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Abstract  An all-digital built-in jitter measurement (BIJM) 
circuit is presented in this paper. A frequency divider is taken as 
a timing amplifier to linearly amplify the input jitter. 
Subsequently, a vernier ring oscillator (VRO) is used as a time-
to-digital converter (TDC) to quantize the jitter information into 
digital codes. The proposed self-referred architecture with a 
cycle-controlled delay line doesn’t require an external reference 
clock to measure the jitter of the on-chip signals. Therefore, the 
BIJM circuit design complexity is greatly reduced by the 
proposed architecture. The proposed all-digital BIJM is 
implemented in a 65nm CMOS process, and the input frequency 
range is 100MHz to 300MHz. 

Index Term � clocks, jitter, oscillator, vernier ring oscillator. 

I.    INTRODUCTION 

Phase-locked loops (PLLs) play an important role in system-on-a-
chip (SoC) design. PLLs are widely used for on-chip high-speed 
clock generation. In a SoC, there are many PLLs placed on the chip 
to produce various clock rates for memory and I/O interfaces. If one 
PLL doesn’t work correctly, it may lead to the overall system failure. 
Therefore, the stability of the PLL is very important. The jitter 
performance is one of the most important characteristics of the PLL. 
However, the run-time jitter performance of the PLL, which affected 
by power supply noise, substrate noise and wire crosstalk effects, is 
often not predictable. In addition, since there are many PLLs on the 
chip, it is not easy to measure the run-time jitter performance of the 
on-chip PLLs by off-chip jitter measurement instrumentations. 
Moreover, the PLL’s output frequency is often higher than I/O pad 
speed limitations. Therefore, in prior studies, many jitter 
measurement techniques are proposed [2-9]. 

Traditionally, many equipments such as a real-time sampling 
oscilloscope, a spectrum analyzer and other dedicated jitter 
measurement instrumentations are required to measure the clock 
jitter.  These techniques are known as the off-chip jitter measurement. 
However, the ground bounce caused by the I/O pad transitions 
affects the accuracy of the off-chip jitter measurement. Moreover, it 
needs to wait a long time to collect the jitter data. Additionally, the 
cost to use these equipments is very expensive.  

In recent years, many built-in jitter measurement (BIJM) circuits 
are proposed [2-9] to measure the jitter performance of the PLL. Fig. 
1 shows the concept of a built-in jitter measurement circuits. It is 
composed of a timing amplifier (TA) circuit and a time-to-digital 
converter (TDC). The PLL’s output clock (Test_Clock) and an ideal 
reference clock are inputted to the BIJM circuit. The timing 
difference between the test clock and the reference clock caused by 
the jitters is amplified and then converted into digital codes. The 
timing amplifiers (TAs) are proposed in [8, 9] to amplify the input 
jitter. The linearity of the timing amplifier is very important to obtain 
a precise jitter measurement results. Moreover, the TDC resolution 

also affects accuracy of the jitter measurement.   

 
FIGURE 1. The concept of a BIJM circuit. 

The time-to-digital converter (TDC) with a veriner delay line 
(VDL) is proposed in [2, 4, 6] for the on-chip jitter measurement. 
The veriner delay line structure uses two delay lines with different 
tapped delay to improve the resolution of the TDC, as shown in Fig. 
2. The resolution of the TDC is equal to (T1 – T2) in VDL structure. 
Nevertheless, the TDC with VDL structure has a large area overhead 
and high power consumption, especially when the range of the input 
pulse width becomes wider. Therefore, a vernier ring oscillator 
(VRO) structure is proposed in [7, 8] to reduce the area overhead. In 
the VRO architecture, it uses two pairs of ring oscillators to quantize 
the pulse width information into digital codes. The vernier ring 
oscillator (VRO) structure can reduce the area cost of the TDC. 
Therefore, it is suitable for a built-in jitter measurement (BIJM) 
circuit design. 

 
FIGURE 2. The time-to-digital converter with vernier delay line. 

In prior built-in jitter measurement (BIJM) circuits [4, 5], an 
external reference clock is needed to measure the jitter performance 
of the PLL. In fact, it is very difficult to have a jitter-free clock as a 
reference clock input. Therefore, the self-referred structure [6-8] is 
proposed to avoid using an external reference clock. In the self-
referred structure, a reference clock is generated from the test clock. 
The most popular self-referred structure uses a one-period delay 
circuit to produce the required reference clock. However, the input 
frequency range of the BIJM circuit is restricted by the range of the 
delay line.  

In this paper, a frequency divider is taken as a timing amplifier to 
linearly amplify the input jitter. The TDC with VRO architecture is 
applied to the proposed BIJM circuit to quantize the jitter 
information into digital codes. The proposed self-referred 
architecture with a cycle-controlled delay line can reduce the area 
cost and improve the input frequency range of the BIJM circuit. This work was supported in part by the National Science Council of 
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This paper is organized as follows. Section II describes the 
overall architecture of the proposed built-in jitter measurement 
(BIJM) circuit. The implementation of the proposed design is 
discussed in Section III. Section IV shows the experimental 
simulation results of the proposed design. Finally, Section V 
concludes with a summary. 

II.    OVERVIEW ARCHITECTURE 

A timing amplifier (TA) in a built-in jitter measurement (BIJM) 
circuit is used to amplify the input jitter. Hence, the accuracy of the 
jitter measurement can be further improved. However, the analog 
timing amplifiers (TAs) [8, 9] often have a very small linear region 
and this linear region is affected by process, voltage and temperature 
(PVT) variations. Therefore, a post-silicon calibration is often 
needed to improve the linearity of the timing amplifier (TA), and the 
calibration cost increases the total cost of the BIJM circuit. 

 
FIGURE 3. The output rms jitter with different divider ratio. 

The measured jitter histogram of the PLL’s output clock usually 
looks like a normal distribution random variable. The root-mean-
square (rms) value and the peak-to-peak value are the two important 
parameters of the jitter histogram. In this paper, a frequency divider 
is used to replace the analog timing amplifier (TA) circuit to amplify 
the input jitter. When a clock with jitters is inputted to a frequency 
divider, the output jitter will become larger than the input jitter. Fig. 
3 shows the simulation results of the ratio (r) of the output rms jitter 
value divided by input rms jitter value with different divider ratio (d). 
The relationship between the ratio (r) and the divider ratio (d) can be 
modeled as . The simulation shows that when the divider 
ratio (d) is smaller than 16, the tend line ( ) is close to the 
simulation value. Compared with the analog timing amplifier, the 
frequency divider is a simple digital circuit, and it is easy to be 
implemented with standard cells. Thus, the design complexity of the 
timing amplifiers can be greatly reduced by the proposed 
architecture. 

The block diagram of the proposed all-digital built-in jitter 
measurement (BIJM) circuit is shown in Fig. 4. It is composed of a 
frequency divider, a self-refereed circuit, a vernier ring oscillator 
(VRO), a phase detector and a 10-bit counter. The proposed 
architecture uses a vernier ring oscillator (VRO) [7, 8] as a time-to-
digital converter. In addition, a frequency divider with a fixed divider 
ratio (16) is taken as a timing amplifier to amplify the input jitter. In 
Fig. 4, the test clock (CLK) is divided by the frequency divider and 
then outputs as DIV_CLK. Subsequently, the self-referred circuit 
generates a one-period delayed test clock as a reference clock. Then, 
the DIV_CLK is outputted as the START signal, and the one-period 

delayed DIV_CLK is outputted as the STOP signal for the VRO 
circuit. The START signal triggers the Vernier oscillator 1 and the 
STOP signal triggers the Vernier oscillator 2.  In the vernier ring 
oscillator (VRO) circuit, the oscillation frequency of the OSC1 
should be slower than the OSC2. The phase detector (PD) is used to 
detect when the OSC2 signal catch up the OSC1 signal. When the 
PD detects the change of the phase polarity, the reset signal 
(M_RESET_) is sent to the self-referred circuit, and the self-referred 
circuit will produce the START signal and the STOP signal again for 
the next jitter measurement. The 10-bit counter records the cycle 
number of OSC2 until the OSC1 lags behind the OSC2. The counter 
value (COUNT) is the measured jitter result. The resolution (RVRO) 
of the proposed VRO circuit is the period difference between the 
Vernier oscillator 1 and the Vernier oscillator 2. 

FIGURE 4. The proposed all-digital BIJM circuit. 

The resolution (RVRO) of the VRO circuit varies with process, 
voltage and temperature (PVT) variations. Thus, the counter value 
can not be directly used as the jitter measurement results unless the 
resolution of the VRO circuit (RVRO) is known. The calibration 
process to the VRO circuit is needed before the jitter measurement, 
and the signal CONTROL can be used for the calibration process. 

The proposed all-digital built-in jitter measurement (BIJM) 
circuit has two operation modes, the calibration mode and the normal 
mode, and the mode selection control pins are the CLK_MODE and 
TEST_MODE of the self-referred circuit. The calibration mode is 
used to obtain the resolution (RVRO) of the VRO circuit with a known 
input test clock (CLK) frequency, and the resolution (RVRO) of the 
VRO circuit can be adjusted by the CONTROL signal if needed. 
Then, in the normal mode, the BIJM circuit measures the jitter of the 
input test clock (CLK), and the output counter value can be used to 
calculate the jitter. 

III.    CIRCUIT IMPLEMENTATION 

 
FIGURE 5. The proposed self-referred circuit. 

The detail block diagram of the proposed self-referred circuit is 
shown in Fig. 5. In the calibration mode, the CLK_MODE is set to 
“0” and the TEST_MODE is also set to “0”. Thus, the test clock 
(CLK) with a known frequency is inputted to the self-referred circuit 
as the TEST_CLK, and the inverted TEST_CLK is connected to the 
SELF_CLK. In addition, the TEST_CLK is outputted as the START 
signal and the SELF_CLK is outputted as the STOP signal. The 
timing difference between the START signal and the STOP signal is 
one half of the test clock (CLK) period in the calibration mode. Then, 
the VRO circuit can quantize the timing difference between the 
START signal and the STOP signal to obtain the counter value for 
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one half of the test clock (CLK) period. Thus, the resolution (RVRO) 
of the VRO circuit can be calculated by Eq. 1.  

  (1) 

where T is the period of the input test clock (CLK),  is the mean 
of the counter values, and RVRO is the resolution of the VRO circuit. 
In other words, it means the period difference between the Vernier 
oscillator 1 and the Vernier oscillator 2. 

After the calibration is done, in the normal mode, the 
CLK_MODE is set to “1” and the TEST_MODE is set to “1”. Thus, 
the divided clock (DIV_CLK) is inputted as the TEST_CLK. 
Subsequently, the TEST_CLK is delayed by one cycle and outputted 
as the SELF_CLK. The edge detector circuit detects the sign of the 
jitter, if the TEST_CLK leads the SELF_CLK, the output jitter is 
defined as positive. Therefore, the JITTER_SIGN signal is set to “0”. 
Oppositely, if the TEST_CLK lags the SELF_CLK, the 
JITTER_SIGN is set to “1”. If the JITTER_SIGN signal is set to “0”, 
the TEST_CLK is outputted as the START signal and the 
SELF_CLK is outputted as the STOP signal. Otherwise, the 
SELF_CLK is outputted as the START signal and the TEST_CLK is 
outputted as the STOP signal. The timing difference between the 
START signal and the STOP signal is the input jitter. When the 
negative edge of the M_RESET_ is received, the edge detector is 
reset, and the self-referred circuit will produce the START signal and 
the STOP signal again for the next jitter measurement.  

The initial value of the counter is set to “256” in each jitter 
measurement. If the JITTER_SIGN is set to “0”, the counter will 
count upward until the negative edge of the M_RESET_ signal is 
produced. Oppositely, if the JITTER_SIGN is set to “1”, the counter 
will count downward until the negative edge of the M_RESET_ 
signal is produced. The measured jitter is defined as Eq. 2. 

 (2) 

where  is the i-th value of the jitter,  is the i-th counter value and 
RVRO is the resolution of the VRO circuit. 

In the proposed all-digital built-in jitter measurement (BIJM) 
circuit, a frequency divider with a fixed divider ratio (16) is taken as 
a timing amplifier to amplify the input jitter. Although the jitter is 
amplified, the period of the test clock is also increased to 16 times of 
the original period. As a result, the cycle-controlled delay unit 
(CCDU) [10, 11] is used in the proposed self-referred circuit to 
reduce the area cost to generate a one-period delay. The cycle-
controlled delay line (CCDL) is composed of a ring-oscillator and a 
counter. It utilizes the ring oscillator to generate a wide-range delay 
time. 

IV.    EXPERIMENTAL RESULTS  

The proposed all-digital built-in jitter measurement (BIJM) 
circuit is implemented in a standard performance (SP) 65nm CMOS 
technology. The layout of proposed circuit is shown in Fig. 6. It 
includes the cycle-controlled delay line (CCDL), the controller, the 
phase detector (PD), the frequency divider (Divider) and the two 
vernier ring oscillators (VROs). The core area is 0.01 mm2, but the 
area occupied by the proposed all-digital BIJM circuit is 0.0027 mm2. 
In addition, the gate count of the proposed all-digital BIJM circuit is 
1749. 

The input frequency range of the proposed design is from 
100MHz to 300MHz. The timing diagram of the proposed BIJM 
circuit is shown in Fig. 7. In this case, the frequency of the input test 
clock is 125MHz. Thus, the divided frequency of the TEST_CLK is 
7.8125 MHz. The initial value of the counter is 256. In this case, the 
TEST_CLK leads the SELF_CLK, the JITTER_SIGN is set to “0”. 
The counter will count upward until the negative edge of the 
M_RESET_ signal is produced. As a result, the measured jitter value 
is equal to 9*RVRO=((265-256)* RVRO). 

 
FIGURE 6. Layout of the proposed BIJM circuit. 

 
FIGURE 7. Simulation of the proposed BIJM circuit. 

In the calibration mode, the frequency of the input clock signal is 
125MHz with 1.2ns peak-to-peak jitter, and its period is 8ns. After 
the calibration, the mean of the counter values is 282.16. From the 
Eq. 1, we can obtain the resolution of the proposed VRO circuit is 
about 152.9ps. Thus, in the normal mode, the measured jitter value 
shown in Fig. 6 is equal to 1.376ns (=9* 152.9ps). Another example 
shows that the input jitter is 1.903ns, and the measured counter value 
is 243. Thus, the jitter value is equal to 1.987ns (=13*152.9ps). Thus, 
the error of the proposed all-digital BIJM circuit is about 4%. 

The proposed all-digital BIJM circuit can not measure the jitter of 
the input clock at every clock cycle. When it starts to measure the 
jitter, it takes several cycles to calculate the jitter value. Thus, for on-
chip jitter measurement applications, it still needs a long time to 
collect the jitter characteristic of the input clock. 

The proposed all-digital BIJM circuit can solve the bottleneck of 
the analog circuit by replacing the timing amplifier with a frequency 
divider. Additionally, we use the cycle-controlled delay line (CCDL) 
to reduce the area cost to generate a one-period delay. Thus, the area 
cost and the power consumption of the proposed design can be 
further reduced. 
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Table I. lists the comparisons of recent built-in jitter measurement 
(BIJM) circuit. In [4, 5], an external reference clock is needed to 
measure the jitter performance of the PLL. Thus, it is not suitable for 
the on-chip jitter measurement applications with many PLLs on a 
single chip. In addition, the analog circuit is easily affected by PVT 
variations. In [6, 8], the TDC with a vernier delay line (VDL) has a 
very limited input jitter range. In [7], the proposed architecture 
doesn’t have a timing amplifier (TA), and the jitter measurement 
error is too large. 

. CONCLUSION 

An all-digital built-in jitter measurement (BIJM) circuit which 
uses a frequency divider as a timing amplifier is presented in this 
paper. It can solve the bottleneck of the analog circuits with PVT 
variations. In addition, the cycle-controlled delay line (CCDL) is 
applied to reduce the area cost of the self-referred circuit. The 
proposed BIJM circuit uses the VRO architecture to reduce the error 
in jitter measurement. Thus, the proposed all-digital BIJM circuit is 
suitable for current on-chip jitter measurement applications in SoC 
era. 
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TABLE I. COMPARISONS OF RECENT BIJM CIRCUITS 
 This work JSSC2006[4] TIM2008[5] TVLSI2009[6] ISVLSI2005[7] TVLSI2010[8] 

Technology 65nm 90nm 0.18μm 90nm 0.18 μm 90nm 

Architecture TA (DIV), 
TDC (VRO) TDC(VDL) TDC TDC(DL/VDL) TDC(VRO) TA, 

TDC(VRO) 

Input frequency 100MHz 
~300MHz 250MHz 1.25GHz 2.5GHz 100MHz 3GHz 

Area (mm2) 0.0027 0.24 0.09 0.075 0.004 0.038 

Power (mW) 0.57mW 
@(100MHz) N/A 40mW 

(@ 1.25GHz) N/A N/A 11.4mW 
(@ 3GHz) 

RMS Jitter  
(oscilloscope/BIJM) 1.903/1.987* 2.03/2.0 5.45/6.25 10.1/6.2 42.7/62.7 4.15/3.78 

Error   4% 1.5% 14.6% 39.0% 46.8% 8.9% 
Self-reference Y N N Y Y Y 

* The input jitter model / BIJM 
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