
1997 IEEE International Symposium on Circuits and Systems, June 9-12, 1997, H o X K o n g

A Memory-Based Architecture for Very-High-Throughput
Variable Length Codec Design*

Yew-San Lee Jin-Jer Jong Tsyr-Shiou Perng Li-Chyun Hsu Mng-Yang Jaw Chen-Yi Lee

Institute of Electronics Engineering, National Chiao Tung University,

1001, Ta Hsueh Road, Hsinchu, 300, Taiwan, R.O.C. China

Tel: 886-3-5712121 ext. 54238; E-mail: mountain@royals.ee nctu.edu.tw

Abstract

Variable-length codeidecode (VLCiVLD) is the most popular
data compression technique which can reduce the storage and
communication channel bandwidth needed to transmit a large
amount of data. In this paper, we present a new memory-based
VLSI architecture for VLCiVLD codec system* . Both coding
and decoding procedures are mapped onto a memory which has
been minimized by using a two-bit structure. The proposed
architecture mainly consists of memory and simple arithmetic
unit, making it very suitable for VLSI implementation. Simula-
tion results show that based on 0.35um CMOS process, both
compression rate and decompression rate up to 1.2Gbitsis can
be achieved.

I . Introduction

any applications and image processing standards use M lossless coding at the end of the encoder to obtain high
compression ratio. In addition, lossless coding can recover exact
copy of the original data from the compressed data. Several
lossless coding schemes have been proposed for these purposes.
Every source data has some finite information content called the
entropy of the source. This entropy is the limiting factor for
lossless data compression. Once the entropy of the source is
reached, no further compression is possible without some loss
of information. The variable-length-code (VLC), also called the
Huffman code [l], is an optimal code with the average code-
word length approximating the source entropy. The idea is to
assign shorter codewords to high probability symbols and
longer codewords to low probability symbols. The procedure is
shown in Fig.] with a codebook size of 4. The total average
length of the code can be minimized.

Fig. 1 . An example of the VLC code.

* WORK SUPPORTED BY THE NATIONAL SCIENCE COUNCIL
OF TAIWAN, ROC, UNDER GRANT NSC86-2221-E-009-016

o - ~ R ~ - ~ w - x / Q ~ $1 n nn 01 997 TFFF 9-

In recent years, several special-purpose VLSI architectures
have been proposed to implement VLCiVLD codec system.
There are two classes of architectures, namely the tree-based
and the PLA-based architectures, have been discussed in the
literature. A class of PLA-based architectures have been pro-
posed in [4], [SI, [13]. This method can increase throughput by
using parallel and pipelined architectures. But the flexibility is
poor since it hardwires the code in hardware allowing only one
code to be implemented. For large codebook sizes, this ap-
proach will not be very practical. The speed will be degraded a
lot by the nalure of the PLA architectures. A set of tree-based
architectures have been discussed in [2], [3], [7], [I O] . It has
good flexibility and allows the codebook to be stored in an on-
chip memory so that the codebook can be changed by users to
meet the needs of various applications. In addition, this ap-
proach can achieve high speed operation even when codebook
size becomes large.

The motivation behind our research is to develop a high-
throughput VLSI architecture for the VLC/VLD codec system.
In this paper, we propose a new scheme for mapping Huffman
tree onto memory which leads to an area-efficient solution. We
break the recursive dependence among the tree search steps
which will iricrease the throughput effectively. We also design
(fully-customi) a scalable inout bandwidth synchronous SRAM
to achieve more flexibility and efficiency. For the control unit
and arithmetic unit, an in-house 3-V cell library is exploited to
generate the final layout.

The organization of this paper is as follows. In section 2,
we first pre:sent the encoding algorithm, memory mapping
method and hardware architecture. After that, we will describe
the decoding part in section 3. Finally, we integrate the above
two parts into a codec system which will be discussed in section
4. Concluding remarks are made in section 5.

2. Encoding algorithm and architecture

Huffman code is a tree-based code, it can be represented by
tree structure such as binary trees, two-trees, quad trees, etc.
The Huffman tree is an uinbalanced tree since no code can be a
prefix of any other code. If we use high order tree to represent it,
more memory space ancl address will be wasted to store the
unused node information. As a result, we choose two-bit tree [9],
[IO] structure to map the Huffman code onto a memory in our
codec system. For encoding, the internal nodes are labeled top-
down from root to terminal level and within each level the
nodes are labeled from left to right as shown in Fig.2.

Symbol
....~~.

b

1
2
3
4
5
6

7
8

Symbols

.
internal nodes

9 I
Fig 2 : Two-bit tree for encoding

Assume there have n symbols and m internal nodes in the
tree. The pointer of the i-th symbols (terminal nodes) are stored
in the i-th location using log n bits. After that, the pointer of the
i-th internal nodes are stored in location n+i sequentially. The
stored value is [label of the parent node - n]. We only need to
store the subtracted result, and then save the memory space
especially for the tree which has many terminal nodes. Besides.
three additional bits (T, SI , S2) are added for each node. They
will be used to control the encoding steps. Both S1 and S2 bits
contain the encoding result (label of the edge between the two
nodes). Because some edges have 1-bit result and some have 2-
bits result, we use T bit to indicate these two cases, i.e. T=O for
two bits and T=l for one bit. The encoding algorithm flow chart
is shown in Fig. 3.

Fig 3 : Encoding algorithm flow diagram

Since the synchronous SRAM is pipelined to one stage,
we can get the next node information at the next positive edge
of the clock. Simultaneously, the encoding architecture uses this
information to calculate next parent node pointer address. These
actions are processed until the root of the tree is reached. The
encoding system architecture is shown in Fig. 4.

_I CimtrOl I

S I _ I l l

Fig 4 : The encoding system architecture

We will use a barrel shifter to control the codec system
IiO interface. It will transform the sequential output format to
parallel output format. As a result, we don’t need to do “pop”
action on the stack. And hence the encoding steps and cycle
time can be reduced. The most area consuming part in the codec
system is the memory, which is a key issue to reduce its re-
quirement [SI. For the same Huffman code, our algorithm can
save about 25% and 10% memory space compared to Ref.[2]
and [3] respectively. In addition, we can merge the internal
nodes information and decrease the memory space again. As-
sume S-bits coding symbols, C YO compression ratio and f Hz
clock rate, the comparison result of throughput are listed as
bellow :

ref [2] : ‘ XS Mbps
(E x 3)+ 1

2

ref [3] : x S Mbps
(S x C) x 2

oursystem: ~ xs Mbps
1 s x c

(---
2

oursystem: ~ xs Mbps
1 s x c

(---
2

From above description, it can be found that our architec-
ture’s throughput is about four times of Ref [2] and [3] .

3. Decoding algorithm and architecture

In the decoding algorithm, we also use two-bits Huffman
tree to map the Huffman code onto a nicmory. We merge the
child nodes of the same parent node into a “Loc” node as shown
in Fig. 5 . The stored values are four sets of “T S1 S2” data.
These control bits assignment for decoding are listed as bellow :

T SI S2

0 0 0

i) Two 1-bit labels 0 1 1
ii) One I-bit label = 0 0 1 0
iii) One I-bit label = 1 0 0 1

-

Case 1 : Regular Node
Case 2 : Special Node

Case 3 : Terminal Node
Case 4 : Unused Node

1 0 0
1 1 1

We search from the symbol nodes to the root of the tree in
the cncoding process. In contrast, we search from the root of the
tree to the terminal nodes in the decoding process. We use two
memory modules to store the “Loc” values and symbols (codes)
separately. Besides, we construct two register files “T” and “e”.
The i-th location of the “T” register file stores the total number
of terminal nodes which appears from 0 to (i -1)-th “Loc” nodes.
I n the same way, the i-th location of the “C” register file stores
the total number of nodes which have child nodes in 0 to (i -1)-
th “LOC” node. Finally, we use these information to search the
next “Loc” address and control the decoding steps. The decod-
ing algorithm flow chart is given in Fig. 6.

Loco: 000 Ill Ill Ill
LOCI: 100 010 100 011

L o c 3 : 100 111 100 111
L 0 c 2 : 1 0 0 1 1 1 1 0 0 1 0 0 .=[;I .;[;I s = ‘ z -

e
d

Symbd Code
a 10
b ill

d

f
4

LOC 1

Fig 5 : Decoding tree with “Loc” nodes

Fig 6 : Decoding algorithm flow diagram

We can use current “Loc” value and “C” value to calcu-
late thc next “Loc” node address before we get the next inpul
stream data. As a result, we don’t need to wait the inpul

stream data for calculating next “Loc” node address. We break
the recursivl: dependence of the searching steps. Thus the
throughput rate can be enhanced effectively. Since we merge
four child nodes into a “Loc” node, more amount of memory
space can be saved for the tree which has many internal nodes
(large code table size). Besides, we can continue to decodc the
next bit stream data and read the decode result (symbol code)
from the synibols memoiry in parallel since “Loc” memory and
symbols memory are two separate modules. It has additional
latency of one cycle for the first decoded symbol. After that,
we can decode the bit stream with a speed of 2bits per cycle
by using the above paradlel operations. The overall decoding
system architecture is shlown in Fig. 7.

- MARS /-:!-
Synchronous SRAM

1 Tree node 1
Memory

Fig 7 : The decoding system architecture

For the same Huffunan code, our decoding algorithm can
save about 15’% memory ispace compared with Ref [Z]. Assume
under the same condition with encoding process, the compari-
son result of throughput are listed as bellow :

ref[2] : x S Mbps sxc
2

(-- x 5)+ 1

our system : ~- x s Mbps s x c c- 2
Our architecture’s)throughput is about five times of Ref

[2] and 2 times of Ref [3] respcctively.

#4. Codec system integration

In the previous section, we discussed the encod-
ing/decoding procedures and hardware architectures. These two
systems are then integrated into a complete codec system here.
The codec system architecture is shown in Fig. 8. We use a
programmable control unit (FSM) [14] to determine the proc-
essing steps. It also does the system initialization. Firstly, it will
load both relative mapping data into the memory modules and

some parameters into the register files. After that, it can do
encoding or decoding process sequentially depending on the
coding modes. In addition, we use barrel shifters to transform
the input and output data formats. As a result, the I/O interface
of the codec system is in parallel format. The codec system can
be used for other tree-based data compression and decompres-
sion.

It is important to use pipeline technique and parallel archi-
tectures in the ALU unit for improving the operating speed [6],
[l l] , [12], [13]. The codec system uses separate memory mod-
ule and register files to store the different data. Besides, we can
also control the inout bandwidth of the memory modules. These
scalability will improve the memory efficiency. The codec sys-
tem can handle two or more different sizes of Huffman codes
concurrently through the programmable control unit and sepa-
rate scalable bandwidth memory modules. It is possible to inte-
grate two or more codec system into a “large” codec system
which can be used to process multiple independent bit streams.
The overhead is low and the complexity only increase linearly
with the throughput improvement.

encodingL
symbol

decoding
result t

6 I 1 1 ’ 1

Fig 8 : Codec system archictecture

5. Conclusion

In this paper, we have presented an algorithm and architec-
ture of a very high throughput VLCiVLD codec system. The
architecture is based on an efficient scheme of mapping two-bit
tree structure onto memory modules separately. It can be used
to implement lossless variable-length coding as well as for the
image compression standards and tree-base coding. The ap-
proach is well suited for large coding tables and high through-
put codec system design. The codec system is now under con-
struction by an in-house 3-V cell library and a synchronous
SRAM memory with an access time of 2.4ns in 0.35um twin-
well CMOS process. The codec system operates at 3V power
supply with clock rate up to 300MHz. Assuming 50% compres-
sion ratio, simulation results show that our codec architecture
can achieve compression and decompression rate of 1.2Gbitsis.
This high throughput can meet the need of many high data rate
applications.

References

[I] D.A. Huffman, “A method for the construction of mini-

mum-redundancy codes,” in Proc. IRE, no. 40, Sept 1952,

Amar Mukherjee, N. Ranganathan, Jeffrey W. Flieder,
and Tinku Acharya, “ MARVLE : A VLSI Chip for Data
Compression Using Tree-Based Codes,” IEEE Trans. on
Very Large Scale Integration (VLSI) System, pp.203-213,
1993
Heonchul Park and Viktor K. Prasanna, “ Area Efficient
VLSI Architectures for Huffman Coding,” IEEE Trans.
on Circuits and System, pp.568-575, 1993
Keshab K. Parhi,” High-speed Huffman Decoder Archi-
tectures,” IEEE Trans. on Circuits and System, pp.64-68,
1991
Shih-Fu Chang and David G. Messerschmitt,” Designing
a High-Throughput VLC Decoder Part I - Concurrent
VLSI Architectures,” IEEE Trans. on Circuits and Sys-
tems for Video Technology, pp. 187- 196, 1992
Horng-Dar Lin and David G. Messerschmitt,” Designing
a High-Throughput VLC Decoder Part I1 - Parallel De-
coding Methods,” IEEE Trans. on Circuits and Systems
for Video Technology, pp. 197-206, 1992
A. Mukherjee, N. Ranganathan, and M. Bassiouni,” Effi-
cient VLSI design for data transformations of tree-based
codes,” IEEE Trans. on Circuits and Systems, pp.306-3 14,
1991
G. Jacobson,” Space-efficient static trees and graphs,”
IEEE Symp. on Foundations of Computer Science,

A. Bassiouni and A. Mukherjee,” Multibit and
multigroup techniques for data compression,” Univ. of
Central Florida, Aug. 1992, private communication
A. Mukherjee, H. Bheda, and T. Acharya,” Multibit de-
coding / encoding of binary codes using memory-based
architectures,” in Proc. Data Compression Con f , Snow-
bird, UT, pp.352-361, 1991
N. Ranganathan and S. Henriques,” A parallel architec-
ture for data compression,” in Proc. IEEE Int. Symp. on
Parallel and Distributed Processing, Dallas, T X , 1990
James A. Storer, John M. Reif, and Tassos Markas,” A
massively parallel VLSI design for data compression,” in
Proc. IEEE Workshop on VLSI Signal Processing, 1990
M.T. Sun and S.M. Lei,” A parallel variable-length-code
decoder for advanced television applications,” in Proc. 3
rd Int. Workshop on HDTV, 1989
M.T. Sun, K.M. Yang, and K.H. Tzou,” A high speed
programmable VLSI for decoding variable length codes,”
in Proc. SPIE, Applications of Digital Image Processing
XII, ~01.1153, Aug. 1989

pp. 1098 - 1101

pp.549-554, 1989

