))= m*(2*log2(n) – 1)        (Eq. 3.3) 

 

3.3.3 Design for TDC-Based Fast-Locking ADPLL Controller 

For fast-locking applications, lock-in time is the most critical design issue. Thus in the 
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proposed architecture, TDC is used to quickly calculate the nearest control code for DCO to 

produce the desired frequency. TDC can convert the reference clock’s period information to 

multiples of delay cell’s delay time. Hence, ADPLL controller can use this information to 

quickly jump to the desired frequency band. And then ADPLL performs fine-tuning to 

reduce the residual frequency error and phase error. As a result, the lock-in time can be 

reduced by adding TDC module. 

Fig. 3.6 shows the architecture of the proposed TDC for fast-locking ADPLL. To make 

sure that the TDC measured value can be directly applied to DCO, the ring delay line of 

TDC has a copied structure from the DCO with some reductions, and the difference is that 

only three coarse-tuning delay cells are used in TDC path selector. The detail DCO structure 

is discussed in section 3.4.1. 

After system reset and with the first rising edge of reference clock, TDC is turned on 

(TDC_enable=1), and ring delay line of the TDC begins to oscillate. Output clock of the ring 

delay line triggers TDC counter to count up until the second rising edge of reference clock 

comes. Then TDC is turned off (TDC_enable=0). 

 

 

Fig. 3.6: The structure of the proposed TDC for fast-locking ADPLL 
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The TDC counted value: TDC_cycle means that the reference clock’s period can be 

quantized as the multiples of TTDC-ring, where TTDC-ring means the oscillation period of the 

TDC ring delay line. The value of TTDC-ring can be expressed as Eq. 3.4. 

TTDC-ring = 3*COARSE_UNIT+ Tselect-path + TFine-tune + TRESET         (Eq. 3.4) 

where Tselect-path is delay time of path selector and TFine-tune is the delay time of fine-tuning 

delay cell, and TRESET is the delay time for reset stage. 

If n coarse-tuning delay cells are needed in DCO’s coarse-tuning delay stage to produce 

the desired output frequency, output clock period of the DCO can be express as Eq. 3.5. 

TDCO= n*COARSE_UNIT + Tselect-path + TFine-tune + TRESET           (Eq. 3.5) 

If we let TZ = Tselect-path + TFine-tune + TRESET, and the desired output frequency should be 

M/N times of the reference clock frequency, and Eq. 3.6 must be satisfied. 

M*TDCO= TTDC-ring*(TDC_cycle/N)                                     

=> M*N*(n*COARSE_UNIT + TZ) = (3*COARSE_UNIT + TZ) * TDC_cycle 

=> n= 3*(TDC_cycle/M*N) + (TZ/COARSE_UNIT)*((TDC_cycle-1)/M*N)   (Eq. 3.6) 

To reduce the circuit complexity for TDC, TDC_cycle-1 is reduced to TDC_cycle, and 

since TZ contains five gate delays, TZ/COARSE_UNIT is replaced by 5. Therefore the 

equation can be further reduced and expressed as Eq. 3.7. 

              n ≅  8*TDC_cycle/(M*N)                        (Eq. 3.7) 

Thus digital processing unit takes the counted value (TDC_cycle) from TDC counter 

and performs the calculation of Eq. 3.7, and then outputs the DCO control code (TDC_DIV) 

to ADPLL controller. The ADPLL controller takes this value as the initial DCO control code. 

After that, it fine-tunes the output by up (P_UP) and down (P_DOWN) control signals from 

PFD. 

The bit width of TDC counter and TDC digital processing unit are determined by the 

maximum reference clock period (i.e the lowest reference clock rate). After user specifies the 
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reference clock range, the bit width must be large enough to avoid overflow in TDC counter. 

Since in Eq. 3.7, one divider is needed for calculation of the suitable DCO control code. 

Thus when TDC module is used for the ADPLL design, the area cost is increased, but the 

frequency acquisition time can be reduced. 

The area cost for binary search ADPLL controller is much lower than TDC-based 

fast-locking ADPLL controller. Hence binary search ADPLL controller is very suitable for a 

low-cost ADPLL design and still has faster lock-in time than traditional analog PLLs. And 

for fast-locking applications, the TDC-based ADPLL controller is preferred. 

 

3.4 The ADPLL Circuit Design 

In the proposed ADPLL architecture, all functional blocks are implemented with 

standard cells. Thus design time for the ADPLL is reduced by the proposed cell-based 

architecture. And the limitations of the cell-based design are overcome by using the proposed 

high resolution delay cell and high sensitivity PFD. 

 

3.4.1 Design for Digital-Controlled Oscillator 

 

Fig. 3.7: The proposed cell-based DCO architecture. 
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The proposed cell-based DCO architecture is shown in Fig. 3.7. In the test chip, the 

DCO is implemented with TSMC 0.35µm 1P4M CMOS standard cell library. It is separated 

into two stages: coarse-tuning stage and fine-tuning stage. 

In coarse-tuning stage, the coarse-tuning delay chain with 64-to-1 path selector 

architecture is used to provide different delays for coarse-tuning. The 64-to-1 path selector 

architecture is implemented with tri-state buffers. The DCO coarse-tuning encoder encodes 6 

(=log2(64)) bits coarse-tuning control code into 64-bit one-hot path selection control signals. 

This architecture has advantage of minimum intrinsic delay time in path selector to improve 

maximum operating frequency of the DCO. And it can be easily modified to meet different 

specifications for different applications. 

To avoid large loading capacitance appearing in the path selector’s output, the path 

selector is partitioned into two stages. In the first stage, every sixteen coarse-tuning delay 

blocks will select a partial output. And the second stage path selector will select the final 

output. The delay time difference between two neighbor paths is determined by one 

coarse-tuning delay cell. The (TPHL + TPLH) of one coarse-tuning delay cell is about 300ps in 

the target process. Thus when DCO’s coarse-tuning control code increases one or decreases 

one, the amount of output clock’s period will be changed by ±300ps.  

To increase frequency resolution of the DCO, fine-tuning delay cell is added after 

coarse-tuning stage. The circuit of fine-tuning delay cell is show in Fig. 2.3. And the detail 

information about how to design the fine-tuning delay cell is discussed in section 2.1. 

The controllable range of fine-tuning delay cell should cover one coarse-tuning step (i.e. 

300ps). And the DCO resolution can be improved to averagely 5ps by adding fine-tuning 

delay cell. The maximum output frequency of DCO is 545MHz (1.833ns) and minimum 

output frequency of DCO is 41MHz (24.261ns) by SPICE circuit simulation. 
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3.4.2 Design for Phase and Frequency Detector 

The circuit of cell-based PFD is shown in Fig. 2.5, and the detail information about how 

to design PFD is discussed in section 2.2. After using the digital pulse amplifier to increase 

the sensitivity of PFD, phase error up to ±50ps can be detected in the target process. When 

phase error is less than the dead zone of PFD, there will have no trigger signals sent to 

ADPLL controller which remains unchanged in its previous state. 

 

3.4.3 Loop Filter Design 

After ADPLL has finished frequency acquisition and phase acquisition, INNER DCO’s 

control code becomes converged to a fine-tuning range. However the control code may have 

small variations due to the following factors: PFD’s dead zone, DCO’s finite resolution and 

reference clock jitter. To further improve jitter performance of the APDLL for frequency 

synthesizer applications, loop filter is used to filter out the resultant noise into OUTPUT 

DCO.  

Thus the loop filter detects the maximum INNER DCO control code and minimum 

INNER DCO control code within 512 reference clock cycles and then outputs (DCO control 

code (maximum) + DCO control code (minimum))/2 as the average DCO control code for the 

OUTPUT DCO. As a result, the jitter performance of the output clock can be improved. 

But since phase relationship between OUTPUT DCO and INPUT DCO is unknown. 

Thus this two DCO structure can only be used in frequency synthesizer applications, where 

only accurate frequency output is needed. And for phase acquisition applications, OUTPUT 

DCO is removed from the structure, and the output clock directly achieved from INNER 

DCO. 

The proposed loop filter circuit is very simple. It only needs two registers and one adder. 

But it can greatly reduce the noise effects and reference clock jitter effects. 
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3.4.4 A Systematic Approach for ADPLL Design 

A systematic way is provided to design the ADPLL with specified standard cell library. 

Firstly, SPICE circuit simulation of the fine-tuning delay cell should be performed to 

construct lookup table for mapping fine-tuning control code. 

When the controllable range of fine-tuning cell is determined, a suitable coarse-tuning 

cell, whose delay time (TPHL+TPLH) is less than or equal to the controllable range of 

fine-tuning delay cell, can be selected from cell library. And the specifications of output clock 

range determine the number of select paths in coarse-tuning stage.  

Hardware Description Language (HDL) is used to describe ADPLL controller, frequency 

divider, and loop filter. We use logic synthesizer to synthesize those modules to gate-level 

circuits with TSMC 0.35µm 1P4M CMOS cell library. Thus design time and complexity for 

ADPLL can be reduced. And the proposed ADPLL architecture can easily be ported to 

different processes in a short time. 

 

Controller

INNER
DCO

OUTPUT
DCO

Loop
Filter

PFD

 

Fig. 3.8: Microphotograph of the ADPLL (TSMC 0.35um). 
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Fig. 3.8 shows microphotograph of the ADPLL chip. We use Auto Placement and 

Routing (APR) tools to generate the layout. Since different interconnection delays may result 

in mismatches between INNER DCO and OUTPUT DCO, we use APR tools to generate one 

DCO layout first and then duplicate this DCO layout in final APR process. And both DCO 

and PFD should have maximum occupied area constraints to minimize the wire-loading 

effects during APR. Gate count of the ADPLL is 4800. The core area of the ADPLL is 840µm 

x 840µm. 

 

3.5 Experimental Results for the ADPLL test chip 

Fig. 3.9 shows the transient response of the binary search ADPLL, where the reference 

clock is 5MHz, and the division ratio M is 40. Thus the output frequency is 200MHz 

(=5MHz*40). The code[11:0], which means {coarse[5:0], fine[5:0]}, is converged to a 

fine-tuning range of the INNER DCO in a short time. By using binary search step in 

frequency acquisition, the ADPLL can finish frequency acquisition in 46 (= 2*(2*log2(2
12)-1)) 

reference clock cycles. 

 

  

Fig. 3.9: Transient response of the binary search ADPLL (@200MHz). 
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Fig. 3.10 shows the transient response of TDC-based fast-locking ADPLL at 300MHz. 

In this figure, the reference clock is 10MHz and M=30, N=1. After system reset, the TDC 

calculates the nearest DCO control code and then outputs it to the ADPLL controller in the 

1st reference clock cycle. In the 2nd reference clock cycle, the ADPLL controller updates the 

DCO control code to the initial DCO control code (TDC_DIV).  

During the 1st to 3rd reference clock cycles, the DCO and the frequency divider are 

reset and waiting for the update of the DCO control code is completed. In the 4th reference 

clock cycle, the DCO starts to oscillate and the frequency divider also starts to work. With 

this reset control, there has no initial phase error between DCO’s output and reference clock, 

and it can further reduce the time for phase acquisition. As a result, both frequency 

acquisition and phase acquisition is completed at the rising edge of 4th reference clock. 

After 4th reference clock, the ADPLL takes the control signals from the PFD to 

fine-tune the output frequency and also keeps maintaining the phase of output clock. 

 

 

Fig. 3.10: Transient response of TDC-based fast-locking ADPLL (@300MHz). 
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Fig. 3.11 compares two types of the proposed ADPLL. One uses the TDC-based 

fast-locking scheme and the other use the binary search for frequency acquisition process. 

From Fig. 3.11, it shows that the DCO control code for the TDC-based ADPLL has a faster 

convergence rate than the binary search ADPLL. Thus the proposed TDC-based ADPLL is 

very suitable for fast lock-in time applications. 

Fig. 3.12 shows the measured output waveform of the ADPLL with noisy digital 

circuitry (≈ 600mVpp supply noise) at 45MHz and 450MHz respectively. Due to the speed 

limitation of I/O PAD, the output frequency must be lowered for testing. The signal at 

Channel 2 shows the OUT_CLK signal divided by two and the signal at Channel D shows the 

long-term Pk-Pk jitter histogram over 200,000 sweeps. We use LeCory LC584A to measure 

output signal. Rms jitter and Pk-Pk jitter at 45MHz is 7ps and 20ps respectively. And rms 

jitter and Pk-Pk jitter at 450MHz is 22ps and 70ps respectively. 

 

 

Fig. 3.11: Compared TDC-based ADPLL to binary search ADPLL (@300MHz). 
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Table 3.1 lists the comparisons among different PLLs. The proposed ADPLL has shorter 

lock-in time and better jitter performance than analog PLL [1] and ADPLL [9]. Although 

DCPLL [2] can achieve fast locking, its jitter performance is worse than the proposed design. 

And the proposed ADPLL also has smaller area and lower power consumption than the 

cell-based ADPLL [8]. The proposed binary search ADPLL can achieve fast locking in 46 

reference clock cycles, and the proposed TDC-based ADPLL can achieve fast locking within 

4 reference clock cycles, and the proposed architecture has the best portability than the other 

designs. 

 

(a) 

 

(b) 

Fig. 3.12: Jitter histogram of the ADPLL (a) at 45MHz (b) at 450MHz. 
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Table 3.1: PLL PERFORMANCE COMPARISONS. 
Performance 

Parameter 
Proposed ADPLL [1] [2] [8] [9] 

Process 0.35µm CMOS 0.25µm CMOS 0.60µm CMOS 0.6µm CMOS 0.5µm CMOS 
Area 0.71mm2 0.09mm2 0.83mm2 2.75mm2 0.71 mm 2 

Approach All-Digital 
Cell-Based 

Analog Semi-Digital All-Digital 
Cell-Based 

All-Digital 

Power 
dissipation 

100mW 
(@500MHz) 

25mW 105mW 
(@400MHz) 

315mW 
@(800MHz) 

39.6mW 
@(100MHz) 

Max. Lock 
time 

< 46 cycles < 720 cycles < 16 cycles < 25 cycles < 50 cycles 

Min. 
Frequency 

45MHz 8.5MHz 300MHz 360MHz 50MHz 

Max. 
Frequency 

510MHz 660MHz 800MHz 800MHz 550MHz 

Supply 
voltage 

3.3V 1.9V 3.3V 3.3V 3.3V 

Output jitter 
(Pk-Pk) 

70ps  80ps 149ps 60ps 125ps 

 

3.6 Summary 

In this chapter, an all-digital phase-locked loop is presented. The ADPLL can be 

implemented with standard cells. And it has good portability over different processes. The 

ADPLL implemented in a TSMC 0.35µm 1P4M CMOS standard cell library, can operate 

from 45MHz to 510MHz. The Pk-Pk jitter of output clock is less than 70ps, and the rms jitter 

of output clock is less than 22ps. A systematic way to design ADPLL is also presented in this 

chapter. The proposed ADPLL can reduce design time and circuit complexity. Therefore it is 

very suitable for SoC applications. 
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Chapter 4 

All-Digital Delay-Locked Loop Design  

 

In this chapter, the design for all-digital delay-locked loop (ADDLL) is presented. As the 

speed and the complexity of VLSI system increases rapidly, clock skew and clock jitter 

effects become more and more important now. Thus how to distribute the clock for large 

clock loading nets and minimize the clock skew among all modules has become a design 

challenge for high-speed integrated circuits. 

Wide operation frequency for the clock deskew circuit is typically needed for many 

applications, such as I/O interface circuit and on-chip clock deskew circuit. And for portable 

or mobile applications, lock-in time is very important since the clock deskew circuit must 

support fast entry and exit from power management techniques. Thus how to design a 

fast-locking wide-range clock deskew circuit with low-jitter performance in a short period is 

the goal for this research. 

Both Phase-Locked Loops (PLL’s) and Delay-Locked Loops (DLL’s) can be used to 

solve the clock skew problems in microprocessors and high-speed I/O interfaces. However, 

PLL accumulates phase error or clock jitter, and makes its jitter performance worse than DLL. 

Since DLL tracks the reference clock cycle by cycle and doesn’t have this accumulative 

effect, it is a good alternative in clock deskew applications. 
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Fig. 4.1: Concept of Clock Deskew. 

 

Fig. 4.1 shows the general architecture of conventional DLL’s. The DLL adaptively 

inserts a delay between reference clock and remote clock. It selects an optimal delay (Td) to 

compensate the phase error between reference clock and remote clock. After DLL is locked, 

both remote clock and feedback clock will synchronize with reference clock. Then clock 

buffer delay (Tc) can be ignored. 

The lock condition for the DLL can be expressed as Eq. 4.1. 

       Tloop=Tdelay-line+Tclock-buffer                     (Eq. 4.1) 

where Tdelay-line and Tclock-buffer denote the delay time of delay line and clock buffer 

respectively. Tloop means the total delay time between reference clock and remote clock (or 

feedback clock). After DLL is locked, Tloop becomes integer multiple of reference clock’s 

period, thus there has no phase error between remote clock and reference clock. 

It is difficult to design a DLL to overcome total effects caused by process, voltage, 

temperature, and loading (PVTL) variations. As in conventional DLL, the operation range of 

DLL is very limited. Thus different architectures have been proposed for different 

applications. It needs to trade off phase error, clock jitter, power consumption, area cost, 

portability, and lock-in time when designing a certain DLL. 

In this chapter, we propose an all-digital fast-locking DLL. The proposed DLL utilizes 
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Time-to-Digital Converter (TDC) circuit and Digital-to-Time Converter (DTC) circuit to 

complete coarse-tuning in one clock cycle, resulting in less lock-in time. And the area cost for 

TDC and DTC can be shared with delay line. The proposed Digital-Controlled Delay Line 

(DCDL) architecture can turn off unused delay cells at high frequency operation, thus it is 

very suitable for wide-range clock deskew applications demanded in system-level integration. 

This chapter is arranged as follows: section 4.1 the overview of DLL is discussed. 

Section 4.2 discusses the design trade-off between different DLL architectures. In section 4.3, 

the proposed fast-locking DLL architecture is presented and the performance of the proposed 

fast-locking algorithm is analyzed. In section 4.4, the implementation of the proposed DLL in 

a 0.35 µm 1P4M CMOS process with standard cells is presented. Section 4.5 shows 

simulation results of the proto-type chip and experimental results are also presented and 

discussed. Finally, a brief summary is made in section 4.6. 

 

4.1 Overview of Delay-Locked Loop (DLL) 

 

 

Fig. 4.2: The general DLL architecture. 

 

The general DLL architecture is shown in Fig. 4.2. The input of DLL is reference clock, 

and output clock is a delayed version of reference clock outputs from the delay line. The DLL 
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keeps tracking the phase of reference clock, and DLL controller increases or decreases the 

delay time of the delay line to minimize phase error between output clock and reference clock. 

After DLL is locked, the phase of output clock is synchronized with reference clock. 

The DLL is often used to eliminate clock skew. In this application, the fixed delay exists 

at delay line output. And DLL eliminates the phase error between output clock and reference 

clock by adjusting the delay time of delay line. After DLL is locked, the phase of output clock 

is aligned with reference clock, and this fixed delay (i.e. clock skew) is removed. 

DLL only needs to perform phase acquisition. Thus the lock-in time of DLL is 

dependent on how to quickly estimate the phase error and uses the delay line to compensate it. 

Thus the phase acquisition process is divided into coarse-tuning phase acquisition and 

fine-tuning phase acquisition. In the coarse-tuning phase acquisition, the synchronous mirror 

delay (SMD) type DLL [11,20,24] is often used to achieve fast lock-in time. And then in the 

fine-tuning phase acquisition, the phase detector detects the residual phase error and controls 

the delay time of delay line to eliminate the phase error. 

 

 

Fig. 4.3: The phase acquisition process of DLL. 
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Fig. 4.3 illustrates the phase acquisition process of DLL. Since output clock is a delayed 

version of reference clock, the period of reference clock (Reference Clock) and output clock 

(Output Clock) is the same. And since the delay line is open-loop architecture, the output 

clock doesn’t accumulate the previous phase error. Every rising edge of the output clock is a 

delayed version from current rising edge of the reference clock. 

Thus if we express the phase error between Reference Clock and Output Clock as D(t), 

where t is time. The initial phase error is D(0). And we assume at time=0, the phase detector 

finds that Output Clock lags behind Reference Clock. The DLL controller will control the 

delay line to reduce the delay time. If the step size for phase acquisition is D_STEP, then the 

phase error at t=T becomes to D(T) = D(0) - D_STEP. And the phase error at t=2T is D(2T) = 

D(T) – P_STEP = D(0) – 2*D_STEP. The general form of phase error at time t can be 

expressed as Eq. 4.2. 

STEPDnDtD _*)0()( −=                      (Eq. 4.2) 

where we assume that the Output Clock still lags behind the Reference Clock after several 

updates of delay line’s delay time. When D(t) becomes negative or zero, the phase acquisition 

process is completed. And the DLL turns into phase maintaining mode. In this phase 

maintaining mode, the DLL keeps tracking the phase of reference clock by fine-tuning the 

delay line’s delay time. 

Similarly to the PLL in phase acquisition process, the phase detector must provide 

correct phase relationship information about reference clock and output clock. Thus how to 

design a high sensitivity phase detector is also a design challenge for DLL design. And since 

the operating range and output phase accuracy is determined by the delay line, the design for 

high resolution delay line is also an important design challenge for DLL design. 

 

4.2 Design Trade-Off in Different DLL Architectures 
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DLL architectures can be classified into three categories: analog DLL [12-15], digital 

DLL [11,16-19], and mixed-mode DLL [20-24]. Analog DLL often has smaller phase error 

than digital DLL. But when some fluctuations appear in voltage-controlled circuit, the total 

delay variation of whole delay line becomes very large and induces large jitter at output clock. 

To avoid this situation, the loop filter in analog DLL must have narrow bandwidth, leading to 

the fact that analog DLL often takes a long time to achieve lock. 

Digital DLL has good portability over different fabrication processes, and it can achieve 

lock in a short time. But since the delay time is quantized, phase error and clock jitter will 

increase when continuously changing the quantized delay time with supply noise and 

reference clock’s jitter. So the major design challenge of digital DLL is to improve the 

resolution of delay line while maintaining an acceptable short lock-in time and power 

consumption. 

In mixed-mode DLL [20-24], it combines analog DLL and digital DLL and separates the 

locking scheme into coarse-tuning stage and fine-tuning stage. Coarse-tuning stage is 

adjusted by digital DLL. After digital DLL is locked, the phase selection of digital DLL 

remains unchanged, and analog DLL with phase interpolator will interpolate the fine-tuning 

stage’s output and the coarse-tuning stage’s output to produce the final output. Both fast 

locking and phase error minimization can be achieved by mixed-mode DLL. However, the 

portability of mixed-mode DLL is less than digital DLL since analog circuits depend on 

target process. And its design complexity is also higher than digital DLL. 

For system-level integration or realization of System-On-Chip (SoC) design, it’s better 

to implement the DLL with digital circuits because of less design complexity, higher 

portability, and lower supply voltage than analog circuit. However, large phase error and 

clock jitter are the major drawbacks of traditional digital DLL. Thus in SAR DLL [18], MOS 

capacitor is used to achieve high phase resolution in low supply voltage. And binary search 
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algorithm is applied to reduce the lock-in time. But the delay line architecture proposed in [18] 

has large intrinsic delay, and when DLL operates at high frequency, most portions of delay 

line are not used. That means some unnecessary power dissipations are consumed at high 

frequency operation. So the DLL architecture proposed in [18] is not suitable for wide-range 

fast locking operation. 

To reduce the intrinsic delay of delay line, the digital DLL [19] uses both reference clock 

and inversion reference clock to reduce half of delay line length. Moreover phase blenders 

are used to improve the phase resolution of delay line. But this DLL architecture needs extra 

duty cycle correctors to correct the duty cycle of reference clock and output clock to exactly 

50%. Otherwise there will have large phase error between reference clock and output clock. 

Since the duty cycle corrector is an analog circuit, it will depend on process, so the portability 

of this DLL is less than the all digital DLL’s proposed in [16-18]. 

 

 

Fig. 4.4: Fast-Locking DLL based on TDC-DTC architecture. 

 

To further reduce the lock-in time of DLL, TDC-DTC architecture is used [11,20, 24]. In 

Fig. 4.4, TDC and DTC are used to estimate the phase error quickly, and immediately 

compensate the phase error between reference clock and remote clock. However the 

resolution limitation of TDC and DTC makes it have large phase error after the DLL is 

locked. Thus it often needs to have further compensation to minimize the residue phase error. 

And the TDC circuit and the DTC circuit will increase the area cost for DLL design. 
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From the above discussions, a better ADDLL architecture should have a fast-locking 

time and also have small phase error and low power consumption for wide-range operation. 

Thus in the next section, an all-digital fast-locking DLL architecture is proposed. The 

proposed ADDLL architecture takes the advantages of the SAR DLL [18] and the TDC-DTC 

based DLL [11,20,24] to build up a low-jitter, low-cost, fast-locking and cell-based ADDLL. 

 

4.3 The proposed ADDLL Architecture 

Fig. 4.5 shows the proposed DLL architecture. The DLL consists of several parts, 

namely: phase detector, initial phase error estimator, Time-to-Digital Converter (TDC), DLL 

controller, and Digital Controlled Delay Line (DCDL).  The DLL controller receives the UP 

and DOWN signals from the phase detector, and then it decreases or increases the delay time 

of DCDL respectively. The DLL needs to insert an optimal delay between reference clock and 

remote clock. After DLL is locked, the remote clock and feedback clock will synchronize 

with the reference clock. 

 

 

Fig. 4.5: The proposed fast-locking wide-range DLL. 

 

To achieve fast locking, the phase error between reference clock and feedback clock 

should be compensated in a more efficient way. Fig. 4.6 shows the initial phase error between 
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reference clock and feedback clock after system reset. The initial phase error estimator, which 

is also shown in Fig. 4.6, generates the “P_CLK” pulse for the next TDC stage. The pulse 

width of “P_CLK” indicates the initial phase error needed to be compensated. 

 

 

Fig. 4.6: Initial phase error estimator. 

 

To speed up lock-in time, TDC is applied to the proposed DLL. Fig. 4.7 shows the 

architecture of the TDC module. In Fig. 4.7, “P_CLK” is set to high after system reset, thus 

the output of each coarse-tuning delay unit (CDU) will be initially set to high. Then when a 

low pulse is applied to “P_CLK”, this low signal will propagate through CDUs. And when 

the rising edge of “P_CLK” signal comes, implying the end of the pulse, the D-Flip/Flops 

will sample the current state of each CDU’s output. Thus the pulse width of “P_CLK” can be 

converted to multiples of CDU’s delay time. And the coarse-tuning control command for 

DCDL can be set to this initial value (IC_CODE). Then the feedback clock becomes very 

close to reference clock in a few clock cycles. 
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Fig. 4.7: The architecture of Time-to-Digital Converter for fast-locking ADDLL design. 

 

The lock-in time for the proposed DLL can be expressed in term of reference clock 

cycles as T(n)=1+m+n, where m, n denote the delay line response time, and clock buffer 

delay time respectively. One extra clock cycle is needed for TDC calculation. Thus for the 

case, both delay line response time and clock buffer delay time are one clock cycle delay, t 

becomes 3 (=1+1+1) clock cycles. But since the resolution of TDC is limited by the delay 

time of CDU or the timing requirements of D-Flip/Flops, the lock-in time will be increased 

when further update of the delay line control command is needed. 

For wide-range operation, the DCDL of DLL should have large controllable range to 

overcome the possible phase error in low frequency operation. But when DLL operates at 

high frequency, the DLL only needs a smaller controllable range than in low frequency 

operation. Thus the DCDL should have control mechanisms to turn off unused delay cells in 

high frequency operation to reduce power consumption. 

In the proposed DLL, the DCDL is partitioned into coarse-tuning stage and fine-tuning 

stage. And its structure is shown in Fig. 4.8. In the coarse-tuning stage, totally (N-1) CDUs 

are used. The delay line controller will encode log2(N) bits coarse-tuning control command 
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into N paths selection control signals. Only one path will be selected corresponding to one 

specific coarse-tuning control command. And every four CDUs will have one CDU with 

disable control. Thus if the coarse-tuning control command is applied, those CDUs which are 

not used can be turned off to minimize power consumption. The DLL controller also controls 

those disable control signals. 

 

 

Fig. 4.8: The proposed digital-controlled delay line. 

 

In the coarse-tuning stage, totally N different delays are achieved, and the step size of 

the coarse-tuning stage is determined by the delay time of CDU. Thus the totally delay 

controllable range of coarse-tuning stage is TCoarse=TCDU*(N-1). 

To increase the phase resolution of DCDL, fine-tuning stage is added after the 

coarse-tuning stage. The fine-tuning stage consists of (2M-1) fine-tuning delay units (FDU), 

and this stage is controlled by (M) bits fine-tuning control command. Each FDU has two 

different delays: fast delay and slow delay. The delay time difference between fast delay and 

slow delay is denoted as TFDU. The fine-tuning stage is binary-weighted controlled, leading to 
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totally (2M) different delays. The step size of fine-tuning stage is determined by TFDU. Hence 

the total delay controllable range of fine-tuning stage becomes TFine=TFDU*(2M-1). 

It is important to keep the value of TFine larger than or equal to TCDU.  Otherwise when 

the coarse-tuning control command is changed, the output of the DCDL will have a large 

phase jump. And properly choosing the fine-tuning range can also minimize the possibility to 

change the coarse-tuning stage, and hence the possible glitches at path selector’s output can 

be avoided. 

To overcome phase error at low frequency operation, the controllable range of DCDL 

should be larger than the maximum clock period of reference clock. That means TCoarse should 

be larger than the maximum period of reference clock under PVTL variations.  

The proposed DCDL architecture uses the path selector to minimize the intrinsic delay 

of delay line. The fine-tuning stage, which is connected after the output of coarse-tuning 

stage, can improve the phase resolution of the delay line and avoid possible glitches at path 

selector’s output. 

In Fig. 4.5, multiplexers (MUXs) and bypass circuit are used to share the area cost for 

TDC circuit and DTC circuit with delay line. After system reset, the output clock is switched 

to the output of bypass circuit, and the input of delay line is switched to “P_CLK” signal. 

Thus TDC can use the CDUs of delay line to estimate the initial phase error between 

reference clock and feedback clock.  

When the initial phase error has been estimated, the input of delay line is switched back 

to reference clock, and then the output clock is switched to the output of delay line. Thus the 

area cost of TDC circuit and DTC circuit can be reduced. In bypass circuit, it mirrors the 

fastest coarse-tuning stage delay and fine-tuning stage delay. Thus the measured initial 
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coarse-tuning control command (IC_CODE) can be directly applied to the coarse-tuning 

stage. 

 

4.4 The ADDLL Circuit Design 

For high-speed I/O interface and on-chip clock de-skew applications, embedded DLL’s 

are demanded to achieve high-speed data transfer rate. The required operation range of DLL 

may be different for different applications. To make sure that the proposed DLL can be 

applied to those applications, a test chip targeting to a wide operation range (65MHz to 

500MHz) is designed. 

The proto-type chip of the proposed DLL has been fabricated in a standard 0.35µm 

1P4M CMOS process with standard cells. And we use Auto Placement and Routing (APR) 

tools to generate the layout of DLL. But some critical modules, such as DCDL or phase 

detector, should meet area constraints to minimize wire-loading effects during APR. Thus the 

proposed DLL can easily be ported to different processes in a short time with supported 

standard cells. 

 

 

Fig. 4.9: (a) Fine-tuning delay cell (b) Fine-tuning delay cell with disable control  

(c) Coarse-tuning delay cell. 
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Fig. 4.9(a) shows the circuit of fine-tuning delay unit (FDU). The detail information 

about this fine-tuning delay cell is discussed in section 2.1. But it has some modifications for 

ADDLL applications. The FDU is constructed by one AND-OR-INV (AOI) cell and two 

shunted tri-state buffers which are always turned on. Tri-state buffers are used to reduce the 

transition time of FDU to improve operation frequency of the DCDL.  

The FDU is an inverter with delay time control. The delay time from “IN” to “OUT” can 

be controlled by “CON”, where “CON”=1 is for fast delay and “CON”=0 is for slow delay. 

The delay time difference between those two cases is 20ps in the target process. Thus the step 

size of fine-tuning stage is 20ps (TFDU). 

Fig. 4.9(b) shows the FDU with disable control. If “DISABLE”=1, the “OUT” remains 

at low regardless of “IN”. This delay cell is used in coarse-tuning delay stage to turn off 

redundant delay cells after this delay cell. Thus the power consumption of DCDL in high 

frequency operation can be reduced. The input capacitance of this delay cell is the same as 

the FDU without disable control to prevent the delay time difference between normal delay 

cells and these delay cells. 

The coarse-tuning delay unit (CDU) is constructed by cascading two FDUs and is shown 

in Fig. 4.9(c). The delay time from “IN” to “OUT” is 300ps, thus the step size of 

coarse-tuning stage is 300ps (TCDU). Since the controllable range of fine-tuning stage should 

be larger or equal to the step size of coarse-tuning stage, totally 15 (=24-1) FDUs are used 

(M=4), and the total delay controllable range of fine-tuning stage is about 300ps 

(=20ps*(24-1)). The maximum period of reference clock is about 15.4ns (at 65MHz). Thus 

the total controllable range of DCDL (TCoarse) should be larger than this value. Hence 63 

CDUs are used (N=64), and the total controllable range of DCDL is about 18.9ns 

(=300ps*(64-1)). 
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(a) 

 

(b) 

Fig. 4.10: Simulation waveform of DCDL (a) at 50MHz clock input (b) at 500MHz clock 

input 

 

Fig. 4.10 shows the simulation waveform of the proposed DCDL for different 

frequencies input. In the proposed DCDL, since each CDU consists of two FDUs, the 

output’s rise time and fall time is balanced in coarse-tuning stage. And in fine-tuning stage, 

the asymmetry between output’s rise time and fall time comes from the FDU, which is 

controlled by the LSB of fine-tuning control command. As a result the output’s rise time and 

fall time of the proposed DCDL is balanced, and the duty cycle of output clock is almost 50% 

duty cycle. 

In the ADDLL test chip, two phase detectors are used. One is coarse-tuning phase 

detector, and the other is fine-tuning phase detector, where the latter has higher sensitivity. 

The sample-based phase detector is used as the coarse-tuning phase detector, and it is 

discussed in section 2.2. The circuit of the coarse-tuning phase detector is shown in Fig. 2.4. 
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When the “UP” signal is occurred, the delay time of the DCDL needs to be increased. 

Oppositely, when the “DOWN” signal is occurred, the delay time of the DCDL needs to be 

decreased.  

The dead zone of coarse-tuning phase detector is limited by the timing requirements for 

the D-Flip/Flop. And in the target process, the sensitivity of the coarse-tuning phase detector 

is about ±300ps, which is not sufficiently precise for the DLL design. After the coarse-tuning 

phase detector is locked, the fine-tuning phase detector is turned on to further minimize the 

phase error. 

The detail discussions for the fine-tuning phase detector were presented in section 2.2. 

And the schematic for the fine-tuning phase detector is shown in Fig. 2.5. The digital pulse 

amplifier is used to improve the sensitivity of fine-tuning phase detector. Thus the sensitivity 

of the fine-tuning phase detector can be improved to ±50ps by adding the digital pulse 

amplifies. 

The DLL controller in the proposed DLL is described with Hardware Description 

Language (HDL) and then synthesized to the final gate-level circuit. The gate count of the 

proposed DLL is 5400. 

 

4.5 Experimental Results for the ADDLL test chip 

Fig. 4.11 shows the transition response of the proposed ADDLL. After system reset, the 

DLL starts to eliminate the phase error between reference clock (S_IN_CLK) and feedback 

clock (S_FB_CLK). The initial phase error estimator generates P_CLK pulse and sends this 

pulse to the TDC. The TDC will calculate the initial coase-tuning control code (IC_CODE) 

for the DCDL. The DLL controller takes the IC_CODE as start value and counts up or down 

the DCDL control code by the UP or DOWN signals from coarse-tuning or fine-tuning phase 

detectors. 
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Fig. 4.11: Transient response of the proposed ADDLL. 

 

The maximum operating speed of the proposed DLL is limited by the maximum 

operating speed of the phase detector and the DCDL. From chip measurement results, the 

proposed DLL can operate from 65MHz to 487MHz. And the power consumption of the 

proposed DLL is 210mW at 487MHz, and 50mW at 65MHz. 

 

Delay Line

TDC & Controller

Internal 
Delay 
Buffer

PDDCO

 

Fig. 4.12: Microphotograph of the DLL test chip. 
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Fig. 4.12 shows the microphotograph of the DLL test chip. The chip size is 2000µm x 

2000µm, where its core size is 980µm x 980µm. Besides the DLL circuit, this chip also 

contains a digital-controlled oscillator (DCO) to generate the on-chip reference clock for the 

DLL. And this DCO can operate from 44MHz to 500MHz. An internal delay buffer is added 

to the test chip to insert different delays between output clock (OUT_CLK) and feedback 

(FB_CLK). The test chip can choose the reference clock from external reference clock or 

from the internal DCO. The clock buffer delay can be selected from external delay line or 

from internal delay buffer. 

 

(a) (b)
 

Fig. 4.13: Measured jitter at 65MHz. (a) DLL is reset (b) DLL is locked. 

 

Due to the speed limitation of the I/O PADs, the output of DLL must be lowered for 

testing. Fig. 4.13 and Fig. 4.14 show the measured output waveform of the DLL at 65MHz 

and 487MHz respectively. In Fig. 4.13, signal at Channel 1 means the reference clock, and 

signal at Channel 2 means the feedback clock. In Fig. 4.14, signal at Channel 1 means the 
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reference clock divided by 2, and signal at Channel 2 means the feedback clock divided by 2. 

The rms jitter and peak-to-peak jitter of the DLL’s output are measured by LeCroy 

LC584A. The rms and peak-to-peak jitter at 65MHz is 15ps and 40ps, at 487MHz is 8ps and 

30ps respectively. 

 

(a) (b)
 

Fig. 4.14: Measured jitter at 487MHz. (a) DLL is reset (b) DLL is locked. 

 

Fig. 4.14 shows the measured DCDL’s output divided by 2. This output signal should 

have almost 50% duty cycle. Due to the unbalanced rise time and fall time in I/O pads, the 

duty-cycle of measured signal does not approximate 50%. But the duty-cycle of the proposed 

DCDL’s output is almost 50% as shown in Fig. 4.10. 

Fig. 4.15 shows the measured long-term (over 370,260 clock cycles) jitter histogram of 

the proposed DLL. The measured long-term rms jitter and peak-to-peak jitter at 125MHz is 

8ps and 30ps respectively. 
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Fig. 4.15: Measured long-term jitter histogram (at 125MHz). 
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Fig. 4.16: Measured jitter and frequency vs. supply voltage. 
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Fig. 4.16 shows plots of measured jitter versus supply voltage. In low supply voltage, 

the resolution of the DCDL will decrease, and the sensitivity of the phase detector will also 

decrease. Thus both rms jitter and peak-to-peak jitter become worse than high supply voltage. 

The proposed DLL can still work at 65MHz with 1.3V supply. That means the proposed DLL 

can operate with low supply voltage. 

 

Table 4.1: PERFORMANCE SUMMARY OF THE PROPOSED DLL 
Technology 0.35µm SPQM CMOS 

Power 
Consumption 

50mW(@65MHz) 
210mW(@487MHz) 

Max. rms jitter 16ps 
Max. p-p jitter 40ps 

Max. lock-in time < 8 cycles 
Chip Core Area 980x980µm2 

 

Table 4.1 summarizes the performance of the proposed DLL test chip. And table 4.2 lists 

the comparisons among different DLLs. The proposed DLL can achieve fast locking in a few 

clock cycles, and its jitter performance is also better than those described in [18-20]. And it 

has the best portability than the other designs. 

 

Table 4.2: DLL PERFORMANCE COMPARISONS. 
Performance 

Parameter 
Proposed DLL [17] [18] [19] [20] 

Process 0.35µm CMOS 0.35µm CMOS 0.25µm CMOS 0.4µm CMOS 0.4µm CMOS 
DLL Power 210mW 

(@487MHz) 
3.2mW 

(@100MHz) 
3.3mW 

(@100MHz) 
340mW 

(@400MHz) 
18mW 

(@250MHz) 
Phase 

resolution 
20ps 200ps 160ps 40ps ~ 0ps 

Max. Lock 
time 

1+m+n cycles 
(m: clock buffer 

delay n: delay line 
delay) 

< 5µsec < 30 cycles < 2.9µsec < 10 cycles 

Min. 
Frequency 

65MHz 100MHz 90MHz 250MHz 150MHz 

Max. 
Frequency 

487MHz 100MHz 100MHz 500MHz 350MHz 

Supply 
voltage 

3.3V 2.0V 1.1V 3.3V 3.0V 

Output jitter 
(p-p) 

< 40ps  ~ 0ps 95ps < 250ps <150ps 
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4.6 Summary 

In this chapter, an all-digital fast-locking DLL for wide-range clock deskew applications 

is presented. The proposed DLL utilizes TDC circuit to complete coarse-tuning in one clock 

cycle. Moreover the proposed DCDL is extendable, and its phase resolution is determined by 

fine-tuning delay cells. Both fast-locking and minimum phase error can be achieved by the 

proposed DLL. The DLL can be implemented by standard cells, and hence it can be ported to 

different processes in minimum design cycle. The DLL test chip fabricated in the TSMC 

0.35µm CMOS process can achieve a phase resolution better than 20ps, and the operation 

range of the test DLL chip ranges from 65MHz to 487MHz. The maximum rms jitter and 

maximum peak-to-peak jitter are less than 16ps and 40ps respectively with a 3.3V supply. For 

these reasons, the proposed DLL is very suitable for wide-range clock deskew applications 

demanded in system-level integration. 
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Chapter 5 

All-Digital Multi-Phase Clock Generator Design 

 

In this chapter, the design for all-digital multi-phase clock generator (ADMCG) is 

presented. Multi-phase clocks are useful in many applications. In high-speed serial link 

applications [29,30,34], multi-phase clocks are used to process data streams at the bit rate 

higher than internal clock frequencies. In clock multiplier applications [25,28,33], 

multi-phase clocks are combined to produce the desire output frequency for the synthesizer. 

And in microprocessors, multi-phase clocks can ease the clock constraints in pre-charged 

logic to achieve higher operating speed [31]. In wireless LAN baseband design, the 

multi-phase clocks can be used to find a better sampling point for the analog-to-digital 

converter (ADC) to improve overall system performance. 

Both Phase-Locked Loops (PLL’s) [34] and Delay-Locked Loop (DLL’s) can be 

employed for multi-phase clocks generation. But DLL offers better jitter performance than 

PLL because the noise induced by power supply or substrate noise disappears at the end of 

the delay line. Oppositely, the ring oscillator of PLL accumulates jitter, and any uncertainty in 

an earlier transition affects all the following transitions, and its effect persists indefinitely 

[12,27,30,32].  Thus DLL is a good alternative for PLL’s in multi-phase clocks generation 

applications. 

But there are two major drawbacks of conventional DLLs. One is their limited phase 



 ～ 61 ～ 

capture range [12], and the other is restricted Voltage-Controlled Delay Line (VCDL) range 

to avoid false-lock to the harmonics [27,28]. By increasing the VCDL delay range and 

changing the phase alignment algorithm, it can be extended to infinite phase capture range. 

But the false-lock problem still cannot be overcome. Thus in [27,28], a self-correcting circuit 

is employed to prevent the DLL locks to an incorrect delay and it can bring the DLL back 

into a correct locked-state. However, this self-correcting circuit [27] is sensitive to the duty 

cycle of reference clock since it makes decisions based on the sampling values of multi-phase 

clock signals. 

The register-controlled digital DLL is proposed in [36] to provide an all-digital solution 

for the DLL design. For multi-phase clock generation applications, this DLL can overcome 

the false-lock problem by setting the delay line in minimum delay time at the beginning of 

phase acquisition. However, the long lock-in time makes it not suitable for wide-range 

operations. 

In this chapter, a new DLL-based approach for multi-phase clock generation is presented. 

The proposed All-Digital Multi-Phase Clock Generator (ADMCG) uses a Time-to-Digital 

Converter (TDC) to choose a reasonable delay range rather than to use self-correcting circuit. 

Thus its operation is very robust and can avoid possible false-lock as in conventional designs. 

The lock-in time of the proposed ADMCG can also be reduced by adding TDC module. After 

TDC operation, a fixed step search scheme is used in the ADMCG to fine-tune the output 

phase accuracy. The proposed architecture is all-digital and can be realized by standard cells. 

Thus it yields good testability, programmability, stability and portability over different 

processes. And the design time for multi-phase clock generator can also be reduced. 

This chapter is arranged as follows: Section 5.1 describes the proposed all-digital 

multi-phase clock generator. Section 5.2 shows the implementation of the proposed ADMCG 

using standard cells and the test chip design for a 7:1 data channel compression transceiver. 
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Simulation and chip measurement results of the ADMCG test chip are shown in section 5.3. 

Finally, a brief summary is made in section 5.4. 

 

5.1 The proposed ADMCG architecture 

The proposed ADMCG architecture for multi-phase clock generation is shown in Fig. 

5.1. The ADMCG consists of four major modules namely: Phase Detector (PD), 

Time-to-Digital Converter (TDC), Digital-Controlled Delay Line (DCDL), and ADMCG 

controller.  

The DCDL is divided into K equal-delay stages, and all delay stages are controlled by 

the same control code. The TDC estimates the period of reference clock and passes it to the 

ADMCG controller for selecting the suitable delay range of the DCDL. 

 

 

Fig. 5.1: The proposed ADMCG architecture. 

 

The PD detects the phase error between reference clock and the delay line output (PK-1). 

It generates UP and DOWN signal to indicate that the ADMCG controller should decrease or 
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increase the delay time of the DCDL respectively. When phase error between reference clock 

and PK-1 is less than the dead zone of PD, the LOCK signal is asserted and then multi-phase 

clock signals: P0 – PK-1 are generated. 

The delay range problem of conventional DLL is discussed in [12,27,28]. The reason 

that the DLL may lock to multiples of reference clock’s period is because only the phase of 

delay line output and reference clock is compared. Thus when the delay line has a wide 

controllable range, the unpredictable initial delay time of delay line and unknown relationship 

among delay line output and reference clock may result in locking to multiples of reference 

clock’s period, and hence multi-phase clock generation becomes fail. 

Since wrong operating delay range for the delay line and lacking of information for 

reference clock’s period is the reason that caused false-lock, how to dynamically adjust the 

delay line’s operating range to a suitable range is the challenge for multi-phase clock 

generator design. 

 

 

Fig. 5.2: The proposed ADMCG control algorithm. 
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Fig. 5.2 describes the proposed ADMCG control algorithm. As discussed in [12,27,28], 

to avoid false-lock, the DCDL should always operate under this delay range: 0.5*TREF < 

TDCDL < 1.5*TREF, where TREF means the period of reference clock and TDCDL means the delay 

time of the delay line. 

In the proposed ADMCG architecture, the TDC shown in Fig. 5.3 converts the reference 

clock’s period information (TREF) into multiples of Range Delay Unit’s (RDU’s) delay time. 

After TDC encoder, the DCDL range selection control code (range[M-1:0]) is sent to the 

ADMCG controller. Then it makes the DCDL firstly operate in this delay range: 0.5*TREF < 

TDCDL< TREF. 

 

 

Fig. 5.3: The proposed Time-to-Digital Converter (TDC) for multi-clock generator. 

 

After TDC operation, the ADMCG controller enters phase tracking mode, and it 

increases the delay time of the DCDL until the residual phase error between reference clock 

and PK-1 is disappeared and the PD’s output changes from DOWN to UP (or LOCK is 

asserted). Then the ADMCG controller turns into phase maintaining mode, and it decreases 

or increases the delay time of the DCDL according to the PD’s UP/DOWN signal 
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respectively. 

To speedup the lock-in time, in phase tracking mode, the phase search step is set to half 

of one coarse-tuning delay time. But after the ADMCG controller enters phase maintaining 

mode, the phase search step is reduced to one fine-tuning step. 

Since the proposed ADMCG is not dependent on the relationship among multi-phase 

clock signals and it doesn’t need to setup a start-up control to avoid the false-lock, the 

proposed design is very robust to Process variations, Voltage variations, and Temperature 

variations (PVT variations). Moreover, it is insensitive to the duty-cycle of the reference 

clock since only the rising edge of reference clock is used. 

The output phase accuracy of the generated multi-phase clock signals is dependent on 

the phase resolution of the DCDL and the dead zone of the PD. And the operating frequency 

range of the proposed ADMCG is limited by the minimal delay time of the DCDL and the 

controllable range of each delay stage. 

The proposed DCDL consists of K equal delay stages, and the architecture for one delay 

stage is shown in Fig. 5.4. The delay time of one delay stage is controlled by three cascading 

stages: range selection stage, coarse-tuning stage, and fine-tuning stage. And they are 

controlled by the range selection control code (range[M-1:0]), coarse-tuning control code 

(coarse[N-1:0]), and fine-tuning control code (fine[5:0]) respectively.  

Range selection stage and coarse-tuning stage are implemented using the path selector. 

The difference between those two stages is that the RDU has larger delay than the 

coarse-tuning delay unit (CDU). The (M,N) parameters are used to adjust the operating range 

of the path selector by changing the number of selectable paths in the path selector. And to 

improve the phase resolution, the fine-tuning delay cell, which is discussed in section 2.1, is 

added after the coarse-tuning stage. In fine-tuning delay cell, it uses the six control bits: (EN1 

A1 B1 EN2 A2 B2) to alter the delay time finely. 
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Fig. 5.4: The architecture of one delay stage. 

 

The proposed TDC architecture is shown in Fig. 5.3. In Fig. 5.3, all RDUs are clear to 

low after system reset, and in the first reference clock cycle, the TDC’s input (PULSE_IN) 

persists at high. This high signal will propagate through RDUs. And when the falling edge of 

PULSE_IN signal arrives, implying the end of the pulse, the D-Flip/Flops will sample the 

current state of each RDU’s output. After the TDC encoder, the reference clock’s period 

information (TREF) can be converted into multiples of RDU’s delay time. And the ADMCG 

controller uses this information to select a certain range for the DCDL. 

The proposed high sensitivity PFD is used in the ADMCG design. The detail 

information about the high sensitivity PFD design is discussed in section 2.2. After using the 

digital amplifier in PD design, the dead zone of PD can be reduced to 50ps in the target 

process.  

The ADMCG controller is described using Hardware Description Language (HDL) and 

then is synthesized by logic synthesizer. And all function blocks in the proposed ADMCG are 
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cell-based design. Thus the proposed design can be easily ported to different processes with 

cell library support. And it can also reduce the design time and design complexity for 

multi-phase clock generator design. 

 

5.2 ADMCG Test Chip Design 

The ADMCG test chip is fabricated on a standard 0.35µm 1P4M CMOS process. To 

reduce area and power consumption of the DCDL, the RDU is implemented with delay cells 

provided in cell library. In those delay cells, the MOS channel length is longer than normal 

cells. Therefore they have an extremely large delay than normal cells. The delay time of one 

RDU is 1.6ns (TRDU) in the target process. And the delay time of coarse-tuning delay cell is 

0.16ns (TCDU). After adding the fine-tuning delay cell, the phase resolution of each delay 

stage can be improved to 3ps on the average, and the total controllable range of the 

fine-tuning delay cell is 0.174ns (TFINE).  

To avoid large phase jump when path selection of coarse-tuning stage is changed, the 

value of TFINE must keep larger than or equal to TCDU. And the total controllable range of 

coarse-tuning stage also needs to be larger than TRDU. Thus a 16-to-1 path selector is used in 

the coarse-tuning stage (i.e. (16-1)*TCDU > TRDU). After carefully selecting the delay cells of 

delay line, the jitter effect caused by the path selector can be minimized and the possibility to 

change the path selection can be reduced too. 

In the test chip, the proposed ADMCG is applied to design a 7:1 data channel 

compression transceiver. The architecture of the transceiver is shown in Fig. 5.5. From design 

specifications, the reference clock period (TREF) ranges from 50ns (20MHz) to 11.765ns 

(85MHz), and a 7-phase multi-phase clock generator is needed in the transceiver design. 

Thus a 4-to-1 path selector is used in range selection stage to provide a maximal DCDL delay 

time: 50.4ns (= (7*(4-1)*TRDU + 7*(16-1)*TCDU) larger than TREF. 
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Fig. 5.5: The proposed 7:1 data channel compression transceiver (a) Transmitter (b) Receiver 

 

The transmitter (TX) and the receiver (RX) are fabricated in the same test chip. And the 

transmitter’s outputs: TX_DATA and TX_CLK are sent to the receiver’s inputs: RX_DATA 

and RX_CLK respectively. In the transmitter, the generated 7-phase clock signals are used to 

transfer 7-bit data (DATA[6:0]) into one data channel (TX_DATA), and the transmitted data’s 

reference clock (TX_CLK) is also sent to the receiver. The “TX delay mirror” shown in Fig. 

5.5(a) is used to compensate the delay time of parallel-to-serial converter. 

The receiver shown in Fig. 5.5(b) recovers received data stream (RX_DATA) back to 

original 7-bit data (DATA_OUT[6:0]). The 2-phase ADMCG shown in Fig. 5.5(b) is used to 

estimate the accurate delay of TREF/14. It aligns two adjacent phases of the 7-phase 

ADMCG’s outputs (i.e. P6 and P0) to measure the TREF/14 delay, and the received data stream 

will firstly be delayed by TREF/14 and then sampled by 7-phase multi-phase clock signals. 

Thus those multi-phase clock signals can sample the received data stream in the center of bit 

symbol boundary, and this maximizes the timing margin of the receiver circuit. 

Since the RX_CLK may not have 50% duty cycle, the inverse of multi-phase clock 

signals cannot be directly applied to sample the received data stream. Thus to make a robust 
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receiver, the 2-phase ADMCG is necessary for the proposed receiver circuit design. 

 

5.3 Experimental Results for the ADMCG Test Chip 

Fig. 5.6 shows the post-layout simulation waveform of the proposed ADMCG. To make 

sure that the proposed design would not cause a failure with a noisy reference clock, an 

85MHz noisy reference clock (Pk-Pk jitter: ±500ps) is used in this simulation. After system 

reset (i.e. PDWN=1), the TDC measures the period of the reference clock, and makes the 

DCDL operate in a suitable delay range (i.e. 0.5*TREF < TDCDL< TREF). Then the ADMCG 

controller continues fine-tuning the output phase accuracy with PD’s UP/DOWN signal. And 

when the phase error between delay line’s output (PHASE[6]) and reference clock (CLK_IN) 

is minimized, the multi-phase clock generation is completed. 

 

 

Fig. 5.6: The transient response of the ADMCG (at 85MHz) 

 

The worst-case lock-in time of the proposed ADMCG, in terms of reference clock cycles, 

is equal to TUPDATE*(TTDC+(PCOARSE-1)*2), where TUPDATE means the ADMCG controller 
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update interval, TTDC means the TDC operation time, and PCOARSE means total paths in 

coarse-tuning stage.  

To make sure that the previous update of DCDL control code takes effects on delay 

line’s output, the ADMCG controller cannot update the DCDL control code at every cycle. 

Hence the TUPDATE is chosen as 4. And TDC only needs one clock cycle to estimate the 

reference clock’s period. Therefore the total lock-in time for the 7-phase ADMCG is < 124 

(=4*(1+(16-1)*2) reference clock cycles. 

 

14

REFT

 

Fig 5.7: The post-layout simulation of the receiver (at 85MHz) 

 

Fig. 5.7 shows the operation of the receiver. In the receiver, the 7-phase ADMCG 

generates 7-phase multi-phase clock signals (PHASE[6:0]) from the data’s reference clock 

(RCLK). After ADMCG is locked, the 2-phased ADMCG estimates the TREF/14 delay and 

then the received data stream (RA_DATA) is delayed by TREF/14, which is also shown in Fig. 

5.7 as INT_RA_DATA. As a result, the receiver can directly use the generated multi-phase 

clock signals to sample the delayed received data stream (INT_RA_DATA) in the center of 

bit symbol boundary and achieves a maximal timing margin in the receiver circuit. 
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Fig. 5.8: Measured multi-phase clock signals (at 32MHz). 

 

Fig. 5.8 shows the measured multi-phase clock signals with noisy digital circuitry (≈ 

600mVpp supply noise). The reference clock is 32MHz oscillator with root-mean-square 

(rms) jitter: 79ps and PK-PK jitter: 180ps.   

Due to the limitations of digital scope, only two data channels can be displayed 

simultaneously. Therefore PHASE[6] and PHASE[0] are shown in Fig. 5.8(a), and PHASE[0] 

and PHASE[1] are shown in Fig. 5.8(b).  

The long-term PK-PK jitter histogram of output multi-phase clock signals and the 

measured delay time between two adjacent phases are also shown. Ideally, two adjacent 

phases should be 4.464ns (=(1/32MHz)/7) apart, and the measured results show that the 

maximum error is less than 0.36% (=(4.48ns(PHASE[0] ~ PHASE[1]) – 4.464ns(Ideal))/4.464ns). And 

the long-term rms jitter and PK-PK jitter of ADMCG’s output are 154ps and 310ps 

respectively. 

A repetition data stream “10101010…” is applied to the transmitter where the 

transmitted data (TX_DATA) have a transition at every rising edge of multi-phase clock 

signals. This test pattern is used to measure the output data jitter and check the stability of the 
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ADMCG’s output. Thus the transmitted data looks like a clock signal and its frequency is 3.5 

(=7/2) times higher than the reference clock. Fig. 5.9 shows the measured long-term PK-PK 

jitter histogram of the transmitted data. By chip measurement, the transmitted data’s rms jitter 

and PK-PK jitter is 254ps and 670ps respectively. 

 

 

Fig. 5.9: Measured long-term jitter histogram of the transmitted data (at 32MHz). 

 

Since the ADMCG needs to continue tracking the phase of the reference clock, jitter of 

the reference clock will influence the measurement for the output jitter of the ADMCG and 

the transmitted data jitter. 

Total gate count of the transmitter and the receiver is 7343 and 9683 respectively, where 

the gate count of the 7-phase ADMCG is 7203. Power consumption of the transmitter is 

17.3mW at 20MHz and 75.1mW at 85MHz. Power consumption of the receiver is 23.6mW at 

20MHz and 85.5mW at 85MHz. Fig. 5.10 shows microphotograph of the test chip. And the 

core area of the test chip is 1380 µm x 1380 µm. 
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Fig. 5.10: Microphotograph of the ADMCG test chip. 

 

5.4 Summary 

In this chapter, an all-digital cell-based multi-phase clock generator is presented. The 

proposed ADMCG can overcome the false-lock problem in conventional designs. And in test 

chip, the ADMCG is applied to design a 7:1 data channel compression transceiver. The test 

chip shows that the proposed ADMCG has a wide frequency range (20-85MHz) and very 

robust to PVT variations and reference clock jitter. The proposed ADMCG can reduce both 

design time and circuit complexity. Therefore it is very suitable for many digital 

communication applications. 
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Chapter 6 

Automated Synthesis of ADPLL, ADDLL, 

and ADMCG for SoC Applications 

 

In this chapter, an automated synthesis design methodology for ADPLL/ADDLL 

/ADMCG is presented. In SoC design, the design time for each module is restricted. Thus 

each module should better be a reusable design so that the total design time for the SoC can 

be reduced. However, for different applications, the ADPLL/ADDLL/ADMCG may have 

different operating ranges or different lock-in time requirements, making it hard to design 

one ADPLL/ADDLL/ADMCG suitable for all applications. As a result, it often needs to 

redesign the ADPLL/ADDLL/ADMCG for target application and resulting longer design 

phase. 

Due to well-developed cell libraries and logic synthesis tools, most logic or algorithmic 

operations, such as additions, multiplications, can easily be created using Hardware 

Description Language (HDL) with logic synthesizer. Thus if the ADPLL/ADDLL/ADMCG 

can also be automatic generated using standard cells from the cell-library, it can greatly 

reduce the design time and the design complexity for the ADPLL/ADDLL/ADMCG, and 

also has the best portability for different processes. 
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An EDA tool for clock synthesis PLL generation is proposed in [44] to simplify and 

accelerate all tasks associated with the design and deployment of high performance clock 

synthesis PLLs. But the proposed approach [44] is to provide a compiled analog PLL. 

Therefore it takes extra time to redesign analog circuits and do some custom layouts before 

the PLL compiler can be used. So if the ADPLL/ADDLL/ADMCG can be generated just 

using standard cells, users can quickly build up their ADPLL/ADDLL/ADMCG in a short 

time. And this is the goal for this research. 

In this chapter, the proposed automated synthesis methodology provides a guideline to 

take user specifications, such as: output clock range, lock-in time, and so on to build up the 

suitable architecture for ADPLL/ADDLL/ADMCG design. The proposed flexible ADPLL/ 

ADDLL/ADMCG architecture can be easily modified to fit different applications. 

As a result, the proposed methodology uses both benefit of digital VLSI and cell-based 

design to build up the user-specified ADPLL/ADDLL/ADMCG in a short time, and reduces 

the design time and the design complexity of ADPLL/ADDLL/ADMCG, making it very 

suitable for System-On-Chip (SoC) applications. 

This chapter is arranged as follows: section 6.1 describes the automated ADPLL 

synthesis flow. And the test chip measurement results are also shown in this section. Section 

6.2 describes the automated ADDLL synthesis flow. Section 6.3 describes the automated 

ADMCG synthesis flow. Finally, a brief summary is made in section 6.4. 

 

6.1 Automated ADPLL Synthesis 

6.1.1 Cell Library Data Preparation 

In chapter 3, most portions of the proposed ADPLL functional blocks can be described 

with behavior Hardware Description Language (HDL) code. And logic synthesizer is used to 

synthesize those behavior HDL codes to the gate-level HDL code. However, due to the 
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limitations of the gate-delay model, the resolution of the DCO and the dead zone of the PFD 

can only be determined by SPICE circuit simulation. As a result, before the automated 

ADPLL synthesis flow can be used, the fine-tuning delay cell of the DCO and the PFD must 

be redesigned for the target cell library. 

In section 2.1, the proposed fine-tuning delay cell of the DCO is created using standard 

cells. After SPICE circuit simulation, the lookup table for control the fine-tuning delay cell is 

created, and the resolution of the fine-tuning delay cell can then be determined. And the 

delay time of the coarse-tuning delay cell can also be determined from SPICE circuit 

simulation. The ring delay line of the TDC is a copied architecture from the DCO, so it can 

just mirror the architecture of the DCO with some reductions. 

The design of the PFD is to select suitable standard cells to improve the sensitivity of 

the PFD (i.e. reduce the dead zone of the PFD). Since the sensitivity of the PFD is major 

determined by the digital pulse amplifier, thus the stage numbers of the digital pulse 

amplifier must be decided after SPICE circuit simulation. 

After the fine-tuning delay cell of DCO and the PFD are created and the suitable 

coarse-tuning delay cell is selected from the cell library, the gate-level HDL code of the 

fine-tuning delay cell and the PFD is ready for the ADPLL architecture compiler. And the 

timing information of those modules can be supplied to the ADPLL architecture compiler to 

build up the suitable ADPLL architecture. 

For different cell libraries, the design for the fine-tuning delay cell and the PFD must be 

performed once. And then the ADPLL architecture compiler can be used to build up the 

whole ADPLL circuit for different design specifications based on the current cell library. 

 

6.1.2 ADPLL Architecture Compiler 

The major design specifications for the ADPLL design are listed in table 6.1. The 
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ADPLL architecture compiler takes those specifications as the design parameters for 

choosing a suitable ADPLL architecture. Then it generates the HDL code for ADPLL design. 

 

Table 6.1: The ADPLL SPECIFICATIONS 
Parameter Description 

1 Target Process Target Foundry Process 
2 Reference Clock (MHz) Min. and Max. required reference clock 

frequency 
3 Output Clock (MHz) Min. and Max. required output clock 

frequency 
4 Programmable Input and Feedback 

Divider 
Max. divide ratios for input and feedback 

divider 
5 Lock-in time (# cycle) Max. required lock-in time  

 

The ADPLL output frequency range is determined by the DCO. The DCO’s output 

clock period can be expressed as Eq. 6.1. 

PERIOD_MAX= PERIOD_MIN + COARSE_UNIT*Ncoarse       (Eq. 6.1) 

where the PERIOD_MIN and PERIOD_MAX denote that the minimum and maximum clock 

period of the DCO. The Ncoarse is the number of coarse-tuning delay cells used in 

coarse-tuning path selector, and the step size for DCO coarse-tuning is denoted as 

COARSE_UNIT. The delay time of the PERIOD_MIN comes from the gate delay of 

coarse-tuning path selector, fine-tuning delay cell and the reset stage. 

The value of PERIOD_MIN and COARSE_UNIT can be gained from the cell library 

timing information. And when the output clock range is specified, the needed coarse-tuning 

delay cells (Ncoarse) to cover the required output frequency range can be calculated from Eq. 

6.1. 

When the number of coarse-tuning delay cells (Ncoarse) is determined, then the 

worst-case lock-in time in term of reference clock cycles for a binary search ADPLL 

controller can be calculated (see section 3.3.2). If the lock-in time of the binary search 

ADPLL controller doesn’t meet the lock-in time specification, the TDC module is inserted to 
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reduce the ADPLL’s lock-in time.  

The bit width for the TDC counter and the TDC digital processing unit are determined 

by the maximum reference clock period. After the reference clock range is specified, the bit 

width must be large enough to avoid overflow in the TDC counter. 

The OUTPUT DCO is removed from the ADPLL circuit if only in-phase clock 

multiplier is needed. And the maximum divide ratios for input and feedback divider 

determine the counter bits of frequency divider. 

The minimum reference clock period is used to setup the synthesis constraints for 

ADPLL controller. Since the ADPLL controller updates the DCO control code at reference 

clock rate. Thus the ADPLL controller needs to run at reference clock speed. Similarly, the 

frequency divider should work at maximum output clock speed. 

The ADPLL architecture compiler builds up the behavior HDL code of the ADPLL 

controller and the frequency divider and also generates the synthesis constraints, so that the 

logic synthesizer can create the gate-level circuit to meet the timing requirements. The 

gate-level code of the DCO, the PFD, and the ring delay line of the TDC is generated by the 

ADPLL architecture compiler. And those modules link with other modules, which are 

synthesized by logic synthesizer, to generate the final gate-level HDL code. 

 

6.1.3 Automated ADPLL Synthesis Flow 

The proposed automated ADPLL synthesis flow is shown in Fig. 6.1. The design 

specifications and the cell library information are the inputs for the ADPLL architecture 

compiler. 

The ADPLL architecture compiler builds up a suitable architecture to meet the design 

specifications and then generate the behavior HDL code and synthesis constraints for the 

logic synthesizer. For the timing critical modules such as: DCO and PFD, gate-level HDL 
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code is directly generated. 

In the proposed DCO architecture, path selector architecture is used to minimize the 

intrinsic delay time of the DCO, and it can increase the maximum operating frequency of the 

DCO. For deep-submicron processes, such as 0.18µm CMOS process, the interconnection 

RC has large influences on the performance of timing critical modules. 

 

 

Fig. 6.1: The proposed automated ADPLL synthesis flow. 

 

The interconnection RC effects are illustrated in Fig. 6.2. In path selector architecture, 

the coarse-tuning stage of the DCO provides different delay times by selecting different 

numbers of delay cell in the delay path. Thus if the time constant R1C1 is much larger than 

R2C2, which means the delay time from node D1 to path selector output is much larger than 

the delay time from node D2 to path selector output, the monotonic response of the DCO 
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may be disappear. 
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Fig. 6.2: The interconnection RC effects. 

 

Thus the layout of the DCO and the TDC should better be manually placed and routed 

to minimize and balance the parasitic RC effects. But for 0.35µm CMOS process, since the 

performance of the DCO and TDC is not dominated by interconnection RC effects. They can 

be random placed and routed by APR tools with maximum occupied area constraints. 

 In Fig. 6.1, the ADPLL module compiler is used to generate the layout for the timing 

critical modules, and then the APR tools are used to complete the final layout of the ADPLL. 

For the other non-timing critical modules, the timing-driven P&R flow is used to meet the 

timing constraints. Timing constraints for those modules are translated from the logic 

synthesizer. 

 In the proposed automated ADPLL synthesis flow, the SPICE simulation for the 

fine-tuning delay cell and the PFD are needed. Then the ADPLL architecture compiler can 

use cell library information to generate the gate-level HDL code of the ADPLL. The layout 

of timing critical modules is generated by ADPLL module compiler, and final layout is 
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finished by APR tools. By the proposed automated synthesis flow, the design for the ADPLL 

can be finished in a very short time. 

 

6.1.4 Implementations Results 

The proposed ADPLL is implemented with standard 0.35µm, 0.25µm, and 0.18µm 

CMOS process. Table 6.2 lists the DCO output frequency range for different processes. The 

coarse-bit means the bit width of coarse-tuning control code. For example, coarse_bit=6 

means there are 64 (=26) paths in the DCO’s coarse-tuning stage. The maximum operating 

frequency is dependent on the gate delay of the cell libraries. And the minimum operating 

frequency is dependent on how many coarse-tuning delay cells are used in DCO’s 

coarse-tuning stage. 

 

Table 6.2: DCO OUTPUT FREQUENCY RANGE FOR DIFFERENT PROCESSES 
DCO Output Frequency Range (unit: MHz) DCO 

architecture 0.35 µm 0.25 µm 0.18 µm 
coarse_bit Min. Max. Min. Max. Min. Max. 

4 136.054 571.429  166.774 424.809 281.178 746.454 
5 077.220 571.429 103.753 424.809 173.212 746.454 
6 041.408 571.429 059.093 424.809 097.973 746.454 
7 021.482 571.429 031.755 424.809 052.427 746.454 

 

Table 6.3: ADPLL AREA INFORMATION FOR DIFFERENT PROCESSES 
ADPLL Chip Area (unit: µm2) DCO 

architecture 0.35 µm 0.25 µm 0.18 µm 
coarse_bit Gate Count Area Gate Count Area Gate Count Area 

4 4280 258185 3621 78676 4058 51642 
5 4827 296205 4036 87967 4662 58393 
6 5915 361286 5138 112860 6136 77258 
7 8160 503071 6087 134542 7726 98345 

 

Table 6.3 lists the ADPLL area information for different processes. The listed area 

information is not including the TDC module. This area information is the core area for the 
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ADPLL circuits after placement and routing. Increasing the coarse_bit may increase the 

frequency operating range of the ADPLL, but the area cost for the ADPLL is also increased 

too. 

For the same DCO architecture in different processes, the gate-count of the ADPLL is 

almost the same. But the area of the ADPLL implemented in 0.18µm process is much 

smaller than the ADPLL implemented in 0.35µm or 0.25µm process. 

If the TDC module is included in the ADPLL circuit, the extra gate count 2813 is 

needed for the TDC circuit. This large area cost of the TDC mainly comes from the TDC 

digital processing unit, which needs a divider to calculate Eq. 3.7. 

 

ADPLL Power Consumption
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Fig. 6.3: Power Consumption of the ADPLL for different processes. 

 

Fig. 6.3 shows the power consumption of the proposed ADPLL at different output 

frequencies. In this figure, the coarse_bit for the DCO architecture is 6. Since the parasitic 

capacitances and supply voltage are both reduced in 0.18µm process, the power consumption 

of the ADPLL implemented in 0.18µm process is much smaller than the ADPLL 
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implemented in 0.35µm or 0.25µm process. It shows that in 0.18µm process, the maximum 

power consumption is 9.776 mW (at 400MHz) 

 

6.1.5 Test Chip Measurement Results 

 

 

Fig. 6.4: Microphotograph of the ADPLL (UMC 0.18um). 

 

Fig. 6.4 shows microphotograph of one ADPLL test chip for automated ADPLL 

synthesis flow. This test chip is fabricated on a standard 0.18µm CMOS 1P6M process. The 

core area of this test chip is 567µm x 567µm. The ADPLL design specifications and the 

ADPLL architecture compiler synthesis parameters are lists in table 6.4. 

Fig. 6.5 shows the measured long-term PK-PK jitter histogram of the in-phase clock 

output (OUT_CLK). In this figure, the noisy reference clock is 36MHz (rms jitter: 60ps, 

PK-PK jitter: 160ps), and M=4, N=1. Thus the output frequency should be 144MHz 

(=36MHz*4). The long-term rms jitter and Pk-Pk jitter for the in-phase clock multiplier 
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applications are 169ps and 440ps respectively. 

 

Table 6.4: The ADPLL TEST CHIP SPECIFICATIONS 
Parameter Description 

1 Target Process UMC 0.18um 1P6M Logic 
2 Reference Clock (MHz) 1kHz-50MHz 
3 Output Clock (MHz) 52MHz-746MHz 
4 Programmable Input and Feedback 

Divider 
Mmax=16383, Nmax=8 

5 Lock-in time (# cycle) < 50 
6 coarse_bit 7 
7 Automated ADPLL Synthesis time 229 sec 

 

 

Fig. 6.5: Measured long-term jitter histogram of in-phase clock output (at 144MHz). 

 

Since the clock multiplier needs to continue tracking the phase of the reference clock, 

thus the jitter of the reference clock will influence the measurement for the output jitter of 

the ADPLL. And it can be shown that after ADPLL is locked, the output clock phase is 

aligned with the rising edge of the reference clock. 
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Fig. 6.6 shows the measured long-term PK-PK jitter histogram of the average clock 

output (AVG_CLK). In this figure, the reference clock is 10.1 kHz, and M=16383, N=1. 

Thus the output frequency should be 163.99MHz (=10.1 kHz * 16383). The long-term rms 

jitter and Pk-Pk jitter for frequency synthesis applications are 32ps and 90ps respectively. In 

frequency synthesis applications, the loop filter can filter out the resultant noise into the 

OUTPUT DCO, thus the jitter performance can be improved. In this chip measurement, a 

very high divide ratio: 16383 is used. The measurement results show that the ADPLL can 

still work at very high divide ratio. 

 

 

Fig. 6.6: Measured long-term jitter histogram of average clock output (at 166MHz). 

 

6.1.6 Summary 

In section 6.1, an automated ADPLL synthesis methodology is presented. The proposed 

synthesis methodology provides the guidelines for ADPLL design. And the proposed 
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ADPLL architecture is also very flexible and easy to be modified to meet different 

specifications. The proposed ADPLL is implemented with standard cells, and the 

implementations for standard 0.35µm/ 0.25µm/ 0.18µm CMOS processes are also shown in 

this section. From the chip measurement results, it shows that the proposed ADPLL can be 

used in various applications, and it has better portability than the other designs. 

 

6.2 Automated ADDLL Synthesis 

6.2.1 Cell Library Data Preparation 

In the proposed ADDLL architecture (see chapter 4), the proposed ADDLL architecture 

is a cell-based design, and it can be automated synthesized. But due to the limitations of the 

gate-delay model, the resolution of the DCDL and the dead zone of the PFD can only be 

determined by SPICE circuit simulation. Thus the fine-tuning delay cell of the DCDL and 

the PFD must be redesigned for the target cell library. 

In section 4.4, the proposed fine-tuning delay cell for DCDL design is created using 

standard cells. After SPICE circuit simulation, fast delay and slow delay of the fine-tuning 

delay cell can be determined, thus the phase resolution of the DCDL is determined. And 

delay time of the coarse-tuning delay cell can also be determined from SPICE circuit 

simulation. 

Two phase detectors (PD) are used in the proposed ADDLL architecture. The 

coarse-tuning PD can be described using behavior HDL code and then synthesized to the 

gate-level HDL code. And the design for the fine-tuning PD is discussed in section 2.2. 

After the fine-tuning delay cell of DCDL and the fine-tuning PD are created and the 

suitable coarse-tuning delay cell is selected from the cell library, the gate-level HDL code of 

the fine-tuning delay cell and the fine-tuning PD is ready for the ADDLL architecture 
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compiler. And the timing information of those modules can be supplied to the ADDLL 

architecture compiler to build up the suitable ADDLL architecture. 

For different cell libraries, the design for the fine-tuning delay cell and the fine-tuning 

PD must be performed once. And then the ADDLL architecture compiler can be used to 

build up the whole ADDLL circuit for different design specifications based on the current 

cell library. 

 

6.2.2 ADDLL Architecture Compiler 

The major design specifications for the ADDLL design are listed in table 6.5. The 

ADDLL architecture compiler takes those specifications as the design parameters for 

choosing a suitable ADDLL architecture. Then it generates the HDL code for ADDLL 

design. 

 

Table 6.5: The ADDLL SPECIFICATIONS 
Parameter Description 

1 Target Process Target Foundry Process 
2 Reference Clock (MHz) Min. and Max. required reference clock 

frequency 
3 External buffer delay (psec) Max. delay time of external buffer tree 
4 Phase error (psec) Max. phase error after DLL is locked 
5 Lock-in time (# cycle) Max. required lock-in time  

 

The ADDLL frequency operating range is determined by the DCDL. The DCDL’s 

operating range can be expressed as Eq. 6.2. 

DELAY_MAX= DELAY_MIN + DLL_COARSE_UNIT*Ndll_coarse       (Eq. 6.2) 

where the DELAY_MIN and DELAY_MAX denote that the minimum and maximum delay 

time which DCDL can provide. The Ndll_coarse is the number of coarse-tuning delay cells used 

in coarse-tuning path selector, and the step size for DCDL coarse-tuning is denoted as 

DLL_COARSE_UNIT. The delay time of the DELAY_MIN comes from the gate delay of 



 ～ 88 ～ 

coarse-tuning path selector and the intrinsic delay time of fine-tuning delay cell. 

The value of DELAY_MIN and DLL_COARSE_UNIT can be gained from the cell 

library timing information. And when the operating frequency range is specified, the needed 

coarse-tuning delay cells (Ndll_coarse) to cover the required delay range can be calculated from 

Eq. 6.2. 

In the proposed ADDLL architecture, the TDC is used to reduce the lock-in time of the 

DLL. However, when the lock-in time is not a critical design issue, the TDC can be removed 

from the architecture, and the shift-register controlled ADDLL controller can be used to 

reduce the area cost of the ADDLL. 

The minimum reference clock period and the maximum extra buffer delay are used to 

setup the synthesis constraints for ADDLL controller. The ADDLL controller can not update 

the DCDL control code at every cycle. It needs to wait for the response time of the DCDL 

and the delay time of the extra buffers. Thus the ADDLL architecture compiler takes those 

constraints to determine the update period of the ADDLL controller. 

In the proposed ADDLL architecture, two PDs are used to minimize the phase error 

after the DLL is locked. If the requirement for the phase error can be achieved by just using 

coarse-tuning PD, the fine-tuning PD is removed from the architecture to reduce the area cost 

of the ADDLL. 

The ADDLL architecture compiler builds up the behavior HDL code of the ADDLL 

controller and also generates the synthesis constraints, so that the logic synthesizer can create 

the gate-level circuit to meet the timing requirements. The gate-level code of the DCDL, and 

the fine-tuning PD are generated by the ADDLL architecture compiler. And those modules 

link with other modules, which are synthesized by logic synthesizer, to generate the final 

gate-level HDL code. 
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6.2.3 Automated ADDLL Synthesis Flow 

The proposed automated ADDLL synthesis flow is very similar to the ADPLL synthesis 

flow as discussed in section 6.1.3. The difference is that the ADDLL architecture compiler 

and the ADDLL module compiler is used in the automated synthesis flow. 

The design specifications and the cell library information are the inputs for the ADDLL 

architecture compiler. The ADDLL architecture compiler builds up a suitable architecture to 

meet the design specifications and then generate the behavior HDL code and synthesis 

constraints for the logic synthesizer. For the timing critical modules such as: DCDL and 

fine-tuning PD, gate-level HDL code is directly generated. 

Due to the interconnection RC effects as discussed in section 6.1.3, the layout of the 

DCDL should better be manually placed and routed to minimize and balance the parasitic 

RC effects. But for 0.35um CMOS process, since the performance of the DCDL is not 

dominated by interconnection RC effects. They can be random placed and routed by APR 

tools with maximum occupied area constraints. 

 The layout for the timing critical modules is generated by ADDLL module compiler, 

and then the APR tools are used to complete the final layout of the ADDLL. For the other 

non-timing critical modules, the timing-driven P&R flow is used to meet the timing 

constraints. Timing constraints for those modules are translated from the logic synthesizer. 

 In the proposed automated ADDLL synthesis flow, the SPICE simulation for the 

fine-tuning delay cell and the fine-tuning PD are needed. Then the ADDLL architecture 

compiler can use cell library information to generate the gate-level HDL code of the ADDLL. 

The layout of timing critical modules is generated by ADDLL module compiler, and final 

layout is finished by APR tools. By the proposed automated synthesis flow, the design for 

the ADDLL can be finished in a very short time. 
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6.3 Automated ADMCG Synthesis 

6.3.1 Cell Library Data Preparation 

The proposed ADMCG architecture (see chapter 5) is a DLL-based architecture. Thus 

the needed cell library data information is almost the same with automated ADDLL synthesis 

flow discussed in section 6.2.1. The difference is that the range selection delay cell must be 

determined first then the suitable coarse-tuning delay cell is selected from the cell library. 

After the fine-tuning delay cell of DCDL and the fine-tuning PD are created and the 

suitable range selection delay cell and coarse-tuning delay cell are selected from the cell 

library, the gate-level HDL code of the fine-tuning delay cell and the fine-tuning PD is ready 

for the ADMCG architecture compiler. And the timing information of those modules can be 

supplied to the ADMCG architecture compiler to build up the suitable ADMCG architecture. 

For different cell libraries, the design for the fine-tuning delay cell and the fine-tuning 

PD must be performed once. And then the ADMCG architecture compiler can be used to 

build up the whole ADMCG circuit for different design specifications based on the current 

cell library. 

 

6.3.2 ADMCG Architecture Compiler 

The major design specifications for the ADMCG design are listed in table 6.6. The 

ADMCG architecture compiler takes those specifications as the design parameters for 

choosing a suitable ADMCG architecture. Then it generates the HDL code for ADMCG 

design. 

The ADMCG frequency operating range is determined by the DCDL’s range selection 

stage. The DCDL’s operating range can be expressed as Eq. 6.3. 

DLINE_MAX= (DLINE_MIN + RANGE _UNIT*Ndll_range)*Phase_Number  (Eq. 6.3) 
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where DLINE_MIN denotes that the minimum delay time in each delay stage, and 

DLINE_MAX denotes the max delay time which the total DCDL can provide. The Ndll_range 

is the number of range selection delay cells used in range selection path selector, and the step 

size for DCDL range selection is denoted as RANGE _UNIT. DELAY_MIN comes from the 

gate delay of range selection path selector, coarse-tuning path selector, and minimum delay 

time of fine-tuning delay cell. And since each delay stage is controlled by the same control 

code, thus the total delay time of the DCDL is the delay time of each stage multiplies by the 

phase number of multi-phase clock signals. 

 

Table 6.6: The ADMCG SPECIFICATIONS 
Parameter Description 

1 Target Process Target Foundry Process 
2 Reference Clock (MHz) Min. and Max. required reference clock 

frequency 
3 Multi-Phase number Number of multi-phase clock signals 
4 Phase Accuracy (psec) Phase error in each multi-phase clock 

signals 
5 Lock-in time (# cycle) Max. required lock-in time  

 

The value of DLINE_MIN and RANGE_UNIT can be gained from the cell library 

timing information. And when the operating frequency range is specified, the needed range 

selection delay cells (Ndll_range) to cover the required delay range can be calculated from Eq. 

6.3. 

In the proposed ADMCG architecture, the TDC is used to calculate the suitable delay 

range of the DCDL and avoid the false-lock problem as mentioned in section 5.1. However, 

when the lock-in time is not a critical design issue, the TDC can be removed from the 

architecture, and the shift-register controlled ADMCG controller can be used to reduce the 

area cost of the ADMCG. 

The minimum reference clock period are used to setup the synthesis constraints for 
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ADMCG controller. Since the ADMCG controller updates the DCDL control code at 

reference clock rate. Thus the ADPLL controller needs to run at reference clock speed. 

The ADMCG architecture compiler builds up the behavior HDL code of the ADMCG 

controller and also generates the synthesis constraints, so that the logic synthesizer can create 

the gate-level circuit to meet the timing requirements. The gate-level code of the DCDL, and 

the fine-tuning PD are generated by the ADMCG architecture compiler. And those modules 

link with other modules, which are synthesized by logic synthesizer, to generate the final 

gate-level HDL code. 

In the ADMCG architecture, since the last phase is connected to the phase detector and 

internal control circuits, thus the loading in the last phase is different from the other phases. 

To improve the phase accuracy in multi-phase clock generation, the loading in each phase 

must be balanced. Thus after the gate-level HDL code of the ADMCG is generated by the 

logic synthesizer, the ADMCG architecture compiler will find out the loading cells of the last 

phase and add those loading cells to the other phases as dummy loads for balance the loading 

effects. 

 

6.3.3 Automated ADMCG Synthesis Flow 

The proposed automated ADMCG synthesis flow is very similar to the ADPLL 

synthesis flow as discussed in section 6.1.3. The difference is that the ADMCG architecture 

compiler and the ADMCG module compiler is used in the automated synthesis flow. 

The design specifications and the cell library information are the inputs for the ADMCG 

architecture compiler. The ADMCG architecture compiler builds up a suitable architecture to 

meet the design specifications and then generate the behavior HDL code and synthesis 

constraints for the logic synthesizer. For the timing critical modules such as: DCDL and 

fine-tuning PD, gate-level HDL code is directly generated. 
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Due to the interconnection RC effects as discussed in section 6.1.3, the layout of the 

DCDL should better be manually placed and routed to minimize and balance the parasitic 

RC effects. But for 0.35µm CMOS process, since the performance of the DCDL is not 

dominated by interconnection RC effects. They can be random placed and routed by APR 

tools with maximum occupied area constraints. 

 The layout for the timing critical modules is generated by ADMCG module compiler, 

and then the APR tools are used to complete the final layout of the ADMCG. For the other 

non-timing critical modules, the timing-driven P&R flow is used to meet the timing 

constraints. Timing constraints for those modules are translated from the logic synthesizer. 

 In the proposed automated ADMCG synthesis flow, the SPICE simulation for the 

fine-tuning delay cell and the fine-tuning PD are needed. Then the ADMCG architecture 

compiler can use cell library information to generate the gate-level HDL code of the 

ADMCG. The layout of timing critical modules is generated by ADMCG module compiler, 

and final layout is finished by APR tools. By the proposed automated synthesis flow, the 

design for the ADDLL can be finished in a very short time. 

 

6.4 Summary 

In this chapter, an automated ADPLL/ADDLL/ADMCG synthesis flow is presented. 

The proposed design methodology provides the guidelines for ADPLL/ADDLL/ADMCG 

design. And the proposed automated synthesis flow provides a fast way to build up the 

ADPLL/ADDLL/ADMCG for different target applications. The proposed automated 

synthesis flow reduces design time for ADPLL/ADDLL/ADMCG design. Therefore it is very 

suitable for SoC applications. 
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Chapter 7 

Conclusions and Future Works 
 

In this dissertation, we have proposed the solutions to build up a high performance 

cell-based ADPLL/ADDLL/ADMCG for practical systems. The proposed binary search or 

TDC-based ADPLL can achieve fast locking time. And the proposed loop filter with two 

DCOs architecture can improve the jitter performance of ADPLL. As a result, the proposed 

ADPLL is very suitable for on-chip high-speed clock generation as demanded in current SoC 

designs. 

The proposed ADDLL utilizes TDC and DTC to complete coarse-tuning phase 

acquisition in one clock cycle, resulting in less lock-in time. And the area cost is reduced by 

sharing TDC and DTC with delay line. The proposed DCDL can turn off unused delay cells at 

high frequency operation, thus it can save unwanted power consumptions in high frequency 

operation. Thus it is very suitable for wide-range clock deskew applications demanded in 

system-level integration. 

The proposed DLL-based ADMCG uses a TDC to choose a reasonable delay range 

rather than to use self-correcting circuit. Thus its operation is very robust to PVT variations 

and can avoid possible false-lock to harmonics. The lock-in time of the proposed ADMCG can 

also be reduced by adding TDC module. The proposed ADMCG is applied to design a 7:1 
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data channel compression transceiver. In the proposed receiver architecture, which use a 

2-phase ADMCG to estimate real value of TREF/14, can maximizes the timing margin of the 

receiver circuit. 

The proposed automated synthesis methodology provides a guideline to take user 

specifications to build up the suitable architecture for ADPLL/ADDLL/ADMCG design. The 

proposed methodology uses both benefits of digital VLSI and cell-based design to build up the 

user-specified ADPLL/ADDLL/ADMCG in a short time, and reduces design time and design 

complexity of ADPLL/ADDLL/ADMCG, making it very suitable for SoC designs. 

Nevertheless, for some applications, which demand for very high accurate frequency 

synthesis, the proposed ADPLL architecture may be difficult to meet the required 

specifications. Since the proposed ADPLL architecture is integer-N architecture, thus output 

frequency resolution is dependent on reference frequency, and fine frequency resolution 

requires a small reference frequency. However, if reference clock rate is low, it may result in 

long lock-in time. 

Thus the fractional-N PLL architecture [45] is a possible way to achieve a fine frequency 

resolution in frequency synthesizer applications. In this architecture, the integer divide ratio is 

periodically altered from N to N+1. The resulting average divide ratio will be increased from 

N by duty cycle of the N+1 division. 

But this architecture may induce severe spurious tones due to the periodic modification 

of the divider modulus. It needs to be carefully designed to filter out this phase error and 

preserve the benefit of fractional-N architecture. Thus, the design and implementation of 

fractional-N ADPLL to achieve fine frequency resolution is the research topics remaining to 

be solved. 
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In the proposed automated ADPLL/ADDLL/ADMCG synthesis flow, the module 

compiler is needed to directly generate the layout of timing critical modules, such as: DCO 

and TDC. Currently these tasks are done by manual placement and routing. But in the further, 

the automatic layout generator for timing critical modules should be developed so that the 

proposed automated ADPLL/ADDLL/ADMCG design flow can be used in the deep 

sub-micron (< 0.18µm) CMOS processes. 

 For low-power or mobile applications, ADPLL/ADDLL/ADMCG needs to provide a 

power-saving mode so that the system can turn off the ADPLL/ADDLL/ADMCG if needed. 

In those applications, the previous lock states of ADPLL/ADDLL/ADMCG can be recorded, 

and when the system returns to its normal operation, the lock-in time can then be reduced. 

And in frequency synthesis applications, the proposed ADPLL may periodically turn on/off 

frequency and phase acquisition circuits (including INNER DCO) to save the active power. 

But this scheme may worsen the performance of ADPLL. Thus a better way to save active 

power consumption still needs to be investigated for further research. 
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