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Abstract 

Variable-length codeidecode (VLCiVLD) is the most popular 
data compression technique which can reduce the storage and 
communication channel bandwidth needed to transmit a large 
amount of data. In this paper, we present a new memory-based 
VLSI architecture for VLCiVLD codec system* . Both coding 
and decoding procedures are mapped onto a memory which has 
been minimized by using a two-bit structure. The proposed 
architecture mainly consists of memory and simple arithmetic 
unit, making it very suitable for VLSI implementation. Simula- 
tion results show that based on 0.35um CMOS process, both 
compression rate and decompression rate up to 1.2Gbitsis can 
be achieved. 

I .  Introduction 

any applications and image processing standards use M lossless coding at the end of the encoder to obtain high 
compression ratio. In addition, lossless coding can recover exact 
copy of the original data from the compressed data. Several 
lossless coding schemes have been proposed for these purposes. 
Every source data has some finite information content called the 
entropy of the source. This entropy is the limiting factor for 
lossless data compression. Once the entropy of the source is 
reached, no further compression is possible without some loss 
of information. The variable-length-code (VLC), also called the 
Huffman code [l], is an optimal code with the average code- 
word length approximating the source entropy. The idea is to 
assign shorter codewords to high probability symbols and 
longer codewords to low probability symbols. The procedure is 
shown in Fig.] with a codebook size of 4. The total average 
length of the code can be minimized. 

Fig. 1 .  An example of the VLC code. 
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In recent years, several special-purpose VLSI architectures 
have been proposed to implement VLCiVLD codec system. 
There are two classes of architectures, namely the tree-based 
and the PLA-based architectures, have been discussed in the 
literature. A class of PLA-based architectures have been pro- 
posed in [4], [SI, [13]. This method can increase throughput by 
using parallel and pipelined architectures. But the flexibility is 
poor since it hardwires the code in hardware allowing only one 
code to be implemented. For large codebook sizes, this ap- 
proach will not be very practical. The speed will be degraded a 
lot by the nalure of the PLA architectures. A set of tree-based 
architectures have been discussed in [2], [3], [7], [ I O ] .  It has 
good flexibility and allows the codebook to be stored in an on- 
chip memory so that the codebook can be changed by users to 
meet the needs of various applications. In addition, this ap- 
proach can achieve high speed operation even when codebook 
size becomes large. 

The motivation behind our research is to develop a high- 
throughput VLSI architecture for the VLC/VLD codec system. 
In this paper, we propose a new scheme for mapping Huffman 
tree onto memory which leads to an area-efficient solution. We 
break the recursive dependence among the tree search steps 
which will iricrease the throughput effectively. We also design 
(fully-customi) a scalable inout bandwidth synchronous SRAM 
to achieve more flexibility and efficiency. For the control unit 
and arithmetic unit, an in-house 3-V cell library is exploited to 
generate the final layout. 

The organization of this paper is as follows. In section 2, 
we first pre:sent the encoding algorithm, memory mapping 
method and hardware architecture. After that, we will describe 
the decoding part in section 3. Finally, we integrate the above 
two parts into a codec system which will be discussed in section 
4. Concluding remarks are made in section 5. 

2. Encoding algorithm and architecture 

Huffman code is a tree-based code, it can be represented by 
tree structure such as binary trees, two-trees, quad trees, etc. 
The Huffman tree is an uinbalanced tree since no code can be a 
prefix of any other code. If we use high order tree to represent it, 
more memory space ancl address will be wasted to store the 
unused node information. As a result, we choose two-bit tree [9], 
[ IO]  structure to map the Huffman code onto a memory in our 
codec system. For encoding, the internal nodes are labeled top- 
down from root to terminal level and within each level the 
nodes are labeled from left to right as shown in Fig.2. 
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Fig 2 : Two-bit tree for encoding 

Assume there have n symbols and m internal nodes in the 
tree. The pointer of the i-th symbols (terminal nodes) are stored 
in the i-th location using log n bits. After that, the pointer of the 
i-th internal nodes are stored in location n+i sequentially. The 
stored value is [label of the parent node - n]. We only need to 
store the subtracted result, and then save the memory space 
especially for the tree which has many terminal nodes. Besides. 
three additional bits (T, SI ,  S2) are added for each node. They 
will be used to control the encoding steps. Both S1 and S2 bits 
contain the encoding result (label of the edge between the two 
nodes). Because some edges have 1-bit result and some have 2- 
bits result, we use T bit to indicate these two cases, i.e. T=O for 
two bits and T=l  for one bit. The encoding algorithm flow chart 
is shown in Fig. 3. 

Fig 3 : Encoding algorithm flow diagram 

Since the synchronous SRAM is pipelined to one stage, 
we can get the next node information at the next positive edge 
of the clock. Simultaneously, the encoding architecture uses this 
information to calculate next parent node pointer address. These 
actions are processed until the root of the tree is reached. The 
encoding system architecture is shown in Fig. 4. 
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Fig 4 : The encoding system architecture 

We will use a barrel shifter to control the codec system 
IiO interface. It will transform the sequential output format to 
parallel output format. As a result, we don’t need to do “pop” 
action on the stack. And hence the encoding steps and cycle 
time can be reduced. The most area consuming part in the codec 
system is the memory, which is a key issue to reduce its re- 
quirement [SI. For the same Huffman code, our algorithm can 
save about 25% and 10% memory space compared to Ref.[2] 
and [3] respectively. In addition, we can merge the internal 
nodes information and decrease the memory space again. As- 
sume S-bits coding symbols, C YO compression ratio and f Hz 
clock rate, the comparison result of throughput are listed as 
bellow : 

ref [2] : ‘ XS Mbps 
( E x 3)+ 1 

2 

ref [3] : x S  Mbps 
(S x C ) x  2 

oursystem: ~ xs Mbps 
1 s x c  

(--- 
2 

oursystem: ~ xs Mbps 
1 s x c  

(--- 
2 

From above description, it can be found that our architec- 
ture’s throughput is about four times of Ref [2] and [3] .  

3. Decoding algorithm and architecture 

In the decoding algorithm, we also use two-bits Huffman 
tree to map the Huffman code onto a nicmory. We merge the 
child nodes of the same parent node into a “Loc” node as shown 
in Fig. 5 .  The stored values are four sets of “T S1 S2” data. 
These control bits assignment for decoding are listed as bellow : 

T SI S2 

0 0 0  

i) Two 1-bit labels 0 1 1  
ii) One I-bit label = 0 0 1 0  
iii) One I-bit label = 1 0 0 1  

- 

Case 1 : Regular Node 
Case 2 : Special Node 

Case 3 : Terminal Node 
Case 4 : Unused Node 

1 0 0  
1 1 1  



We search from the symbol nodes to the root of the tree in 
the cncoding process. In contrast, we search from the root of the 
tree to the terminal nodes in the decoding process. We use two 
memory modules to store the “Loc” values and symbols (codes) 
separately. Besides, we construct two register files “T” and “e”. 
The i-th location of the “T” register file stores the total number 
of terminal nodes which appears from 0 to (i -1)-th “Loc” nodes. 
I n  the same way, the i-th location of the “C” register file stores 
the total number of nodes which have child nodes in 0 to (i -1)- 
th “LOC” node. Finally, we use these information to search the 
next “Loc” address and control the decoding steps. The decod- 
ing algorithm flow chart is given in Fig. 6. 
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Fig 5 : Decoding tree with “Loc” nodes 

Fig 6 : Decoding algorithm flow diagram 

We can use current “Loc” value and “C” value to calcu- 
late thc next “Loc” node address before we get the next inpul 
stream data. As a result, we don’t need to wait the inpul 

stream data for calculating next “Loc” node address. We break 
the recursivl: dependence of the searching steps. Thus the 
throughput rate can be enhanced effectively. Since we merge 
four child nodes into a “Loc” node, more amount of memory 
space can be saved for the tree which has many internal nodes 
(large code table size). Besides, we can continue to decodc the 
next bit stream data and read the decode result (symbol code) 
from the synibols memoiry in parallel since “Loc” memory and 
symbols memory are two separate modules. It has additional 
latency of one cycle for the first decoded symbol. After that, 
we can decode the bit stream with a speed of 2bits per cycle 
by using the above paradlel operations. The overall decoding 
system architecture is shlown in Fig. 7. 
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Fig 7 : The decoding system architecture 

For the same Huffunan code, our decoding algorithm can 
save about 15’% memory ispace compared with Ref [Z]. Assume 
under the same condition with encoding process, the compari- 
son result of throughput are listed as bellow : 

ref[2] : x S  Mbps sxc  
2 

(-- x 5)+ 1 

our system : ~- x s  Mbps s x c c- 2 
Our architecture’s )throughput is about five times of Ref 

[2] and 2 times of Ref [3] respcctively. 

#4. Codec system integration 

In the previous section, we discussed the encod- 
ing/decoding procedures and hardware architectures. These two 
systems are then integrated into a complete codec system here. 
The codec system architecture is shown in Fig. 8. We use a 
programmable control unit (FSM) [14] to determine the proc- 
essing steps. It also does the system initialization. Firstly, it will 
load both relative mapping data into the memory modules and 



some parameters into the register files. After that, it can do 
encoding or decoding process sequentially depending on the 
coding modes. In addition, we use barrel shifters to transform 
the input and output data formats. As a result, the I/O interface 
of the codec system is in parallel format. The codec system can 
be used for other tree-based data compression and decompres- 
sion. 

It is important to use pipeline technique and parallel archi- 
tectures in the ALU unit for improving the operating speed [6],  
[ l l ] ,  [12], [13]. The codec system uses separate memory mod- 
ule and register files to store the different data. Besides, we can 
also control the inout bandwidth of the memory modules. These 
scalability will improve the memory efficiency. The codec sys- 
tem can handle two or more different sizes of Huffman codes 
concurrently through the programmable control unit and sepa- 
rate scalable bandwidth memory modules. It is possible to inte- 
grate two or more codec system into a “large” codec system 
which can be used to process multiple independent bit streams. 
The overhead is low and the complexity only increase linearly 
with the throughput improvement. 
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Fig 8 : Codec system archictecture 

5. Conclusion 

In this paper, we have presented an algorithm and architec- 
ture of a very high throughput VLCiVLD codec system. The 
architecture is based on an efficient scheme of mapping two-bit 
tree structure onto memory modules separately. It can be used 
to implement lossless variable-length coding as well as for the 
image compression standards and tree-base coding. The ap- 
proach is well suited for large coding tables and high through- 
put codec system design. The codec system is now under con- 
struction by an in-house 3-V cell library and a synchronous 
SRAM memory with an access time of 2.4ns in 0.35um twin- 
well CMOS process. The codec system operates at 3V power 
supply with clock rate up to 300MHz. Assuming 50% compres- 
sion ratio, simulation results show that our codec architecture 
can achieve compression and decompression rate of 1.2Gbitsis. 
This high throughput can meet the need of many high data rate 
applications. 
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