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Abstract—Big data analytics requires to analyze data at the
rate that matches the speed of data production. Therefore, some
software frameworks such as Hadoop with high scalability and
fault tolerance had been proposed to enable massive data storage
and processing over large clusters of computing servers.
However, the performance of data analytics can be further
improved by deploying hardware accelerators to the computing
servers. In this paper, an FPGA-based hardware accelerator
platform for big data matrix processing is presented. The
proposed accelerator platform is composed of many FPGA
evaluation boards (EVBs). The computing server communicates
with FPGA EVBs with Gigabit Ethernet. In addition, the FPGA
can be reprogrammed for different data processing operations
with high flexibility. The experimental results for one hundred
512x512 floating point matrix multiplications show that the
proposed hardware accelerator platform with four FPGA EVBs
at 125MHz clock rate can achieve the 4x speedup as compared
with the computing server with an Intel 17-4770 CPU at 3.4GHz.

Keywords—Big data analytics, hardware accelerator, cloud
computing, Hadoop.

I. INTRODUCTION

Nowadays, the growing popularity of web systems, mobile
devices, surveillance videos, and wireless sensors generate
large amounts of data from different sources. In fact, all of the
industries need to confront the issues of big data analytics, For
example, financial institutions can calculate the risk by analysis
of data [3]; information technology industries can find the
hidden value or solve problem by analysis of logs [3]. Big data
is the term for collection of complex data sets that it makes
difficult to manage, analyze and process using the traditional
database system [1]. Big data includes activity logs, business
transaction, images, and surveillance videos that can reach
massive proportions over time [2]. In some statistics, those data
generated exceed 2.5 quintillion bytes everyday [1]. In 2011,
the volume of data reaches the Petabyte to Exabyte magnitude
[7]. The velocity of data generation has gone beyond our
imagination.

The properties of big data make it is not easy to handle. For
instance, the properties include variety, volume, velocity and
value, the “4Vs” is widely applied to the definition of big data
[7]. The variety means the data produced is not of one flavor,
they have structured, semi-structured and unstructured data, so
traditional database systems are hard to handle them. The
volume means the volume of big data is quite larger than
traditional data. The velocity means big data must be analyzed
at a rate that matches the speed of data production. Finally, by
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analyzing big data, some useful values can be found, for
instance, business trends and commercial benefits.

To deal with massive data processing, many software
frameworks are developed, such as Hadoop and GridGain.
Hadoop is an open-source software framework that enables
massive data storage and distributed processing over large
clusters of computing servers. It is mainly composed of two
modules: Hadoop distributed file system (HDFS) and
MapReduce. In HDFS, a file is split into one or more blocks,
and each block has several replications to prevent missing data.
The MapReduce framework consists of a single master
JobTracker and one slave TaskTracker per cluster node. The
master JobTracker schedules jobs for the slaves, and monitors
and re-executing the failed tasks. The MapReduce framework
enables the automatic paralleling and distribution of large-scale
computation applications on large clusters of computing
servers. Therefore, it becomes easier to implement big data
analysis applications.

Besides the development of software frameworks, the
computing servers also require new system capabilities. In [6],
the IBM Power8 processer doubles L1 to L3 data cache size
per core for big data analytics. In addition, the execution
functional units are also increased to enhance per-core
throughput. Since server workloads will continue to evolve, the
IBM Power8 processor introduces the coherent accelerator
processor interface (CAPI) to support the general purpose cores
for a heterogeneous computing solution with off-chip hardware
accelerators. These accelerators can be plugged into PCle slots
and implemented in FPGA or ASIC chips. In [5], the similar
hybrid CPU/FPGA architecture is discussed. Since it is hard to
calculate large amount of data by only CPUs, the FPGA can
help to enhance the throughput of data processing.

In this paper, an FPGA-based hardware accelerator
platform for big data matrix processing is presented. The
proposed accelerator platform is composed of many VC707
FPGA evaluation boards (EVBs) [8]. The computing server
communicates with FPGA EVBs with Gigabit Ethernet. In big
data analysis, the data processing often includes many matrix
operations. The matrix multiplication has lots of floating point
multiplications and floating point additions. As the matrix size
is increased, the total execution time with only CPUs is not
acceptable. Therefore, in the proposed hardware accelerator
platform, the workloads are shared to many VC707 EVBs. The
experimental results show that for one hundred 512x512
floating point matrix multiplications, the proposed hardware
accelerator platform with four FPGA EVBs at 125MHz clock
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rate can achieve 4x speedup as compared with the computing
server with an Intel 17-4770 CPU at 3.4GHz.

The rest of this paper is organized as follows: Section II
describes the proposed hardware accelerator architecture with
VC707 EVBs. The proposed algorithm for large matrix
multiplications is presented in Section III. Section IV shows
the experimental results. Finally, the conclusion is given in
Section V.

II. PROPOSED ACCELERATOR ARCHITECTURE
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Fig. 1. The proposed FPGA-based hardware accelerator platform with
VC707 evaluation boards.

The proposed FPGA-based hardware accelerator platform
with VC707 EVBs is shown in Fig. 1. The computing server
wraps the data into packets and sends them to VC707 EVBs
through a Gigabit Ethernet switch. Then, the workloads of the
computing server can be shared in FPGA EVBs. In a VC707
FPGA EVB, Ethernet physical layer IP is used to collect the
packets sent from the computing server, and the computation
results of the FPGA can be also sent back to the computing
server through the Ethernet physical layer IP. In the proposed
design, 32-bit single precision floating point operations are
supported. Therefore, four 32-bit single precision floating point
numbers can be combined into to 128-bit data during read and
write operations.

The DDR3 memory interface controller IP helps the user
core to communicate with the on-board 1GB DDR3 memory.
The commands (cmd) and addresses (addr) can be sent to the
memory interface controller IP simultaneously. For a write
request, the written data (wm_data) should be prepared before
sending write command to the memory interface controller IP.
After a write request is finished, the ready signal provided by

the memory interface controller IP indicates the completion of
the write request to the DDR3 memory. For a read request,
after several cycles, the read data (rm_data) are output by the
memory interface controller IP.

The proposed matrix operation is designed in the user core
module. It manages the data flow of all matrix processor in the
matrix operation module. A large size matrix multiplication
operation is split into many small size matrix multiplications in
different matrix processors in parallel. Then, the computation
results are combined, and the final answer are sent back to the
computing server. Obviously, the execution time can be
reduced by the proposed hardware accelerator platform.
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Fig. 2. Modules in user core.

The user core is composed of a TX FIFO, a RX FIFO, a
processing unit, and a matrix multiplication unit, as shown in
Fig. 2. The RX FIFO receives data (rx_d) from the Ethernet
physical layer IP and combines them into rx_data. The TX
FIFO sends the byte data (tx_d) split from the packet (tx_data)
to the Ethernet physical layer IP. The processing unit controls
the state machines and manages the data flow. The matrix
operation module computes matrix multiplications with many
small matrix processors in parallel that helps the computing
server to quickly complete the matrix multiplication.

The behavior of the user core is described as follows. First,
the processing unit receives data from RX FIFO, and these data
are stored in the DDR3 memory. Then, the large size matrix
multiplication is split into many small matrix multiplications.
Subsequently, these small matrices A and B are sent to the
matrix multiplication unit. After the temporal results of matrix
C are obtained, these temporal results are combined in the
processing unit to obtain the final answer and are stored in the
DDR3 memory. Finally, the matrix multiplication results are
sent back to the computing server through the Ethernet
physical layer IP.
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III. MATRIX MUTIPLICATION UNIT

For two floating point matrices A and B that both sizes are
8x8, the matrix multiplication result C is also 8x8, as expressed
in Eq.1. If we define Xij, Yij, and Rij, as expressed in Eq. 2,
the computation results for ¢;;, which is expressed in Eq. 3, can
be further rewritten as Eq. 4, where the size of Xj; is 1x4, Yj; is
4x1, and Ry is 1x4. Thus, the first term in the Eq. 4 can be
computed with four matrix processors in parallel. Then, the
temporal results are stored and waiting for the second term in
the Eq. 4 is computed. Finally, the R;; can be computed with
only four small matrix processors after several iterations.
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Fig. 3. The matrix multiplication unit.

Fig. 3 shows the architecture of the matrix multiplication
unit. It is composed of four matrix processors and one matrix
processor master. The matrix processor master reads matrix
elements from the processing unit and sends the small matrices
A and B to four matrix processors for computing results in
parallel. When matrix processors are idle, the matrix processor
master will dispatch job for them. Fig. 3 only shows the
operation for 88 matrix multiplication. For trade-off between
the usage percentage of the FPGA hardware resources and the
execution time of the large matrix multiplication. The
maximum number of matrix processor in the proposed matrix
multiplication unit is 16.
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IV. EXPERIMENTAL RESULTS

In the proposed FPGA-based hardware accelerator
platform, the data transmission time between the computing
server and the hardware accelerator platform depends on the
/O speed of the Ethernet physical layer IP. When data are sent
from the computing server to the DDR3 memory of the
hardware accelerator platform, the transmission data rate is
tested and shown in Table I. Oppositely, the transmission data
rate from the DDR3 memory of the hardware accelerator
platform to the computing server is also tested, and shown in
Table L.

TABLE L. NETWORK TRANSMISSION DATA RATE
Direction Packet Number Time Transmission
length of Packet data rate
Server to 1500bytes 50,000 5.375s 111.63Mbps
VC707
VC707 to | 1500bytes 50,000 11.679s 51.37Mbps
Server

Table II shows the hardware resource utilization of the
proposed hardware accelerator for big data matrix
multiplications. The number of matrix processor in the
proposed matrix multiplication unit is 16 even for large size
matrix multiplication. As shown in Table II, the number of
matrix processor in the proposed matrix multiplication can be
increased if shorter execution time is required.

TABLE II. FPGA RESOURCE UTILIZATION

Slice Logic Used Available Utilization
Utilization

Number of 194,312 607,200 32%

Slice registers

Number of 151,370 303,600 49%
Slice LUTs

Number of 1,281 2,800 45%
DSP48E1

Table III shows the timing profile analysis for the
computing server calculating thirty 512x512 floating point
matrix multiplications. It takes a lot of time for the computing
server to read data from the main memory. In addition, for
large matrix multiplication, the amount of data is often larger
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than the capacity of data caches of the CPU of the computing
server, and therefore cache miss will often occur in the CPU
of the computing server.

TABLE III. TIMING PROFILE ANALYSIS FOR THE COMPUTING SERVER
17-4770 (3.4GHz)
Total 24944 s Memory 18.315s 73.42 %
execution read time
time Memory 0.033 s 0.13 %
write time
Computing | 6.592 s 26.46 %
time
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Fig. 4. Compare Intel 17-4770 (3.40GHz) with VC707 (125MHz) with
different matrix size.
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Fig. 5. Compare Intel 17-4770 (3.4GHz) with VC707 (125MHz) with
different number of matrix multiplications.

Fig. 4 shows the execution time of one floating point
matrix multiplication for the computing server with an Intel
17-4770 and the proposed hardware accelerator with one
VC707 EVB. As shown in Fig. 4, if the matrix size becomes
larger, the speedup of the proposed hardware accelerator can
be increased. In addition, in small size matrix multiplication,
the data transmission in the Ethernet will be the bottleneck in
the proposed hardware accelerator.

Fig. 5 shows the execution time for 25, 50, and 100 times
512x512 floating point matrix multiplications. The workloads

are shared with four VC707 FPGA EVBs. The proposed
hardware accelerator platform with four FPGA EVBs at
125MHz clock rate can achieve 4x speedup as compared with
the computing server with an Intel 17-4770 CPU at 3.4GHz.

V. CONCLUSION

In this paper, an FPGA-based hardware accelerator
platform for big data matrix processing is presented. The
proposed accelerator platform can use many VC707 FPGA
EVBs to speed up the big data matrix processing. Since server
workloads will continue to evolve, the proposed FPGA-based
hardware accelerator platform provides an easy way to support
the CPUs for a heterogeneous computing solution with off-chip
hardware accelerators. The experimental results for one
hundred 512x512 floating point matrix multiplications show
that the proposed hardware accelerator platform with four
FPGA EVBs at 125MHz clock rate can achieve the 4x speedup
as compared with the computing server with an Intel 17-4770
CPU at 3.4GHz.
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