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Abstract 

Nowadays, the smart phones, web systems, and wireless sensors are enabled to connect the internet 

and response to the user in real time. Therefore, we are living in the internet of things (IoT) era with 

big data generation. The “4Vs” characteristics of big data such as variety, volume, velocity, and value 

make them difficultly to be handled. The personal computer is hard to deal with big data because the 

capacity of memories and storage devices is not enough and the limited processing rate of the CPU. 

Therefore, the distributed file system and cloud computing have become popular. Both of them can 

compute in parallel and share the data of disks. Moreover, the hardware accelerator is suited for 

data-intensive computation, and the function units of hardware accelerator are processed in parallel. 

Graphics processing units (GPUs) and field programmable gate arrays (FPGAs) are potential 

hardware accelerators for these data-intensive computations. K-means clustering algorithm is one of 

the data mining techniques. In this paper, we implement k-means clustering algorithm to analyze the 

dataset. The proposed FPGA-based hardware accelerators communicate with the computer through 

Ethernet switch. The computer wraps data into packets then sends to the FPGAs, and it receives data 

after the FPGAs finishing computations. Also, the host computer is employed as the master to 

manage data and dispatch jobs, and the FPGAs are focused on accelerating data computation. Finally, 

the proposed system performance is compared with the benchmark execution time. 
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1. Introduction 

Specific technologies such as network, the internet, server, email, and mobile are growing up that 

generates lots of data from devices [1]. The smart phones have launched a wave of revolution, not 

only the user can directly access vast amounts of smart phone applications but also enables 

individuals to use applications to reach mass audiences [2]. The conception of the internet of things 

(IoT) is connectivity of network entities embedded with devices that can exchange data to physical 

objects. However, IoT is evolved to the internet of anything (IoA) [3]. IoA can imagine everything as 

part of the network ecosystem, like the internet operating system [3]. 

 

In fact, big data is difficult to be handled, not only the amount of data is large, but also it has special 

properties. The properties of big data make it not easy to be handled. The “4Vs” is wide big data 

definition that includes variety, volume, velocity and value [4]. Variety means the structure of data 

has many flavors. Volume means the data are too large to analyze the data sets. Velocity means the 

data are generated from everywhere and anytime, the processing rate of devices should match the 

speed of data production. Finally, by analyzing big data valuable information can be found. 

 

Obviously, processing big data has challenges, both hardware and software are evolved to adapt the 

characteristics of big data. Therefore, many software frameworks and file systems are developed to 

against big data issues, such as NoSQL database, Google file system, Facebook’s photo storage 

haystack and Hadoop. NoSQL is complemented replacement relational database management 

systems (RDBMS). Google file system (GFS) [5] runs on hundred inexpensive machines on Linux 

operation system, and GFS has fault tolerance and atomic data recovery when inexpensive 

commodity hardware devices are failed. Facebook developed haystack [6] to store the billions small 
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size of photos. Haystack achieves four goals: high throughput and low latency, fault-tolerant, 

cost-effective and simple. Hadoop [7] is an open source programming framework that enables 

distributed processing of data over large clusters of computing servers and numerous data storage. 

 

Besides the development of software frameworks and distributed file systems, the computing servers 

also require new system capabilities. Computing demand is kept increasing and with only CPUs is 

dissatisfaction. Therefore, heterogeneous hardware accelerator helps to share computing loading and 

becomes more attracted in recent years. Graphics processing units (GPUs), and field programmable 

gate arrays (FPGAs) are potential hardware accelerators. The main advantages of the GPU are high 

memory bandwidth, many programmable cores with multi-thread execution in parallel, coding with 

high-level languages like CUDA, and changing functions easier than FPGAs. FPGAs have 

high-density arrays of logic blocks which can execute computation in parallel. A user can use Verilog 

or VHDL to implemented circuits in FPGA, and the vendors provide useful IPs to help developer 

design [8]. Many researchers present the performance for diverse applications. The computation 

which can process in parallel is a good fit to GPU, and applications which have many memory access 

times are a bad fit to GPU. FPGA is a good fit at computation low-level bit-wise operations and is a 

bad fit at the complex algorithm and data flow [8]. 

 

After discussion characteristics in both FPGA and GPU, we survey prior embedded hardware 

accelerators systems architectures. In [9], the IBM Power8 processor contains private data cache per 

core to improve performance. In addition, the server workloads will continue to evolve, the IBM 

Power8 embeds the coherent accelerator processor interface (CAPI) to support the general purpose 

cores for a heterogeneous computing solution with off-chip hardware accelerators. In [10], they 

integrate ZedBorad platform which combines ARM processor and FPGA, and Hadoop to be a new 

Zynq-based Hadoop cluster. It can inherit Hadoop frameworks, like the name node, the scheduler, 

and the HDFS. A CPU system is employed as the name node that maintains file metadata. This 

architecture can achieve speed up as compared to pure software approaches. 

 

In this paper, we develop FPGA-based hardware accelerator through Ethernet switch to achieve high 

scalability. We implement K-means algorithm in the VC707 FPGA evaluation boards (EVBs) [11], 

and cooperate with the computing server and FPGAs. The computing server is employed as the 

master to manage data and control the status, the FPGAs focus on computation. Besides, the values 

of data set are single precision floating point numbers. K-means clustering algorithm is one of the 

clustering algorithms for data analysis, and K-means clustering algorithm has intensive computation 

and non-sequential working. These properties are suited for hardware accelerators. 

 

The rest of this paper is organized as follows: The hardware accelerator architecture overview is 

presented in Section 2. Section 3 shows K-means clustering algorithm implemented in the FPGA. 

Section 4 shows the implementation and measurement results. Finally, the conclusion is given in 

Section 5. 

  



 

43 

2. Proposed Hardware Accelerator Architecture 

 
Fig. 1: The proposed FPGA-based hardware accelerator platform 

The proposed accelerator platform is composed of three VC707 FPGA EVBs, as shown in Fig. 1. In 

addition, each VC707 EVB has the same function. The computing server wraps the data into packets 

and sends them to VC707 EVBs through a Gigabit Ethernet switch. Then, the workloads of the 

computing server can be shared in FPGA EVBs. The data flow in the VC707 EVB architecture is 

shown in Fig. 2. We implement three modules in the VC707 EVB including an Ethernet physical 

layer IP, a DDR3 memory interface controller IP, and a user core. Ethernet physical IP is used to 

received packets from the computing server, and return the computing results of the VC707 EVB to 

the computing server. The Ethernet physical layer IP module splits received packets into byte data or 

combines byte data into packets. The DDR3 memory interface controller IP helps the user core to 

communicate with the onboard 1GB DDR3 memory. The command (cmd) and address (addr) can be 

sent to the memory interface controller IP simultaneously when we request to the DDR3 memory. 

For a write request, the written data (wm_d) need to be prepared before the write request sends to 

memory interface controller IP. For a read request, the read data (rm_d) are output from memory 

interface after several cycles. 

 

 
Fig. 2: FPGA data flow in the VC707 EVB 

 

The user core is composed of a TX FIFO, an RX FIFO, and processing circuits. The RX FIFO 

receives data (rx_d) from the Ethernet physical layer IP and combines them. We use a counter to 

combine receiving data (rx_d) when the reception signal (rx_en) is enabled. The RX FIFO module 

outputs the receiving data to the user core module after checking the destination address and the 

source address is correct. Subsequently, we assert the signal when reception is done. The TX FIFO 

sends the byte data (tx_d) split from the packet to the Ethernet physical layer IP. The TX FIFO 

module behavior is similar to the RX FIFO module. We assert the transmission signal (tx_en) after 

the user core operation is finished. Subsequently, we wrap data into packets when the signal (tx_en) 
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is high. Finally, the packets are sent to the computing server through Ethernet physical IP. The 

K-means clustering algorithm is implemented in the processing circuit module. 

 

3. K-means Clustering Circuit 

K-means clustering algorithm is one of the clustering algorithms for data analysis, and K-means 

algorithm is used to image processing, cluster analysis, and feature learning. The goal of K-means 

algorithm is to separate the input data into the number K of clusters. The data which are in a cluster 

have similar properties to each other and be dissimilar in other clusters. Assume that the input data 

are on a set of D-dimensional real vector, that , and partitions

into ( ) sets , and each cluster is associated with a center value. 

Therefore, the output of the objective function in the Euclidean distance is , 

where  is the mean of points (center) in . K-means algorithm is iterative procedures, there are 

steps as followed. 

 

First, the initialization step selects initial values to be the centers and determines the number of 

clusters. Basically, the programmer sometimes uses random numbers to be the centers, but initial 

values affect the result of accuracy or iteration times. Second, the finding clusters step assigns 

objects to the nearest cluster center. We can get the number of K clusters in this step. Third, in 

finding centers step, calculates each cluster center as the mean of objects in the cluster. If all of the 

new cluster centers are approximately the same, and then K-means algorithm iteration is finished. 

Otherwise, the step returns to finding clusters step with new centers to find new cluster sets. 

 

K-means algorithm is applied to many diverse domains, so we focus on hardware implementation. In 

[12], they implement K-means algorithm for image processing on PCI board with an FPGA and 

connects external two memories. One memory is storing the pixel data from the host computer and 

the other memory is saving the cluster results. They use the FPGA to find each pixel cluster numbers, 

and store sum of pixel values in accumulators. In the host computer side, they send the complete 

image to the FPGA memories and computes new cluster centers. In [13], they modify architecture of 

[12]. They add a floating-point division module in the FPGA. This architecture computes new cluster 

centers on the FPGA side and saves each iteration results in the FPGA before the algorithm is 

terminated. They also use PCI-e communicating between the host and the FPGA. At the beginning, 

the host computer sends complete image data to the FPGA memory. Second, initial centers are 

transmitted to the FPGA from the host. Before K-means algorithm is finished, there is no contact 

between the host and the FPGA, it saves a lot of transmission time comparing with [12]. The 

execution time speeds up because of programming in parallelism and reducing transmission time. 

Nevertheless, the memory capacity is an obstacle, the volume of big data or others data set may be 

larger than the size of memory. 

 

In [14], they implement K-means cluster for the color image on an FPGA with the Euclidean distance 

metric. A target pixel is 24-bit full-color RGB images. Each SRAM bank is 32-bit, four pixels are 

stored in three memory banks and results are stored in rest memory banks. This architecture 

calculates 96 squared Euclidean distances in parallel and the new center is calculated from four 

partial sums. Furthermore, they implement filter algorithm that each pixel is less than or equal to 24, 

and FEKM algorithm [15] can reduce scanning the number of pixels for iteration. They use two 

techniques for reducing computation time, and the memories can load the next image when others 

image is processing. However, the number of computing pixels for once operation is four that is not 

satisfied. 

 

In [16], they implement K-means in hardware for micro array data and compute the minimum 

distance in parallel. However, all of the input data are stored in the on-chip memory that is not work 
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where the data set is larger than the capacity of the memory. Therefore, we develop FPGA-based 

hardware accelerator through Ethernet switch to achieve high scalability. In addition, we do not use 

the onboard DDR3 memory in the design, because the size of data set is larger than the capacity of 

memories. Furthermore, the VC707 EVB memory access time could cause overload. 

 

The implementation of the K-means clustering algorithm is shown in Fig. 3. First, we create the data 

set with random three-dimensional nodes and store data set in a text file. Second, the master 

processor reads the data set into arrays and wraps nodes, cluster centers, control signals into the 

transmission packets. Subsequently, we send packets to the VC707 EVBs through the Ethernet 

switch. Third, the VC707 EVBs groups nodes into the clusters after receiving node data and centers. 

After that, the VC707 EVBs calculate the cluster number of each node. Consequently, the VC707 

EVBs return the cluster value of nodes to the host computer. Fourth, the master processor has 

calculated all cluster centers according to receiving the cluster number of nodes from the VC707 

EVBs. Then, the master processor replaces initial centers with the new centers, and next iteration is 

processed to find the new cluster centers. Finally, we write the results into the text file and display 

the clusters distribution by MATLAB when the iteration times are terminated. 

 
Fig. 3: Implementation of the K-means clustering algorithm 

 
Fig. 4: K-means flow chart in a VC707 EVB 

 

Fig. 4 shows the K-means algorithm flow chart in a VC707 EVB. We share the workloads in three 

VC707 EVBs, and each VC707 EVB has same components and functions. The single VC707 EVB 

can handle 115 data nodes in one packet simultaneously. Then, the VC707 EVB returns the sum of 

the clusters coordinate values with three dimensions and the number of nodes in each cluster to the 
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host computer. Finally, the host computer can calculate new centers and finds the new centers to the 

next iteration. 

 

In K-means algorithm, the inputs are three-dimensional 115 floating-point nodes and 4 cluster 

floating-point centers from the host computer. We store the node data and cluster centers when the 

VC707 EVB has received the packet. Subsequently, we calculate the Euclidean distance to each 

cluster centers in total 115 nodes. Consequently, we find the shortest distance in 4 Euclidean distance 

of each cluster. After that, we accumulate the grouped nodes of one cluster coordinate floating-point 

values that are x-coordinate, y-coordinate and z-coordinate in three 32-bit registers until 115 nodes 

are computed. Moreover, we store the number of nodes in one cluster into a 96-bit register. Our 

maximum number of cluster is four, so we have twelve 32-bit registers to store the clusters 

coordinate values, and four 96-bit registers to store the number of nodes in each cluster. When the 

transmission of the data set is complete, the VC707 EVB returns the sum of the clusters coordinate 

values with three dimensions and the number of nodes in each cluster to the host computer. Besides, 

we do not calculate new centers in the FPGA because we share the workloads to three VC707 EVBs. 

We need to compute the new centers in the host computer. 

 

 
Fig. 5: Euclidean distance calculation circuit 

 

Fig. 5 shows the circuit for calculating the Euclidean distance. The values of nodes and centers are 

single-precision floating point numbers, and the floating-point IPs help us to process floating-point 

operations. We calculate 115 Euclidean distances between nodes and centers in parallel. The total of 

the floating-point IPs has 1035 modules including 345 subtractions, 345 square operations, 230 

adders, and 115 square root operations. Both the input and the output of every IP modules are 32 bits. 

We get 115 distances of each node after six clock cycles. When the calculation is done, we replace 

center values with next cluster centers. 

 

After four cluster distances between each node and centers are already calculated, we find the 

shortest distance in four distances by the comparing binary tree circuit, as shown in Fig. 6. Also, we 

implement 115 comparing tree modules processing in parallel and get the 115 cluster number of 

nodes after two clock cycles. Finally, we accumulate the coordinate values of 115 grouped nodes and 

the number of nodes in each cluster into registers. Besides, we do not calculate the 115 grouped 

nodes in parallel, because the resource of VC707 EVB is not enough to fulfill parallel circuits. 
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Fig. 6: Comparing binary tree circuit 

 

The master processor is implemented in the host computer by visual studio C++ programming. The 

master processor is used to composite transmission packets, analyze reception packets, and calculate 

the new cluster centers. Moreover, the single reception packet from the VC707 EVBs contains the 

sum of cluster coordinate values and the number of nodes in each cluster. We calculate the new 

cluster centers after all data set is clustering from three VC707 EVBs. Subsequently, we can do next 

iteration until the program is finished. Besides, the VC707 EVB is similar as a function that one 

transmission to the FPGA can process 115 nodes, and one reception from the FPGA can get the sum 

of cluster values and the number of nodes in each cluster in one iteration. Therefore, we reduce the 

latency of reception time because the VC707 EVBs return one packet in one iteration. 

 

4. Implementation and Measurement Results 

Table 1 shows the hardware resource utilization of the proposed hardware accelerator for K-means 

clustering circuits. Fig. 7 shows the execution time of K-means clustering algorithm (iteration three 

times) without the latency of reading and writing data with the 125 million three-dimensional node 

data set. The execution time is compared to a computer server with Intel I7-4770 CPU, a computer 

server with Intel I5-3230M CPU, and the proposed hardware accelerator with three VC707 EVBs, 

and the proposed design has less execution time at 125MHz clock rate. Fig. 8 shows the execution 

time of K-means clustering algorithm (iteration three times) without the latency of reading and 

writing data with the different size of three-dimensional nodes data set. The execution time is 

increased with the growth of the data set size as shown in Fig. 8. 

Table 1: FPGA resource utilization for K-means clustering circuit 

Slice Logic 

Utilization 

Used Available Utilization 

K-means clustering 

Number of 

 Slice Registers 

125,761 607,200 20% 

Number of  

Slice LUTs 

233,865 303,600 77% 

Number of 

Occupied Slices 

71,005 75,900 93% 

Number of 

DSP48E1s 

2,191 2,800 78% 
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Fig. 7: Execution time of 3-FPGA and the computer server with I5-3230M and I7-4770 CPU (at 125 

million three-dimensional nodes data set) 

Fig. 9 shows the execution time including the I/O latency of reading and writing data for Hadoop 

cluster servers and the proposed hardware accelerator with three VC707 EVBs. In the Hadoop cluster, 

the master server has 8 cores Xeon E5506 CPU(2.13GHz), and all slaves have 8 cores Xeon(R) 

E5420 CPU(2.5GHz).We use open source Apache Mahout library [17] to implement K-means 

clustering algorithm in the Hadoop cluster. The execution time of three VC707 EVBs (line 

3-FPGA_1) is faster than Hadoop clusters when the size of the data set is small. However, with the 

large size of data sets, the Hadoop cluster has less execution time than the proposed design with three 

VC707 EVBs. However, if the data sets are partitioned into three parts and stored on the three host 

computers, the execution time of three VC707 EVBs with three host computers (line 3-FPGA_2) can 

be significantly reduced. As a result, the solid-state disks (SSDs) may be required to reduce the I/O 

latency and the execution time of the proposed FPGA-based accelerator platform can be further 

reduced. 

 
Fig. 8: Execution time at different size of three-dimensional nodes data set 
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Fig. 9: Execution time of Hadoop clusters with 1/2/3/4/5/6-servers, 3-FPGA, and 3-FPGA with three 

host computers 

5. Conclusion 

In this paper, an FPGA-based accelerator platform is proposed to greatly reduce the processing time 

of the K-mean algorithm. The proposed accelerator platform can use many VC707 FPGA EVBs to 

speed up the algorithm processing. Since server workloads will continue to evolve, the proposed 

FPGA-based hardware accelerator platform provides an easy way to support the CPUs for a 

heterogeneous computing solution with off-chip hardware accelerators. 
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