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A Binary Weight Convolutional Neural Network Hardware 
Accelerator for Analysis Faults of the CNC Machinery on FPGA 

Abstract—With the development of machine learning 

technologies and the internet of things, many traditional 

industrial problems can be solved by combining these two 

technologies. For example, the CNC machinery fault can be 

detected by collecting the data from vibration sensors and 

analysis with machine learning algorithms. However, previous 

studies only focused on the accuracy of the machine learning 

model but did not consider the overhead of hardware 

implementation. This paper proposes a real-time CNC 

machinery fault detection solution using a binary weight 

convolutional neural network to identify vibration signals. In 

addition, the operations in the designed neural network have 

been converted to fixed-point operations to speed up the 

calculations and reduce memory usage. Finally, the proposed 

method has been implemented on FPGA to evaluate the 

capabilities. According to the experimental result, the proposed 

method can achieve 95.07% accuracy while implemented on the 

FPGA with 130MHz clock frequency. 

Keywords—binary neural network (BNN), convolutional 

neural network (CNN), CNC vibration signal identification 

I. INTRODUCTION 

Recently, the internet of things, cloud computing 

technology, and artificial intelligence (AI) have been 

overgrowing; therefore, AI has been able to apply in different 

fields. Notably, it facilitates the industry's progress from 

traditional human controlling to AI automatic monitoring. 

When AI technology enters the traditional production line in 

the industrial field, it can transform traditional factories into 

smart factories and achieve higher production quality. For 

example, the machine's running status can be monitored in 

real-time, and mechanical damage can be detected. Once the 

damaged machinery can be repaired early, it can reduce 

maintenance costs and downtime and maintain the safety of 

operators. 

On the other hand, among the various applications in the 

industry, CNC (computer numerical control) machinery has 

been one of the most commonly used machinery in the 

production line for decades. However, most traditional CNC 

machines use a closed control system that only provides a 

fixed user interface and requires a professional operator to 

control the machine. If a professional operator manually 

operates it, the health status of the CNC machine cannot be 

closely monitored. Also, judging visually and audibly in the 

early stage of mechanical failure is difficult. Therefore, many 

researchers attempt to implement AI solutions in such a real 

industry scene. 
 

This work was supported in part by the Ministry of Science and Technology 
of Taiwan under Grant MOST-111-2221-E-194-049-. 

For example, the bearing fault of the CNC machinery is 

one of the most common issues of machine breakdown [1], 

and many research papers focus on such fault diagnosis of 

rolling bearings. Within this research, the data provided by 

Case Western Reserve University (CWRU) Bearing Data 

Center [2] has been an essential dataset in this field. For 

example, some researchers [3,4,5,6] made the continuously 

sampled vibration signals in the CWRU dataset into images 

to train deep neural networks and classify the data into several 

categories. In those researches, the existing classification 

method that has been adopted includes support vector 

machine (SVM), multi-layer perceptron (MLP), deep belief 

network (DBN), artificial neural network (ANN), 

convolutional neural network (CNN), and deep neural 

network (DNN). In addition, some literature discusses the 

pre-processing image methods for feature extraction, such as 

cyclic spectral coherence (CSCoh) [7], local binary 

pattern(LBP)[8], compound interpolation envelope (CIE) [9], 

ensemble empirical mode decomposition (EEMD)[10], and 

wavelet semi-soft threshold (WSST) [10]. 

According to the results from prior research [3,5,6], CNN 

can achieve the highest accuracy in the classification. 

However, previous research only focuses on software 

accuracy but might neglect hardware overhead. Therefore, 

this paper aims to implement a hardware-cost-aware CNN 

network to detect the bearing faults of CNC machinery and 

further carry out real-time monitoring and self-prevention of 

mechanical damage. For achieving real-time processing, 

complex data pre-processing procedures are not required, a 

software model implementation has been constructed to 

ensure accuracy, and the parameters in the network would be 

subsequently quantized to reduce the hardware overhead. 

After that, the hardware of the proposed network was 

implemented on the FPGA. Note that, to the best of our 

knowledge, there was no existing literature discussing the 

hardware implementation for detecting CNC machinery 

faults by AI solutions. 

The rest of this paper is organized as follows: the proposed 

architecture is presented in Section II. Then, the detail of the 

hardware implementation will be revealed in Section III. In 

addition, the experimental results are shown in Session IV 

and followed by the conclusion in Section V. 

II. THE PROPOSED CNN ARCHITECTURE 

This paper aims to develop a hardware-cost-aware CNN 

hardware accelerator for CNC machinery fault detection. For 

cost consideration, only four integer bits and five decimal bits 

present the original vibrational sensor data from the CWRU 
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dataset. Moreover, the fan-end (FE) accelerometer data is 

selected. In the fault type, the inner, ball, and outer race faults 

are selected for classification. These faults are divided into 

three fault diameters of 0.007, 0.014, and 0.021 mils, 

respectively. Therefore, there are ten categories of bearing 

data. Also, 4,096 consecutive vibration signal data points are 

arranged from left to right and top to bottom and create a 

64×64 image, as shown in Fig. 1.  For the CWRU dataset, a 

total of 7,989 images were generated in this way. After 

shuffling all the images, 80% is used to train the CNN 

network model and 20% to test the accuracy of the network 

model. The number of train and test images on each label is 

shown in Table Ⅰ. 

 
Fig. 1. Vibration signals convert to images. 

Table Ⅰ. The number of train and test images on each label. 

The proposed CNN network architecture for fault 

classification of CNC machinery is shown in Table II to 

overcome the difficulty of hardware implementation. The 

CNN network architecture includes zero-padding layers,  

convolution layers with a 3×3 kernel, batch normalization 

layers, ReLU activation layers, max-pooling layers, a global 

average pooling layer (GAP), and a fully connected layer 

(FC). The FC layer outputs the final classified label. 

Initially, the input image uses a floating-point format for 

CNN architecture. Due to the hardware implementation, the 

input image must be converted from a floating-point format 

to a fixed-point format. A trade-off is made between the 

number of bits in each pixel and the model's accuracy to 

achieve the best result. Finally, it is determined that the pixel 

value of the input image will retain 9 bits, including 4-bit 

integer bits and 5-bit decimal bits. The accuracy is 99.18 %. 

After completing the training of the CNN network model 

with Tensorflow, binary weight quantization is performed 

before the hardware implementation. The proposed binary 

CNN network (BNN) creates a lightweight CNN network for 

fault classification. In the binary CNN network, the weights 

are converted from floating-point numbers to +1 and -1, 

which can be expressed by 1 bit. 

Table II. The input/output feature map of each layer.  
Input 

(W�H�C) 
Operator 

Output 
(W�H�C) 

stride 

64�64�1 CONV 64�64�32 1 

64�64�32 
Max 

Pooling 
32�32�32 2 

32�32�32 CONV 32�32�64 1 

32�32�64 
Max 

Pooling 
16�16�64 2 

16�16�64 CONV 16�16�128 1 

16�16�128 
Max 

Pooling 
8�8�128 2 

8�8�128 CONV 8�8�128 1 

8�8�128 
Max 

Pooling 
4�4�128 2 

4�4�128 GAP 1�1�128 - 

1�1�128 FC 1�1�10 - 

Considering that the batch normalization layer has four 

parameters, this can take up too much memory space. 

Therefore, the parameters of the batch normalization layer are 

quantized using the K-mean clustering algorithm. However, 

the quantized value is still a floating-point number and must 

be converted to a fixed-point number, and then a lookup table 

can be created. Then, when the parameters of the CNN 

network have been quantized, the hardware implementation 

can be started, and the accuracy can be kept within an 

acceptable range. 

Test accuracy

CNN-based BNN 

architecture adjustment

Quantize weight of the 

convolution layer

Extract weight in model 

with python

YES

NO

Quantize parameter  of the 

batch normalization layer

Python implements 

network architecture

Test accuracy

Hardware implementation 

and fixed point

Input dataset convert to 

fixed-point

Convert from floating-

point to fixed-point

YES

NO

Parameters of batch 

normalization layer 

clustering

 
Fig. 2. Flowchart for CNN hardware implementation. 

The flowchart from the software model to the CNN 

hardware accelerator implementation is shown in Fig. 2. The 

first step is to convert the vibration data of CWRU from a 

floating point to a fixed point. The second step is to input the 

fixed point obtained in the previous step to CNN-based BNN 

for training. The third step will be to adjust the structure and 

training for the weight of CNN-based BNN. Then it will test 

its accuracy. If the accuracy is unacceptable, it will go back 

to the first to the third steps to adjust the number of input bits 

and the network structure. When building and adapting the 

network architecture, the weights of the convolution layer are 

quantized at the same time. 

The fourth step is to extract the weight of the network 

model. The fifth step quantizes the parameters in the batch 

normalization layer. The sixth step is to group the parameters 

in the batch normalization layer. The seventh step converts 

Label 
Fault 

Diameter 
Type of Damage 

# train 

images 

# test 

images 

0 0 Normal Baseline Data 423 108 

1 0.007 Ball Fault 474 114 

2 0.014 Ball Fault 506 111 

3 0.021 Ball Fault 446 112 

4 0.007 Inner Race Fault 509 137 

5 0.014 Inner Race Fault 455 122 

6 0.021 Inner Race Fault 609 157 

7 0.007 Outer Race Fault 1390 342 

8 0.014 Outer Race Fault 265 57 

9 0.021 Outer Race Fault 1307 345 
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the parameters obtained in the previous step from floating-

point to fixed-point numbers and creates a lookup table. The 

eighth step will use python to implement network architecture 

for simulation accuracy of fixed-point computations. The 

integer digits of the feature maps remain unchanged, and the 

number of retained decimal bits gradually decreases. The 

network accuracy is tested until the accuracy is no longer 

acceptable. There is a trade-off between the number of bits 

and the accuracy of the network after many tests. If the 

accuracy is unacceptable, it will go back to the fifth to the 

eighth steps to adjust the number of input bits. Otherwise, the 

CNN hardware accelerator can be implemented. 

III. HARDWARE IMPLEMENTATION 

 
Fig. 3. The architecture of the proposed binary CNN hardware accelerator. 

The architecture of the proposed binary CNN hardware 

accelerator is shown in Fig. 3. When training the proposed 

CNN network architecture, the weights of the convolution 

layers are quantized with +1 and -1. Moreover, after 

simplifying the formula, the parameters of the batch 

normalization layer are reduced to two parameters. Finally, 

these parameters are clustered and converted from floating to 

fixed-point numbers. In the hardware implementation of the 

neural network, the read-only memory (ROM) stores the 

weights extracted from the neural network model, including 

the weights of the convolution layers, the weights of the fully 

connected layers, and the parameters of the batch 

normalization layers. 

All the above parameters are stored in ROM. The input 

vibrational sensor data for fault classification is stored in the 

random access memory (RAM) for testing the accuracy of the 

proposed binary CNN network. The output feature map of 

each layer is stored in RAM and used as the input feature map 

for the next layer. Two RAMs are used simultaneously to 

store the current layer's output feature map when inputting 

the previous layer's feature map. 

Moreover, the number of parameters for each layer in the 

proposed binary CNN network is shown in Table III. The 

total parameters of the weights and batch normalization 

parameters are 242k. The quantized parameters can 

effectively reduce the number of bits for parameters and 

reduce the memory used in hardware implementation. Table 

IV compares the bits of the original parameter with the 

quantized parameter and calculates the percentage of memory 

reduction. 

Table III. The number of parameters in the proposed binary CNN network. 

Input channel Operator Output channel 
Sum of 

parameters 

1 Convolution (3×3) 32 288 

32 
Batch Normalization 

(2 parameters) 
32 64 

32 Convolution (3×3) 64 18,432 

64 
Batch Normalization 

(2 parameters) 
64 128 

64 Convolution (3×3) 128 73,728 

128 
Batch Normalization 

(2 parameters) 
128 256 

128 Convolution (3×3) 128 147,456 

128 
Batch Normalization 

(2 parameters) 
128 256 

128 GAP 128 0 

128 Fully Connected 10 1280 

Table IV. The memory usage reduction. 

Memory 
Memory  

name 

Total bits without /with 
quantization 

Reduction 
percentages 

ROM 

InputWeight 7,676,928/239,904 96.875% 

InputBatchN 
_phi 

11,264/1,408 87.5% 

InputBatchN 
_tau 

11,264/1,408 87.5% 

InputFC 40,960/1,280 96.875% 

RAM 
Psum1 1,048,576/393,216 62.5% 

Psum2 524,288/196,608 62.5% 

Total bits 9,313,280/833,824 91.047% 

This section discusses the hardware implementation issues 

to be considered, including network architecture depth, 

convolution layer weighting, batch normalization layer 

parameter quantization, and floating-point numbers to fixed-

point number conversion. These network structures and 

quantization methods will affect the amount of memory used 

and the operation speed of the neural network computation. 

IV. EXPERIMENTAL RESULTS 

Table V. Accuracy of each stage operation. 

The bit width for adders and multipliers should be 

considered for hardware implementation. After addition and 

multiplication, the digits cannot grow indefinitely. Therefore, 

some decimal digits are discarded in the calculation without 

excessively affecting the accuracy. In addition, an FPGA 

evaluation board, Xilinx Virtex-7 FPGA VC707, is used to 

verify the accuracy of the hardware implementation. The use 

of memory includes ROM and RAM. The ROM stores the 

parameters that will not be changed, including the weights of 

the convolution layer and fully connected layer and the two 

parameters φ' and τ' of the batch normalization layer. RAM is 

used to store partial sum. Two RAMs will be used 

simultaneously to speed up the calculation. Two RAMs can 

store this partial sum while outputting the last partial sum.  

InputWeight

1bit * 9 * 26656

Controller

InputImg reg

9bits * 64 * 4

Psum1

12bits * 32 * 32 * 32

Psum2

12bits * 16 * 16 * 64

9bits

4bits

4bits

12bits

12bits

Maxpooling

InputImg

9bits * 64 * 64

InputFc

1bit * 1280 1 bit

InputBatchN_tau

4bits * 352

InputBatchN_phi

4bits * 352

9bits

CONV

ReLu

9bits

9bits

4bits

4bits

Convolution

PE-c PE-c

BatchNorm

PE-b PE-b

GlobalAvgPool

Fully connected

Output 

[3:0]

1bits

12bits

12bits

Stage operation Accuracy 

Build a CNN-based BNN model 
(9 bits of the input image) 

0.9918 

K-means clustering the parameters (floating-point) 
in the batch normalization layer 

0.9894 

�� in the batch normalization layer 
convert from floating-point to 7 bits 

0.9894 

�� in the batch normalization layer 
convert from floating-point to 11 bits 

0.9744 

RTL-level (Bit reduction in the calculation.) 0.9495 

FPGA 0.9507 
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In the experiment results, only one image is input into the 

memory at a time, with 4,096 vibration data points. The 

proposed FPGA circuit's operating frequency can run at 

130MHz after implementation, and power consumption is 

0.523 W. The accuracy is 95.07%. 

Table VI. Comparison table with other software methods. 

 
[3] 

Sensors'17 
[5] 

KBS'18 
[7] 

MSSP'20 
Proposed 

work 

Architecture CNN 
CNN + 
HMMs 

CNN 
CNN +  
BNN 

Dataset CWRU CWRU CWRU CWRU 

# of trains 1000 800 1200 1390 

# of tests 250 400 1200 342 

Pre-
processing 

method 

Hanning 
window + 

RMS 

Hankel 
matrix 

CSCoh reduce the bits 

Image size 32×32 50×50 112×112 64×64 

Classified 
labels 

10 12 10 10 

Accuracy 98.4% 98.08% 99.02% 99.18% 

The different image sizes, pre-processing methods, and 

classification labels are compared in Table VI. The proposed 

pre-processing method is easier to implement and simpler 

than others. In addition, the proposed design achieves better 

accuracy than these software models. 

Table VII. Comparison Table for CNN Hardware Accelerator 

 
[11] 

DATE'19 
[12] 

Journal '19 
[13] 

ITAIC'19 
Proposed work 

Technology FPGA FPGA FPGA FPGA 

Platform 
Zynq 

XC7Z020 
Zynq 

XC702 
ZYNQ7020 Virtex 7 VC707 

Algorithm CNN CNN CNN CNN 

Architecture BNN BNN BNN BNN 

Dataset MNIST Cifar10 MNIST CWRU 

Parameters 
(k) 

2,079 13,400 1,060 242 

Frequency 
(MHz) 

200 143 N/A 130 

Power(mW) 500 3,300 4,000 523 

Memory N/A 1.7MB 1.07MB 
Input 4.5KB 

Weight 29.79KB 
Output 72KB 

LUT 7,954 29,629 39,824 7,317 

FF 7,188 31,763 66,785 5,471 

BRAMs 68 103 55.50 34.5 

DSP 16 0 36 6 

Accuracy 99.34 88.61% 99.49% 95.07% 

GOPS 61.62 722 N/A 0.015158 

GOPS/W 123 219 N/A 0.02898 

Then the proposed CNN hardware accelerator is 

implemented on an FPGA evaluation board. Table VII shows 

the performance of different CNN networks implemented on 

FPGA. The proposed work and designs [11, 12, 13] both use 

BNN to quantize the weight to 1 and -1. However, the 

complexity of the CWRU dataset used in this work is not 

simpler than MNIST and Cifar10. Therefore, when the 

proposed binary CNN network is applied to the MNIST 

dataset, the classification accuracy is 99.22%. As a result, the 

proposed binary CNN network architecture can also be 

applied to the MNIST dataset. Besides, the number of 

parameters and memories is much smaller than [11, 12, 13]. 

An image has 4,096 vibration data points, and one iteration 

for the proposed CNN network requires 20,387,288 cycles, 

and the clock period of each cycle is 7.692 ns. Therefore, one 

iteration requires 156,819,019ns (0.156 seconds) in the 

proposed circuit on FPGA at 130MHz. Therefore, real-time 

can be achieved when the fastest vibration signal was 

collected at 26,119 samples/second. 

V. CONCLUSION   

This paper implements a CNN hardware accelerator 

network to detect the bearing faults of the CNC machinery. 

When constructing CNN-based BNN, the accuracy is 

99.18%. After establishing the network model, the 

parameters of the batch normalization layer were quantized 

with an accuracy of 97.44%. Finally, the hardware is 

implemented in FPGA with an accuracy of 95.07%, and the 

total parameter is 242k. 
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