
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Lightweight CNN hardware accelerator using the ternary

quantization method for fault diagnosis of CNC machinery

Abstract—In the context of computer numerical control (CNC)

machinery, fault diagnosis traditionally involves complex formula

conversions to extract characteristics and categorize faults.

However, such a method is unsuitable for hardware

implementation due to high resource usage. This paper proposes a

convolution neural network (CNN) approach for fault

classification and hardware acceleration using ternary

quantization and batch normalization techniques to reduce data

access for weights and improve accuracy. The proposed CNN

hardware accelerator is implemented on FPGA (VC707) and

reduces memory usage by 83.8% compared to floating-point

operations. Furthermore, the proposed method achieves 97.6%

accuracy in CNC machinery fault classification.

Keywords—Ternary quantization, Convolution neural network

(CNN), Hardware accelerator, Fault diagnosis

I. INTRODUCTION

The popularity of computer numerical control (CNC)

machines in product processing are due to Industry 4.0 and

advances in science and technology. While CNC machines are

suitable for processing precise parts based on operator input, a

long-term operation may damage bearing parts. To detect CNC

machine health and bearing faults, installing accelerometers to

collect vibrational signals for analysis is a viable solution. Deep

learning neural networks (DNNs) have been applied to this

research topic, including autoencoders [1], restricted Boltzmann

machines (RBMs), deep belief networks (DBNs) [2],

convolutional neural networks (CNNs) [3,4], and multilayer

perceptron (MLP) neural networks [5]. However, previous

research used complex preprocessing methods such as RMS,

variance, and Fourier transform, which require additional

computing time and are challenging to implement as hardware

accelerators.

The methods mentioned above are limited to software

solutions only. Previous work required accelerometer data for

detecting bearing faults of CNC machinery to be collected and

analyzed in an offline software program, which could increase

detection time and sacrifice real-time capabilities. Therefore,

integrating the solution into a hardware accelerator and

installing it directly on the CNC machinery is better for

achieving real-time fault diagnosis. No previous research has

been dedicated to optimizing CNN hardware for CNC

machinery fault detection. Convolution operations can be

optimized in various ways, including memory space,

computation latency, and workload distribution in processing

elements (PEs).

This paper proposes a lightweight CNN network for detecting

faults in CNC machinery, which is implemented on FPGA to

achieve real-time fault detection. The proposed method uses a

simple data preprocessing approach. According to evaluations,

the method can diagnose at least once in under 1 second,

significantly reducing labor costs and achieving real-time

bearing fault diagnosis. The rest of this paper is organized as

follows: Section II presents the proposed design. Then the trade-

off in hardware implementation will be discussed. Finally, the

hardware implementation detail and experimental results are

shown in Section III, followed by Section IV's conclusion.

II. PROPOSED DESIGN

This paper trains the model using bearing data from CWRU

[12] and TensorFlow. During experimentation, the accuracy of

training was found to be influenced by the sampling rate and

sampling window of input data. The bearing fault types include

one normal case and nine bearing faults with different damage

diameters for ball, inner, and outer race faults.

TABLE I. THE ARCHITECTURE OF THE PROPOSED TERNARY CNN MODEL.
(CNN MODULE: FILTER PARAMETER (HEIGHT × WEIGHT × OUT)

Table I shows the proposed ternary CNN network model for

fault diagnosis that was tested multiple times. Input data size

impacts subsequent operations and accuracy, with higher input

data size resulting in more operations and lower input data size

leading to lower accuracy. An increase in trained parameters

leads to more storage and calculations, and the number of

output channels generally increases with the number of layers.

However, hardware implementation should consider keeping

Ching-Che Chung, Senior Member, IEEE, Yu-Pei Liang, Member, IEEE, and Jo-Chen Huang

Department of Computer Science and Information Engineering

National Chung Cheng University

No. 168, University Rd., Min-Hsiung, Chia-Yi, Taiwan

Email: wildwolf@cs.ccu.edu.tw, ypliang@cs.ccu.edu.tw

This work was supported in part by the National Science and Technology
Council of Taiwan under Grant MOST-111-2221-E-194-049-.

Layer name CNN Modules Output data size

Layer 1 Conv(3×3×32) 32×32×32

Layer 2 Maxpool(2×2) 16×16×32

Layer 3 Conv(3×3×32) 16×16×32

Layer 4 Maxpool(2×2) 8×8×32

Layer 5 Conv(3×3×32) 8×8×32

Layer 6 Maxpool(2×2) 4×4×32

Layer 7 Conv(3×3×16) 4×4×16

Layer 8 Maxpool(2×2) 2×2×16

Layer 9 Fc(64,16) 64

 Fc.ba(16,16) 16

Layer 10 Fc(16,10) 10

979-8-3503-2417-4/23/$31.00 ©2023 IEEE

2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)

133

2023 ICCE-Taiwan 1570890888

1

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

 -
Ta

iw
an

 (I
C

C
E-

Ta
iw

an
) |

 9
79

-8
-3

50
3-

24
17

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
E-

Ta
iw

an
58

79
9.

20
23

.1
02

27
05

8

Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 14,2023 at 06:17:25 UTC from IEEE Xplore. Restrictions apply.

channels low for better hardware controller design. The fourth

convolutional layer intentionally decreases the number of

channels, and reducing the input data from Layer 8 to Layer 9

further helps reduce the computational complexity in Layer 9.

Quantization reduces the bit width of parameters to improve

performance and reduce hardware overhead. Three common

quantization methods include Binary Weight Network (BWN)

[6], DoReFa-Net [7], and Ternary Weight Network (TWN) [8].

Previous works [8,9] show that TWN has lower error rates than

DoReFa-Net and BWN; therefore, this work uses TWN as the

quantization method. Batch normalization [10] is also included

in the proposed design to further optimize the network, with one

batch normalization layer (Fc.ba) added after Layer 9.

The decimal bits of input sensor data to be retained during

hardware design are defined first. It is acceptable to reserve four

digits in the decimal bits of input data, and the accuracy is still

accepted. Next, the number of decimal bits for the lookup table

for weights is set to 9 after considering the influence on

accuracy. For each convolution layer, changing the number of

decimal bits of the output value from 5 to 6 significantly impacts

accuracy. Therefore, it was decided to reserve 6 bits for the

fractional part of the output value of each convolution layer.

Finally, the final selection of decimal bits for hardware

implementation is based on multiple tests.

III. EXPERIMENTAL RESULTS

Fig. 1. Overall block diagram of the hardware architecture.

Fig. 1 illustrates the overall block diagram of the proposed

hardware accelerator. The two main memories are for the kernel

and the input feature (IF) map. The block memory includes

kernel, input data, and output feature (OF) map. Among them,

the ofmap RAM will be further divided into four memory

pieces, namely ofmap_ram1, ofmap_ram2, ofmap_ram3, and

ofmap_ram4. In the convolution calculation process, at least

two memory pieces are required to store input and output data.

In this architecture, using only two memory pieces for sharing

is not cost-effective. Therefore, it was decided to use four

ofmap RAMs in the final design.
TABLE II. THE TOTAL USED MEMORY ON THE FPGA.

On-chip

memory

Float32

Memory(KB)

Fixed point

Memory(KB)
Reduction ratio

Input RAM 32 8 75%

Kernel ROM 766 47.875 93.75%

Ofmap RAM 338 127.75 62.2%

Total size 1136 183.625 83.8%

Table II demonstrates that the proposed CNN hardware

accelerator occupies only 183.625 Kb memory when using

fixed-point arithmetic. Compared to conventional neural

networks that use floating-point operations, the proposed

method can reduce total memory usage by 83.8%. The input

RAM is reduced because the input data is expressed in an 8-bit

fixed-point format, resulting in a 75% reduction of memory

space compared to floating-point numbers. Kernel ROM uses a

lookup table method for TWN quantization, enabling weights

to be stored in memory using 2 bits. This method is 16 times

better than the method without a lookup table. The reduction of

Ofmap RAM is due to the fixed-point operation of the proposed

CNN hardware accelerator, and the output bit numbers in each

layer output are 11, 15, 17, and 20 bits, respectively.

TABLE III. COMPARISON TABLE

Table III demonstrates that the proposed design achieves the

lowest parameter number while maintaining acceptable

accuracy. The proposed CNN network requires fixed-point

operations and does not need complex data preprocessing for

the CWRU dataset. The MNIST dataset is used for comparison,

and the proposed CNN network can also handle MNIST dataset

with 98.84% accuracy. This paper successfully applies the

quantization method to the CWRU dataset, balancing accuracy

and hardware cost.

IV. CONCLUSION

This paper presents a lightweight CNN hardware accelerator

for diagnosing bearing faults in CNC machinery. The proposed

accelerator can process vibrational sensor data in real time,

providing an efficient solution for detecting bearing faults and

can achieve 97.6% accuracy.

REFERENCES
[1] Rui Zhao, et al., "Deep learning and its applications to machine health monitoring,"

Mechanical Systems and Signal Processing, vol. 115, pp. 213-237, Jan. 2019.

[2] Siyu Shao, et al., "Learning features from vibration signals for induction motor fault

diagnosis," in Proc. ISFA, pp. 71-76, Aug. 2016.

[3] Long Wen, et al., "A new convolutional neural network-based data-driven fault diagnosis

method," IEEE Trans. Industrial Electronics, vol. 65, no. 7, pp. 5990-5998, Jul. 2018.

[4] Shaobo Li, et al., "An ensemble deep convolutional neural network model with improved DS

evidence fusion for bearing fault diagnosis," Sensors, vol. 17, no. 8, 1729, Jul. 2017.

[5] Hua Su and Kil To Chong, "Induction machine condition monitoring using neural network

modeling," IEEE Trans. Industrial Electronics, vol. 54, no. 1, pp. 241-249, Feb. 2017.

[6] Matthieu Courbariaux, et al., "Binarized Neural Networks: Training deep neural networks

with weights and activations constrained to +1 or -1, arXiv:1602.02830v3 [cs.LG],”

arXiv.org, Mar. 2016.

[7] Shuchang Zhou, et al., "DoReFa-Net: Training low bitwidth convolutional neural networks

with low bitwidth gradients, arXiv:1606.06160v3 [cs.NE]," arXiv.org, Feb. 2018.

[8] Fengfu Li, et al., "Ternary weight networks, arXiv:1605.04711v2 [cs.CV],” arXiv.org, Nov.

2016.

[9] Chenzhuo Zhu, et al., "Trained Ternary Quantization, arXiv:1612.01064v3 [cs.LG],”

arXiv.org, Feb. 2017.

[10] Sergey Ioffe and Christian Szegedy, "Batch normalization: Accelerating deep network

training by reducing internal covariate shift, arXiv:1502.03167v3 [cs.LG],” arXiv.org, Mar.

2015.

[11] Ran Zhang, et al., "Transfer learning with neural networks for bearing fault diagnosis in

changing working conditions," IEEE Access, vol. 5, pp. 14347-14357, Jun. 2017.

[12] Case Western Reserve University Bearing Data Center Website

〈http://csegroups.case.edu/bearingdatacenter/download-data-file〉.

Kernel ROM

24512 * 2 bits

Kernel buffer

9 * 32 * 2 bits

Input RAM

32 * 32 * 8 bits

Ifmap buffer

9 * 32 * 21 bits

psum buffer

21 bits

result buffer

13 bits

label buffer

4 bits

ofmap RAM

(1) 16 * 16 * 32 * 11 bits

(2) 8 * 8 * 32 * 15 bits

(3) 4 * 4 * 32 * 17 bits

(4) 2 * 2 * 16 * 20 bits

PE

PE

ADD

Max pooling

+

ReLU

ADD new_beta
．
．
．

PE x 9

16 * 2 bits

8 bits

1342
Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 14,2023 at 06:17:25 UTC from IEEE Xplore. Restrictions apply.

