

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Binary Weight Convolutional Neural Network Hardware
Accelerator for Analysis Faults of the CNC Machinery on FPGA

Abstract—With the development of machine learning

technologies and the internet of things, many traditional

industrial problems can be solved by combining these two

technologies. For example, the CNC machinery fault can be

detected by collecting the data from vibration sensors and

analysis with machine learning algorithms. However, previous

studies only focused on the accuracy of the machine learning

model but did not consider the overhead of hardware

implementation. This paper proposes a real-time CNC

machinery fault detection solution using a binary weight

convolutional neural network to identify vibration signals. In

addition, the operations in the designed neural network have

been converted to fixed-point operations to speed up the

calculations and reduce memory usage. Finally, the proposed

method has been implemented on FPGA to evaluate the

capabilities. According to the experimental result, the proposed

method can achieve 95.07% accuracy while implemented on the

FPGA with 130MHz clock frequency.

Keywords—binary neural network (BNN), convolutional

neural network (CNN), CNC vibration signal identification

I. INTRODUCTION

Recently, the internet of things, cloud computing

technology, and artificial intelligence (AI) have been

overgrowing; therefore, AI has been able to apply in different

fields. Notably, it facilitates the industry's progress from

traditional human controlling to AI automatic monitoring.

When AI technology enters the traditional production line in

the industrial field, it can transform traditional factories into

smart factories and achieve higher production quality. For

example, the machine's running status can be monitored in

real-time, and mechanical damage can be detected. Once the

damaged machinery can be repaired early, it can reduce

maintenance costs and downtime and maintain the safety of

operators.

On the other hand, among the various applications in the

industry, CNC (computer numerical control) machinery has

been one of the most commonly used machinery in the

production line for decades. However, most traditional CNC

machines use a closed control system that only provides a

fixed user interface and requires a professional operator to

control the machine. If a professional operator manually

operates it, the health status of the CNC machine cannot be

closely monitored. Also, judging visually and audibly in the

early stage of mechanical failure is difficult. Therefore, many

researchers attempt to implement AI solutions in such a real

industry scene.

This work was supported in part by the Ministry of Science and Technology
of Taiwan under Grant MOST-111-2221-E-194-049-.

For example, the bearing fault of the CNC machinery is

one of the most common issues of machine breakdown [1],

and many research papers focus on such fault diagnosis of

rolling bearings. Within this research, the data provided by

Case Western Reserve University (CWRU) Bearing Data

Center [2] has been an essential dataset in this field. For

example, some researchers [3,4,5,6] made the continuously

sampled vibration signals in the CWRU dataset into images

to train deep neural networks and classify the data into several

categories. In those researches, the existing classification

method that has been adopted includes support vector

machine (SVM), multi-layer perceptron (MLP), deep belief

network (DBN), artificial neural network (ANN),

convolutional neural network (CNN), and deep neural

network (DNN). In addition, some literature discusses the

pre-processing image methods for feature extraction, such as

cyclic spectral coherence (CSCoh) [7], local binary

pattern(LBP)[8], compound interpolation envelope (CIE) [9],

ensemble empirical mode decomposition (EEMD)[10], and

wavelet semi-soft threshold (WSST) [10].

According to the results from prior research [3,5,6], CNN

can achieve the highest accuracy in the classification.

However, previous research only focuses on software

accuracy but might neglect hardware overhead. Therefore,

this paper aims to implement a hardware-cost-aware CNN

network to detect the bearing faults of CNC machinery and

further carry out real-time monitoring and self-prevention of

mechanical damage. For achieving real-time processing,

complex data pre-processing procedures are not required, a

software model implementation has been constructed to

ensure accuracy, and the parameters in the network would be

subsequently quantized to reduce the hardware overhead.

After that, the hardware of the proposed network was

implemented on the FPGA. Note that, to the best of our

knowledge, there was no existing literature discussing the

hardware implementation for detecting CNC machinery

faults by AI solutions.

The rest of this paper is organized as follows: the proposed

architecture is presented in Section II. Then, the detail of the

hardware implementation will be revealed in Section III. In

addition, the experimental results are shown in Session IV

and followed by the conclusion in Section V.

II. THE PROPOSED CNN ARCHITECTURE

This paper aims to develop a hardware-cost-aware CNN

hardware accelerator for CNC machinery fault detection. For

cost consideration, only four integer bits and five decimal bits

present the original vibrational sensor data from the CWRU

Ching-Che Chung, Senior Member, IEEE, Yu-Pei Liang, Member, IEEE, Ya-Ching Chang, and Chen-Ming Chang

Department of Computer Science and Information Engineering

National Chung Cheng University

No. 168, University Rd., Min-Hsiung, Chia-Yi, Taiwan

Email: wildwolf@cs.ccu.edu.tw, ypliang@cs.ccu.edu.tw

979-8-3503-3416-6/23/$31.00 ©2023 IEEE 2023 VLSI TSA

20
23

 In
te

rn
at

io
na

l V
LS

I S
ym

po
siu

m
 o

n
Te

ch
no

lo
gy

, S
ys

te
m

s a
nd

 A
pp

lic
at

io
ns

 (V
LS

I-T
SA

/V
LS

I-D
AT

) |
 9

79
-8

-3
50

3-
34

16
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

VL
SI

-T
SA

/V
LS

I-D
AT

57
22

1.
20

23
.1

01
34

31
6

Authorized licensed use limited to: National Chung Cheng University. Downloaded on June 12,2023 at 05:27:39 UTC from IEEE Xplore. Restrictions apply.

dataset. Moreover, the fan-end (FE) accelerometer data is

selected. In the fault type, the inner, ball, and outer race faults

are selected for classification. These faults are divided into

three fault diameters of 0.007, 0.014, and 0.021 mils,

respectively. Therefore, there are ten categories of bearing

data. Also, 4,096 consecutive vibration signal data points are

arranged from left to right and top to bottom and create a

64×64 image, as shown in Fig. 1. For the CWRU dataset, a

total of 7,989 images were generated in this way. After

shuffling all the images, 80% is used to train the CNN

network model and 20% to test the accuracy of the network

model. The number of train and test images on each label is

shown in Table Ⅰ.

Fig. 1. Vibration signals convert to images.

Table Ⅰ. The number of train and test images on each label.

The proposed CNN network architecture for fault

classification of CNC machinery is shown in Table II to

overcome the difficulty of hardware implementation. The

CNN network architecture includes zero-padding layers,

convolution layers with a 3×3 kernel, batch normalization

layers, ReLU activation layers, max-pooling layers, a global

average pooling layer (GAP), and a fully connected layer

(FC). The FC layer outputs the final classified label.

Initially, the input image uses a floating-point format for

CNN architecture. Due to the hardware implementation, the

input image must be converted from a floating-point format

to a fixed-point format. A trade-off is made between the

number of bits in each pixel and the model's accuracy to

achieve the best result. Finally, it is determined that the pixel

value of the input image will retain 9 bits, including 4-bit

integer bits and 5-bit decimal bits. The accuracy is 99.18 %.

After completing the training of the CNN network model

with Tensorflow, binary weight quantization is performed

before the hardware implementation. The proposed binary

CNN network (BNN) creates a lightweight CNN network for

fault classification. In the binary CNN network, the weights

are converted from floating-point numbers to +1 and -1,

which can be expressed by 1 bit.

Table II. The input/output feature map of each layer.
Input

(W�H�C)
Operator

Output
(W�H�C)

stride

64�64�1 CONV 64�64�32 1

64�64�32
Max

Pooling
32�32�32 2

32�32�32 CONV 32�32�64 1

32�32�64
Max

Pooling
16�16�64 2

16�16�64 CONV 16�16�128 1

16�16�128
Max

Pooling
8�8�128 2

8�8�128 CONV 8�8�128 1

8�8�128
Max

Pooling
4�4�128 2

4�4�128 GAP 1�1�128 -

1�1�128 FC 1�1�10 -

Considering that the batch normalization layer has four

parameters, this can take up too much memory space.

Therefore, the parameters of the batch normalization layer are

quantized using the K-mean clustering algorithm. However,

the quantized value is still a floating-point number and must

be converted to a fixed-point number, and then a lookup table

can be created. Then, when the parameters of the CNN

network have been quantized, the hardware implementation

can be started, and the accuracy can be kept within an

acceptable range.

Test accuracy

CNN-based BNN

architecture adjustment

Quantize weight of the

convolution layer

Extract weight in model

with python

YES

NO

Quantize parameter of the

batch normalization layer

Python implements

network architecture

Test accuracy

Hardware implementation

and fixed point

Input dataset convert to

fixed-point

Convert from floating-

point to fixed-point

YES

NO

Parameters of batch

normalization layer

clustering

Fig. 2. Flowchart for CNN hardware implementation.

The flowchart from the software model to the CNN

hardware accelerator implementation is shown in Fig. 2. The

first step is to convert the vibration data of CWRU from a

floating point to a fixed point. The second step is to input the

fixed point obtained in the previous step to CNN-based BNN

for training. The third step will be to adjust the structure and

training for the weight of CNN-based BNN. Then it will test

its accuracy. If the accuracy is unacceptable, it will go back

to the first to the third steps to adjust the number of input bits

and the network structure. When building and adapting the

network architecture, the weights of the convolution layer are

quantized at the same time.

The fourth step is to extract the weight of the network

model. The fifth step quantizes the parameters in the batch

normalization layer. The sixth step is to group the parameters

in the batch normalization layer. The seventh step converts

Label
Fault

Diameter
Type of Damage

train

images

test

images

0 0 Normal Baseline Data 423 108

1 0.007 Ball Fault 474 114

2 0.014 Ball Fault 506 111

3 0.021 Ball Fault 446 112

4 0.007 Inner Race Fault 509 137

5 0.014 Inner Race Fault 455 122

6 0.021 Inner Race Fault 609 157

7 0.007 Outer Race Fault 1390 342

8 0.014 Outer Race Fault 265 57

9 0.021 Outer Race Fault 1307 345

Authorized licensed use limited to: National Chung Cheng University. Downloaded on June 12,2023 at 05:27:39 UTC from IEEE Xplore. Restrictions apply.

the parameters obtained in the previous step from floating-

point to fixed-point numbers and creates a lookup table. The

eighth step will use python to implement network architecture

for simulation accuracy of fixed-point computations. The

integer digits of the feature maps remain unchanged, and the

number of retained decimal bits gradually decreases. The

network accuracy is tested until the accuracy is no longer

acceptable. There is a trade-off between the number of bits

and the accuracy of the network after many tests. If the

accuracy is unacceptable, it will go back to the fifth to the

eighth steps to adjust the number of input bits. Otherwise, the

CNN hardware accelerator can be implemented.

III. HARDWARE IMPLEMENTATION

Fig. 3. The architecture of the proposed binary CNN hardware accelerator.

The architecture of the proposed binary CNN hardware

accelerator is shown in Fig. 3. When training the proposed

CNN network architecture, the weights of the convolution

layers are quantized with +1 and -1. Moreover, after

simplifying the formula, the parameters of the batch

normalization layer are reduced to two parameters. Finally,

these parameters are clustered and converted from floating to

fixed-point numbers. In the hardware implementation of the

neural network, the read-only memory (ROM) stores the

weights extracted from the neural network model, including

the weights of the convolution layers, the weights of the fully

connected layers, and the parameters of the batch

normalization layers.

All the above parameters are stored in ROM. The input

vibrational sensor data for fault classification is stored in the

random access memory (RAM) for testing the accuracy of the

proposed binary CNN network. The output feature map of

each layer is stored in RAM and used as the input feature map

for the next layer. Two RAMs are used simultaneously to

store the current layer's output feature map when inputting

the previous layer's feature map.

Moreover, the number of parameters for each layer in the

proposed binary CNN network is shown in Table III. The

total parameters of the weights and batch normalization

parameters are 242k. The quantized parameters can

effectively reduce the number of bits for parameters and

reduce the memory used in hardware implementation. Table

IV compares the bits of the original parameter with the

quantized parameter and calculates the percentage of memory

reduction.

Table III. The number of parameters in the proposed binary CNN network.

Input channel Operator Output channel
Sum of

parameters

1 Convolution (3×3) 32 288

32
Batch Normalization

(2 parameters)
32 64

32 Convolution (3×3) 64 18,432

64
Batch Normalization

(2 parameters)
64 128

64 Convolution (3×3) 128 73,728

128
Batch Normalization

(2 parameters)
128 256

128 Convolution (3×3) 128 147,456

128
Batch Normalization

(2 parameters)
128 256

128 GAP 128 0

128 Fully Connected 10 1280

Table IV. The memory usage reduction.

Memory
Memory

name

Total bits without /with
quantization

Reduction
percentages

ROM

InputWeight 7,676,928/239,904 96.875%

InputBatchN
_phi

11,264/1,408 87.5%

InputBatchN
_tau

11,264/1,408 87.5%

InputFC 40,960/1,280 96.875%

RAM
Psum1 1,048,576/393,216 62.5%

Psum2 524,288/196,608 62.5%

Total bits 9,313,280/833,824 91.047%

This section discusses the hardware implementation issues

to be considered, including network architecture depth,

convolution layer weighting, batch normalization layer

parameter quantization, and floating-point numbers to fixed-

point number conversion. These network structures and

quantization methods will affect the amount of memory used

and the operation speed of the neural network computation.

IV. EXPERIMENTAL RESULTS

Table V. Accuracy of each stage operation.

The bit width for adders and multipliers should be

considered for hardware implementation. After addition and

multiplication, the digits cannot grow indefinitely. Therefore,

some decimal digits are discarded in the calculation without

excessively affecting the accuracy. In addition, an FPGA

evaluation board, Xilinx Virtex-7 FPGA VC707, is used to

verify the accuracy of the hardware implementation. The use

of memory includes ROM and RAM. The ROM stores the

parameters that will not be changed, including the weights of

the convolution layer and fully connected layer and the two

parameters φ' and τ' of the batch normalization layer. RAM is

used to store partial sum. Two RAMs will be used

simultaneously to speed up the calculation. Two RAMs can

store this partial sum while outputting the last partial sum.

InputWeight

1bit * 9 * 26656

Controller

InputImg reg

9bits * 64 * 4

Psum1

12bits * 32 * 32 * 32

Psum2

12bits * 16 * 16 * 64

9bits

4bits

4bits

12bits

12bits

Maxpooling

InputImg

9bits * 64 * 64

InputFc

1bit * 1280 1 bit

InputBatchN_tau

4bits * 352

InputBatchN_phi

4bits * 352

9bits

CONV

ReLu

9bits

9bits

4bits

4bits

Convolution

PE-c PE-c

BatchNorm

PE-b PE-b

GlobalAvgPool

Fully connected

Output

[3:0]

1bits

12bits

12bits

Stage operation Accuracy

Build a CNN-based BNN model
(9 bits of the input image)

0.9918

K-means clustering the parameters (floating-point)
in the batch normalization layer

0.9894

�� in the batch normalization layer
convert from floating-point to 7 bits

0.9894

�� in the batch normalization layer
convert from floating-point to 11 bits

0.9744

RTL-level (Bit reduction in the calculation.) 0.9495

FPGA 0.9507

Authorized licensed use limited to: National Chung Cheng University. Downloaded on June 12,2023 at 05:27:39 UTC from IEEE Xplore. Restrictions apply.

In the experiment results, only one image is input into the

memory at a time, with 4,096 vibration data points. The

proposed FPGA circuit's operating frequency can run at

130MHz after implementation, and power consumption is

0.523 W. The accuracy is 95.07%.

Table VI. Comparison table with other software methods.

[3]

Sensors'17
[5]

KBS'18
[7]

MSSP'20
Proposed

work

Architecture CNN
CNN +
HMMs

CNN
CNN +
BNN

Dataset CWRU CWRU CWRU CWRU

of trains 1000 800 1200 1390

of tests 250 400 1200 342

Pre-
processing

method

Hanning
window +

RMS

Hankel
matrix

CSCoh reduce the bits

Image size 32×32 50×50 112×112 64×64

Classified
labels

10 12 10 10

Accuracy 98.4% 98.08% 99.02% 99.18%

The different image sizes, pre-processing methods, and

classification labels are compared in Table VI. The proposed

pre-processing method is easier to implement and simpler

than others. In addition, the proposed design achieves better

accuracy than these software models.

Table VII. Comparison Table for CNN Hardware Accelerator

[11]

DATE'19
[12]

Journal '19
[13]

ITAIC'19
Proposed work

Technology FPGA FPGA FPGA FPGA

Platform
Zynq

XC7Z020
Zynq

XC702
ZYNQ7020 Virtex 7 VC707

Algorithm CNN CNN CNN CNN

Architecture BNN BNN BNN BNN

Dataset MNIST Cifar10 MNIST CWRU

Parameters
(k)

2,079 13,400 1,060 242

Frequency
(MHz)

200 143 N/A 130

Power(mW) 500 3,300 4,000 523

Memory N/A 1.7MB 1.07MB
Input 4.5KB

Weight 29.79KB
Output 72KB

LUT 7,954 29,629 39,824 7,317

FF 7,188 31,763 66,785 5,471

BRAMs 68 103 55.50 34.5

DSP 16 0 36 6

Accuracy 99.34 88.61% 99.49% 95.07%

GOPS 61.62 722 N/A 0.015158

GOPS/W 123 219 N/A 0.02898

Then the proposed CNN hardware accelerator is

implemented on an FPGA evaluation board. Table VII shows

the performance of different CNN networks implemented on

FPGA. The proposed work and designs [11, 12, 13] both use

BNN to quantize the weight to 1 and -1. However, the

complexity of the CWRU dataset used in this work is not

simpler than MNIST and Cifar10. Therefore, when the

proposed binary CNN network is applied to the MNIST

dataset, the classification accuracy is 99.22%. As a result, the

proposed binary CNN network architecture can also be

applied to the MNIST dataset. Besides, the number of

parameters and memories is much smaller than [11, 12, 13].

An image has 4,096 vibration data points, and one iteration

for the proposed CNN network requires 20,387,288 cycles,

and the clock period of each cycle is 7.692 ns. Therefore, one

iteration requires 156,819,019ns (0.156 seconds) in the

proposed circuit on FPGA at 130MHz. Therefore, real-time

can be achieved when the fastest vibration signal was

collected at 26,119 samples/second.

V. CONCLUSION

This paper implements a CNN hardware accelerator

network to detect the bearing faults of the CNC machinery.

When constructing CNN-based BNN, the accuracy is

99.18%. After establishing the network model, the

parameters of the batch normalization layer were quantized

with an accuracy of 97.44%. Finally, the hardware is

implemented in FPGA with an accuracy of 95.07%, and the

total parameter is 242k.

REFERENCES

[1] Wade A. Smith and Robert B. Randall, "Rolling element bearing
diagnostics using the Case Western Reserve University data: A
benchmark study," Mechanical Systems and Signal Processing, vol.
64-65, pp. 100-131, Apr. 2015.

[2] Case Western Reserve University Bearing Data Center Website

〈http://csegroups.case.edu/bearingdatacenter/home〉.
[3] Shaobo Li, Guokai Liu, Xianghong Tang, Jianguang Lu, and Jianjun

Hu, "An ensemble deep convolutional neural network model with
improved DS evidence fusion for bearing fault diagnosis," Sensors,
vol. 17, no. 8, 1729, Jul. 2017.

[4] Hongmei Li, Jinying Huang, and Shuwei Ji, "Bearing fault diagnosis
with a feature fusion method based on an ensemble convolutional
neural network and deep neural network," Sensors, vol. 19, no. 9, 2034,
Apr. 2019.

[5] Shuhui Wang, Jiawei Xiang, Yongteng Zhong, and Yuqing Zhou,
"Convolutional neural network-based hidden Markov models for
rolling element bearing fault identification," Knowledge-Based

Systems, vol. 144, pp. 65-76, Mar. 2018.
[6] Changchang Che, Huawei Wang, Qiang Fu, and Xiaomei Ni, "Deep

transfer learning for rolling bearing fault diagnosis under variable
operating conditions," Advances in Mechanical Engineering, vol. 11,
no. 12, pp. 1-11, Dec. 2019.

[7] Zhuyun Chen, Alexandre Mauricio, Weihua Li, and Konstantinos
Gryllias, "A deep learning method for bearing fault diagnosis based on
cyclic spectral coherence and convolutional neural networks,"
Mechanical Systems and Signal Processing, vol. 140, 106683, Jun.
2020.

[8] Kaplan Kaplan, Yılmaz Kaya, Melih Kuncan, Mehmet Recep Mı̇naz,
and H. Metin Ertunç, "An improved feature extraction method using
texture analysis with LBP for bearing fault diagnosis," Applied Soft

Computing, vol. 87, 106019, Feb. 2020.
[9] Xiang Li, Jun Ma, Xiaodong Wang, Jiande Wu, and Zhuorui Li, "An

improved local mean decomposition method based on improved
composite interpolation envelope and its application in bearing fault
feature extraction," ISA Transactions, vol. 97, pp. 365-383, Feb. 2020.

[10] Jianghua Ge, Tianyu Niu, Di Xu, Guibin Yin, and Yaping Wang, "A
rolling bearing fault diagnosis method based on EEMD-WSST signal
reconstruction and multi-scale entropy," Entropy, vol. 22, no. 3, 290,
Mar. 2020.

[11] Jeng-Hau Lin, Atieh Lotfi, Vahideh Akhlaghi, Zhuowen Tu, and
Rajesh K. Gupta, "Accelerating Local Binary Pattern Networks with
Software-Programmable FPGAs," in Proceedings of 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2019.

[12] Peng Guo, Hong Ma, Ruizhi Chen, and Donglin Wang "A High-
Efficiency FPGA-Based Accelerator for Binarized Neural Network,"
Journal of Circuits, Systems, and Computers, vol. 28, no. 1, 1940004,
Jan. 2019.

[13] Yihan Yuan, Ruilian Zhao, and Songwei Pei, "Quantitative research of
convolutional neural network and FPGA deployment," in Proceedings
of 2019 IEEE 8th Joint International Information Technology and

Artificial Intelligence Conference (ITAIC), May 2019.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on June 12,2023 at 05:27:39 UTC from IEEE Xplore. Restrictions apply.

