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Lightweight CNN hardware accelerator using the ternary 

quantization method for fault diagnosis of CNC machinery 
 

Abstract—In the context of computer numerical control (CNC) 

machinery, fault diagnosis traditionally involves complex formula 

conversions to extract characteristics and categorize faults. 

However, such a method is unsuitable for hardware 

implementation due to high resource usage. This paper proposes a 

convolution neural network (CNN) approach for fault 

classification and hardware acceleration using ternary 

quantization and batch normalization techniques to reduce data 

access for weights and improve accuracy. The proposed CNN 

hardware accelerator is implemented on FPGA (VC707) and 

reduces memory usage by 83.8% compared to floating-point 

operations. Furthermore, the proposed method achieves 97.6% 

accuracy in CNC machinery fault classification. 

Keywords—Ternary quantization, Convolution neural network 

(CNN), Hardware accelerator, Fault diagnosis 

I. INTRODUCTION  

The popularity of computer numerical control (CNC) 

machines in product processing are due to Industry 4.0 and 

advances in science and technology. While CNC machines are 

suitable for processing precise parts based on operator input, a 

long-term operation may damage bearing parts. To detect CNC 

machine health and bearing faults, installing accelerometers to 

collect vibrational signals for analysis is a viable solution. Deep 

learning neural networks (DNNs) have been applied to this 

research topic, including autoencoders [1], restricted Boltzmann 

machines (RBMs), deep belief networks (DBNs) [2], 

convolutional neural networks (CNNs) [3,4], and multilayer 

perceptron (MLP) neural networks [5]. However, previous 

research used complex preprocessing methods such as RMS, 

variance, and Fourier transform, which require additional 

computing time and are challenging to implement as hardware 

accelerators. 

The methods mentioned above are limited to software 

solutions only. Previous work required accelerometer data for 

detecting bearing faults of CNC machinery to be collected and 

analyzed in an offline software program, which could increase 

detection time and sacrifice real-time capabilities. Therefore, 

integrating the solution into a hardware accelerator and 

installing it directly on the CNC machinery is better for 

achieving real-time fault diagnosis. No previous research has 

been dedicated to optimizing CNN hardware for CNC 

machinery fault detection. Convolution operations can be 

optimized in various ways, including memory space, 

computation latency, and workload distribution in processing 

elements (PEs). 

This paper proposes a lightweight CNN network for detecting 

faults in CNC machinery, which is implemented on FPGA to 

achieve real-time fault detection. The proposed method uses a 

simple data preprocessing approach. According to evaluations, 

the method can diagnose at least once in under 1 second, 

significantly reducing labor costs and achieving real-time 

bearing fault diagnosis. The rest of this paper is organized as 

follows: Section II presents the proposed design. Then the trade-

off in hardware implementation will be discussed. Finally, the 

hardware implementation detail and experimental results are 

shown in Section III, followed by Section IV's conclusion. 

II. PROPOSED DESIGN 

This paper trains the model using bearing data from CWRU 

[12] and TensorFlow. During experimentation, the accuracy of 

training was found to be influenced by the sampling rate and 

sampling window of input data. The bearing fault types include 

one normal case and nine bearing faults with different damage 

diameters for ball, inner, and outer race faults. 

TABLE I. THE ARCHITECTURE OF THE PROPOSED TERNARY CNN MODEL. 
(CNN MODULE: FILTER PARAMETER (HEIGHT × WEIGHT × OUT) 

Table I shows the proposed ternary CNN network model for 

fault diagnosis that was tested multiple times. Input data size 

impacts subsequent operations and accuracy, with higher input 

data size resulting in more operations and lower input data size 

leading to lower accuracy. An increase in trained parameters 

leads to more storage and calculations, and the number of 

output channels generally increases with the number of layers. 

However, hardware implementation should consider keeping 
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Layer name CNN Modules Output data size 

Layer 1 Conv(3×3×32) 32×32×32 

Layer 2 Maxpool(2×2) 16×16×32 

Layer 3 Conv(3×3×32) 16×16×32 

Layer 4 Maxpool(2×2) 8×8×32 

Layer 5 Conv(3×3×32) 8×8×32 

Layer 6 Maxpool(2×2) 4×4×32 

Layer 7 Conv(3×3×16) 4×4×16 

Layer 8 Maxpool(2×2) 2×2×16 

Layer 9 Fc(64,16) 64 

 Fc.ba(16,16) 16 

Layer 10 Fc(16,10) 10 
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channels low for better hardware controller design. The fourth 

convolutional layer intentionally decreases the number of 

channels, and reducing the input data from Layer 8 to Layer 9 

further helps reduce the computational complexity in Layer 9. 

Quantization reduces the bit width of parameters to improve 

performance and reduce hardware overhead. Three common 

quantization methods include Binary Weight Network (BWN) 

[6], DoReFa-Net [7], and Ternary Weight Network (TWN) [8]. 

Previous works [8,9] show that TWN has lower error rates than 

DoReFa-Net and BWN; therefore, this work uses TWN as the 

quantization method. Batch normalization [10] is also included 

in the proposed design to further optimize the network, with one 

batch normalization layer (Fc.ba) added after Layer 9. 

The decimal bits of input sensor data to be retained during 

hardware design are defined first. It is acceptable to reserve four 

digits in the decimal bits of input data, and the accuracy is still 

accepted. Next, the number of decimal bits for the lookup table 

for weights is set to 9 after considering the influence on 

accuracy. For each convolution layer, changing the number of 

decimal bits of the output value from 5 to 6 significantly impacts 

accuracy. Therefore, it was decided to reserve 6 bits for the 

fractional part of the output value of each convolution layer. 

Finally, the final selection of decimal bits for hardware 

implementation is based on multiple tests.  

III. EXPERIMENTAL RESULTS 

 
Fig. 1. Overall block diagram of the hardware architecture. 

Fig. 1 illustrates the overall block diagram of the proposed 

hardware accelerator. The two main memories are for the kernel 

and the input feature (IF) map. The block memory includes 

kernel, input data, and output feature (OF) map. Among them, 

the ofmap RAM will be further divided into four memory 

pieces, namely ofmap_ram1, ofmap_ram2, ofmap_ram3, and 

ofmap_ram4. In the convolution calculation process, at least 

two memory pieces are required to store input and output data. 

In this architecture, using only two memory pieces for sharing 

is not cost-effective. Therefore, it was decided to use four 

ofmap RAMs in the final design. 
TABLE II. THE TOTAL USED MEMORY ON THE FPGA. 

On-chip 

memory 

Float32 

Memory(KB) 

Fixed point 

Memory(KB) 
Reduction ratio 

Input RAM 32 8 75% 

Kernel ROM 766 47.875 93.75% 

Ofmap RAM 338 127.75 62.2% 

Total size 1136 183.625 83.8% 

Table II demonstrates that the proposed CNN hardware 

accelerator occupies only 183.625 Kb memory when using 

fixed-point arithmetic. Compared to conventional neural 

networks that use floating-point operations, the proposed 

method can reduce total memory usage by 83.8%. The input 

RAM is reduced because the input data is expressed in an 8-bit 

fixed-point format, resulting in a 75% reduction of memory 

space compared to floating-point numbers. Kernel ROM uses a 

lookup table method for TWN quantization, enabling weights 

to be stored in memory using 2 bits. This method is 16 times 

better than the method without a lookup table. The reduction of 

Ofmap RAM is due to the fixed-point operation of the proposed 

CNN hardware accelerator, and the output bit numbers in each 

layer output are 11, 15, 17, and 20 bits, respectively. 

TABLE III. COMPARISON TABLE 

 

Table III demonstrates that the proposed design achieves the 

lowest parameter number while maintaining acceptable 

accuracy. The proposed CNN network requires fixed-point 

operations and does not need complex data preprocessing for 

the CWRU dataset. The MNIST dataset is used for comparison, 

and the proposed CNN network can also handle MNIST dataset 

with 98.84% accuracy. This paper successfully applies the 

quantization method to the CWRU dataset, balancing accuracy 

and hardware cost. 

IV. CONCLUSION 

This paper presents a lightweight CNN hardware accelerator 

for diagnosing bearing faults in CNC machinery. The proposed 

accelerator can process vibrational sensor data in real time, 

providing an efficient solution for detecting bearing faults and 

can achieve 97.6% accuracy. 
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