A Rapid Design Process for Efficient CNN Hardware Accelerator on FPGA

Ching-Che Chung® and Pin-Hua Chen?
a Department of Computer Science and Information Engineering,
National Chung Cheng University, Taiwan

E-mail address: wildwolf(@cs.ccu.edu.tw

Abstract
This paper presents a rapid design flow for efficiently determining quantization and
computation methods in convolutional neural network (CNN) hardware accelerators. The
proposed process provides eight quantization configurations to address various complexity and
performance requirements. Additionally, an improved Integer-Arithmetic-Only (IAO) 8-bit
quantization technique is introduced, which outperforms existing tools like TensorFlow Lite in
both hardware feasibility and accuracy. For instance, the IAO method achieves 99.11%
accuracy on the PU vibration dataset compared to 32.81% using TensorFlow Lite’s full-integer
quantization, and 76.60% versus 18.76% on the more complex PU current dataset. On simpler
tasks like MNIST, IAO maintains about 99.5% accuracy, while TensorFlow Lite’s full-integer
approach drops to approximately 91%. Implemented on a VC707 FPGA board at 70 MHz, the
proposed accelerator closely matches the predicted accuracy, with less than 0.5% accuracy loss,

confirming the practicality and effectiveness of the design process.

Keywords: Convolutional Neural Network, Quantization, FPGA, Integer-Arithmetic-Only,
Edge Al
1. Introduction

In recent years, the advances in artificial intelligence (Al) and the Internet of Things (IoT)
have accelerated the development of deep learning. Among various deep learning models,
Convolutional Neural Networks (CNNs) are well-known for achieving high accuracy in vision-
related tasks. However, CNNs typically involve large numbers of parameters and extensive
computations, posing challenges for direct deployment on resource-constrained edge devices.
While cloud-based platforms efficiently handle such complexity, network bandwidth and
latency constraints hinder real-time, on-device inference.

To overcome these challenges, parameter optimization and quantization techniques are
employed before on-chip implementation. Previous works (Liang, et al., 2024; Chung, et al.,
2023; Goyal, et al., 2021) explored fixed-point quantization to reduce parameter storage and
computation complexity, but finding suitable integer and fractional bit-widths often requires
exhaustive trial-and-error, especially when adapting to different datasets or CNN architectures.
TensorFlow Lite (TensorFlow Lite website, 2025) offers built-in quantization options to

expedite this process and can shrink model size without significant accuracy loss for simpler

tasks. However, it often struggles to maintain performance on more complex models.

This paper introduces a rapid design process that assists in determining suitable hardware
computation methods for CNNs. This approach provides multiple quantization options and an
improved 8-bit integer-arithmetic-only (IAO) quantization method that achieves higher
accuracy without retraining. Additionally, an FPGA-based accelerator using 16-bit floating-
point and 16-bit fixed-point formats validates the proposed strategies on both the MNIST
dataset and a bearing dataset.

The main contributions in this paper are summarized as follows:

1. Arapid design process that quickly determines hardware computation methods for diverse

CNN models, reducing manual optimization efforts.

2. An improved IAO 8-bit integer quantization that enhances accuracy for complex tasks
without model retraining.
3. An FPGA-based accelerator implementing both 16-bit fixed-point and 16-bit floating-
point formats to support different inputs, validated on MNIST and a bearing dataset.
The remainder of this paper is organized as follows: Section 2 introduces the proposed
quantization process and compares its results with TensorFlow Lite. Section 3 describes the
hardware implementation, Section 4 presents the experimental results, and Section 5 concludes
the paper.
2. Proposed Rapid Design Process

This section describes the proposed quantization strategy and its validation using the
MNIST dataset (The MNIST database of handwritten digits website, 2025) and the Paderborn
University (PU) bearing dataset (Paderborn University Bearing Data Center website, 2025).
Two CNN architectures are considered: a small 2-layer CNN for MNIST and a 5-layer 1-D
CNN for the PU datasets. Both models apply convolution, batch normalization (BN), ReLU
activation, and max-pooling. After quantizing parameters, each CNN is tested to evaluate
accuracy under different formats.

Tables 1 and 2 present the input and output sizes for each layer of the proposed MNIST
and PU models, respectively. The MNIST model processes a 28%28 image flattened to 1D,
while the PU models use down-sampled signals of length 1,600. All data inputs are pre-
processed into a fixed-point format (4-bit integer, 5-bit decimal).

TensorFlow Lite (TFLite) (TensorFlow Lite website, 2025) quantization results are shown
in Table 3 (MNIST) and Table 4 (PU current). Dynamic range and Floatl16 quantization yield
good accuracy but still rely on floating-point operations or additional scaling factors. Full

integer quantization significantly reduces accuracy in complex tasks like the PU current dataset.

Table 1 Input and output data size in MNIST Model.

Operation Input data size Output data size Stride

Convolution 1 1x784x1 1x784x16 1

Max pooling 1 1x784x16 1x196 x 16 4
Convolution 2 1x196 X 16 1 X196 X 36 1
Max pooling 2 1x 196 x 36 1x49 x 36 4
1x1x1,764
Fully connected Ix1x10 -
(after flattening)
Table 2 Input and output data size in PU Model.
Operation Input data size Output data size Stride
Convolution 1 1x1,600%x1 1x1,600x8 1
Max pooling 1 1x1,600x8 1x400%x8 4
Convolution 2 1x400x8 1x400x16 1
Max pooling 2 1x400%x16 1x100x16 4
Convolution 3 1x100x16 1x100x32 1
Max pooling 3 1x100x32 1X25%32 4
Convolution 4 1x25%32 1x25%32 |
Max pooling 4 1x25%32 I1X7x32 4
Convolution 5 1X7x32 1X7x64 1
Max pooling 5 1X7%x64 1x2x64 4
I1xX1x128
Fully connected 1x1x4 -
(after flattening)
Table 3 Results of MNIST model under Tensorflow lite.
Operation
Original Dynamic range Float 16 Full integer
(parameter)
Convolution 1
FP32 FP32 FP16 Int8
(400)
Convolution 2
FP32 Int8 FP16 Int8
(14,400)
Fully connected
FP32 Int8 FP16 Int8
(17,640)
Accuracy 96.15% 96.18% 96.15% 91.33%

To address these limitations, a rapid design process is introduced that provides eight
quantization configurations, as listed in Table 5. The proposed design process, as illustrated in
Fig. 1, starts with a TensorFlow-trained model—either the original or a retrained one with

reduced parameter bit-width. After merging batch normalization parameters, each parameter is

quantized into one of four formats: floating-point (FP16, FP8, FP8+16), fixed-point (16-bit and
8-bit), integer (Int8 IAO), and Posit formats. BN parameters are compressed by merging mean

and variance with y and B, halving the parameter count.

Table 4 Results of PU model under Tensorflow lite.

Operation
Original Dynamic range Float 16 Full integer
(parameter)
Convolution 1
FP32 FP32 FP16 Int8
(56)
Convolution 2
FP32 FP32 FP16 Int8
(896)
Convolution 3
FP32 Int8 FP16 Int8
(3,584)
Convolution 4
FP32 Int8 FP16 Int8
(7,168)
Convolution 5
FP32 Int8 FP16 Int8
(14,336)
Fully connected
FP32 Int8 FP16 Int8
(512)
Accuracy 99.04 % 98.82% 99.03% 18.76%
Table 5 Quantization provided by the proposed design process
Numerical Format of the storage
Floating-point FP16, FP8, FP8+16
Fixed-point Fixed-point16, Fixed-point8
Integer Int8 (IAO)
Posit Positl6, Posit8

FP8+16 quantization is suitable for models undergoing prior retraining to reduce
parameter bit-width, while fixed-point formats maintain good performance at 16 bits but
degrade significantly at 8 bits in complex tasks. To address this issue, an improved Int8 IAO
quantization method is introduced. This method applies a two-stage quantization—from
floating-point to 16-bit fixed-point, then to 8-bit integers—and stores scaling factors in fixed-
point. Tables 6-10 present various quantization results, demonstrating that the Int§ IAO
approach significantly improves accuracy over standard 8-bit methods, especially for
challenging datasets like the PU vibration signals.

Original Model

On

Retrainw

h 4

Off

Quantization Aware

Retraining

Retrain the model to reduce memaory
storage size and keep the accuracy.

BN Parameter Reduction

Reduce the parameters of batch
normalization by half.

Parameter Quantization

Find suitable quantization methods | ® Fixed point
to reduce memory size and e Nt
computation complexity. s Posit

Floating point

Figure 1 The flowchart of the proposed design process.
Table 6 Comparison of FP8(1,3,4) and FP8(1,4,3) in PU current model.

Original FP8 (1,3,4) FP8 (1,4,3)
Weight FP32 FP8 FP8
y of BN FP32 FP8 FP8
B of BN FP32 FP8 FP8
Test accuracy 98.78% 25.25% 49.16%

Table 7 Results of using FP8+16 quantization in PU current model.

FP16 FP8+16
Weight (DoReFa-Net) Int5 Int5
Weight (lookup table) FP16 FP8
y of BN FP16 FP16
B of BN FP16 FP16

Test accuracy 97.52% 95.08%

Table 8 Results of using fixed-point quantization in PU current model.

Fixed-point16 Fixed-point8
FP16
Integer bits | Decimal bits | Integer bits | Decimal bits
Weight FP16 5 11 3 5
y of BN FP16 5 11 5 3
B of BN FP16 5 11 5 3
Test accuracy 98.78% 93.08% 20.66%
Table 9 Results of using improved IAO INTS8 quantization in PU vibration model.
Fixed- Int8 (IAO) TensorFlow Lite
point8 Quantized number | Zero point Scale Full integer
Weight 3+5 Int8 Int8 0+16 Int8
y of BN 5+3 Int8 Int8 0+16 Int8
B of BN 543 Int8 Int8 0+16 Int8
Test accuracy 38.44% 99.11% 32.81%
Table 10 Results of PU vibration model using proposed design process.
Int8
Original | FP16 FP8 Fixed 16 | Fixed8 Posit 16 Posit8
(IAO)
Input
4+5 4+5 4+5 4+5 4+5 4+5 4+5 4+5
data
Weight FP32 FP16 FP8 5+11 3+5 Int8 Posit 16 Posit8
y of BN FP32 FP16 FP8 5+11 3+5 Int8 Posit 16 Posit8
B of BN FP32 FP16 FP8 5+11 3+5 Int8 Posit 16 Posit8
Activation FP32 FP16 FP16 5+11 5+11 5+11 FP16 FP16
Accuracy 99.45% | 99.32% | 98.09% 99.27% 38.44% 99.11% 99.41% 99.11%

Unlike standard 8-bit quantization, which often suffers from severe accuracy loss, the
proposed IAO approach carefully preserves scale and zero-point information. Convolution
weights and BN parameters are initially quantized to 16-bit fixed-point and then compressed
to 8 bits. During inference, they are efficiently dequantized back to 16-bit fixed-point using the
stored scale and zero point. This process avoids retraining and achieves near-original precision.
Moreover, the memory footprint is drastically reduced. For example, in the PU current signal
model’s first convolutional layer, the storage requirement drops from 1,792 bits (FP32) to just
472 bits with IAO Int8 quantization. This balance of lower memory usage and higher accuracy

indicates that the improved IAO quantization is well-suited for complex recognition tasks

where standard 8-bit quantization methods fall short.

Comparisons of the proposed quantization methods and TFLite for MNIST, PU vibration,
and PU current signals are summarized in Tables 11-13. The proposed IAO quantization
maintains higher accuracy than TFLite’s full integer approach, demonstrating improved
feasibility for on-chip deployment.

Table 11 Comparison of the proposed flow with Tensorflow lite using MNIST model.

Weight FP16 5+11 3+5 Int8 FP16 Int8 Int8

y of BN FP16 5+11 5+3 Int8 FP32 FP32 Int8

B of BN FP16 5+11 543 Int8 FP32 FP32 Int8

Cal. process Float Int Int Int Float Float Int
Accuracy 99.45 99.48 99.45 99.48 96.15 96.18 91.33

Table 12 Comparison of the proposed flow with Tensorflow lite using PU vibration model.

Weight FP16 5+11 3+5 Int8 FP16 Int8 Int8

y of BN FP16 5+11 543 Int8 FP32 FP32 Int8

S of BN FP16 5+11 543 Int8 FP32 FP32 Int8
Cal. process Float Int Int Int Float Float Int

Accuracy 99.32 99.27 38.44 99.11 98.81 98.78 32.81

Table 13 Comparison of the proposed flow with Tensorflow lite using PU current model.

Weight FP16 5+11 3+5 | Int8 FP16 Int8 Int8
¥ of BN FP16 5+11 543 | Int8 FP32 FP32 Int8
B of BN FP16 5+11 543 | Int8 FP32 FP32 Int8

Cal. process Float Int Int Int Float Float Int

Accuracy 98.78 93.08 20.66 | 76.60 99.03 98.82 18.76

3. Hardware Implementation
The proposed hardware design supports flexible CNN configurations on an FPGA,
accommodating varying input sizes, network depths, and channel counts. Both FP16 and
Fixed16 implementations are considered, reflecting the quantization options identified by the
rapid design process. Fig. 2 illustrates the overall architecture, where all layers, including
convolutions and fully connected layers, operate with consistent precision. The design allows
adjustments of parameters such as Img size, Layer num, Out channel, and Label num to

accommodate different models.

) 11bits conv
Img_size
3bits -
Layer_num ——— 9/16bits |
35bits .| Convolution
Out_channel ——— 16bits |
4bits
Label_num ——— v
16bits ||
Inputimg Sbits : nom?sltig;tion
1600 x 9bits g 16bits |
) Y
InputWeight 16bits dat
26552 x 16bits g ata RelU
management
InputBN-all 32bits . L 4
157 x 32bits 16bits _
Max-pooling
FeatureMap1 16bits
3200 x 16bits
16bits
> Fully
FeatureMap2 [16bits | 16bits connected
1764 x 16bits 2
bztsl Output

[3:0]

Figure 2 Overall architecture of the proposed CNN hardware design.
All input data, model weights, and BN parameters are stored in dedicated on-chip memory.
The BN parameters are preprocessed to merge mean and variance with y and B, reducing the
required computations. Intermediate feature maps are stored in feature map memories for reuse
by subsequent layers. Hardware-based verification shows minimal accuracy loss compared to

the software-level results of the proposed design flow.

4. Experimental Results
The proposed CNN accelerator was implemented on an AMD Virtex-7 VC707 FPGA

8

evaluation board. Fig. 3 shows that the maximum operating frequency without timing
violations is 70 MHz. At this frequency, Fig. 4 illustrates the on-chip power consumption when
processing one sample of the PU current signal, measuring approximately 753 mW. Increasing

the frequency beyond 70 MHz introduces timing issues and raises power consumption.

« Q 1 um Intra.Clock Paths - cik_out1_clk_wiz_0 - Setup
13
Name Slack ™' Levels HighFanout From To Total Delay LogicDelay NetDelay Requirement Source(
Path 1 0.051 18 10051 test1/bn2_img_regi0yC test1fmap2_tmp_reg{148146)0 14227 6.016 821 143 di_outt
Path 2 0057 18 10051 testi/bn2_img_regioyC testifmap2_tmp_regi394)146)D 14304 6.016 8288 143 dk_outt
Path3 0064 17 10051 testidn2_img_regl0)yC test1fmap2_tmp_reg[166)]44)0 14225 5898 8327 143 dx_outt
Path4 0085 18 10051 test1/dn2_img_regi0yC test1Amap2_tmp_regi249146)0 14270 6018 8254 143 dx_outt
Paths 0.086 17 10051 testi/dn2_img_regi0yC testifmap2_tmp_regi143]44)0 14203 5898 8.305 143 di_outt
Path 0.092 18 10051 testi/bn2_img_regioyC test1Amap2_tmp_regi254J47)D 14263 5857 8.406 143 dx_outt
Path 7 0093 18 10051 test1/dn2_img_regi0yC test1fmap2_tmp_reg[119146)0 14239 6018 8223 143 dx_outt
Path8 0.101 17 10051 test1/dn2_img_regi0yC test1Amap2_tmp_regi86)44)0 14189 5898 8an 143 dx_outt
Path9 0.112 17 10051 testi/on2_img_regi0yC test1fmap2_tmp_reg{189]44)0D 14177 5898 8279 143 di_outt
Path 10 0.112 18 10051 testidn2_img_regl0yC test1Amap2_tmp_regi63)46)D 14239 6016 8223 143 dx_outt
Figure 3 The timing report of the proposed design running at 70MHz.
derived from constraints files, simulation files or
vectorless analysis. Dynamic: 0.506W (67%
Total On-Chip Power: 0.753 W 17% Clocks: 0088W (17%
Design Power Budget: Not Specified 67% Signals: 0.197W (39%
. 39%
Power Budget Margin: N/A Logic: 0.033W (7%
Junction Temperature: 25.9°C 7% B BRAM: 0.013W
Thermal Margin: 59.1°C (50.1 W) DSP: 0.015W
Effective SJA: 1.1°CW PLL: 0.154 W
30%
Power supplied to off-chip devices: 0W 1[0 % 0.006 W
33%
Confidence level: Medium
Device Static: 0.247 W

Figure 4 The on-chip power analysis on FPGA at 70MHz.

In hardware verification, both MNIST and PU datasets were tested using a subset of the
data. The FPGA predictions match closely with the results obtained from the proposed design
process, with less than 0.5% accuracy degradation. This confirms that the hardware
implementation is consistent with the intended quantization strategies.

In terms of memory efficiency, the final quantization strategy reduces parameter storage
to as little as one-quarter of the original model size. Moreover, due to careful memory block
planning and parameter compression, the FPGA implementation utilizes under 2% of the
available BRAM and approximately 25% of the available LUT resources. These results
confirm that the selected quantization strategies are highly scalable and can accommodate

larger network models or additional layers as needed.

5. Conclusion

This paper presented a rapid design process for determining suitable quantization and

computation methods in CNN hardware accelerators. The proposed approach offers eight
quantization configurations, including an improved Int8 IAO method that significantly
enhances accuracy without requiring model retraining. Experimental results demonstrated that
the Int8 IAO method consistently outperforms TensorFlow Lite’s full-integer quantization. For
instance, in the PU vibration dataset, Int8 IAO achieved 99.11% accuracy, compared to only
32.81% using TensorFlow Lite’s full-integer approach. In the more challenging PU current
dataset, Int8 IAO reached 76.60% accuracy, surpassing the 18.76% result of TensorFlow Lite’s
full-integer quantization. Even for the simpler MNIST dataset, Int8 IAO sustained about 99.5%
accuracy, whereas the TensorFlow Lite full-integer quantization dropped to approximately 91%.

Beyond these accuracy improvements, the proposed design process supports a broad
spectrum of quantization formats—including floating-point, fixed-point, integer, and Posit—
offering greater flexibility and feasibility for diverse hardware platforms. When implemented
on an AMD Virtex-7 FPGA at 70 MHz, the accelerator closely matched the predicted accuracy
of the proposed design process, exhibiting less than a 0.5% deviation for both MNIST and the
PU datasets. The results confirm that the proposed process not only streamlines the selection
of quantization strategies but also ensures efficient, high-accuracy deployment of CNN

inference at the network edge.

6. References

Liang, Y.-P., Chang, H.-H., & Chung, C.-C. (2024). A low-power convolutional neural
network implemented in 40-nm CMOS technology for bearing fault diagnosis.
Proceedings of International VLSI Symposium on Technology, Systems and Applications
(VLSI TSA), April 2024.

Chung, C.-C., Liang, Y.-P., & Jiang, H.-J. (2023). CNN hardware accelerator for real-time
bearing fault diagnosis. Sensors, 23(13), 5897. doi:10.3390/s23135897

Goyal, R., Vanschoren, J., Van Acht, V., & Nijssen, S. (2021). Fixed-point quantization of
convolutional neural networks for quantized inference on embedded platforms,
arXiv:2102.02147v1 [cs.CV]. arXiv, February 2021.

TensorFlow Lite website (2025). Retrieved from https://www.tensorflow.org/lite/guide
(accessed on 13 March 2025).

The MNIST database of handwritten digits website (2025). Retrieved from
http://yann.lecun.com/exdb/mnist/ (accessed on 13 March 2025).

Paderborn University Bearing Data Center website (2025). Retrieved from https://mb.uni-
paderborn.de/en/kat/research/kat-datacenter/bearing-datacenter/data-sets-and-download
(accessed on 13 March 2025).

10

