

41

ACEAT-0085

FPGA-Based Accelerator Platform for K-Means Clustering Algorithm

Ching-Che Chung, Dai-Hua Lee, and Yu-Hsin Wang

Dept. of Computer Science and Information Engineering,

National Chung Cheng University, Taiwan

E-mail address: wildwolf@cs.ccu.edu.tw

Abstract

Nowadays, the smart phones, web systems, and wireless sensors are enabled to connect the internet

and response to the user in real time. Therefore, we are living in the internet of things (IoT) era with

big data generation. The “4Vs” characteristics of big data such as variety, volume, velocity, and value

make them difficultly to be handled. The personal computer is hard to deal with big data because the

capacity of memories and storage devices is not enough and the limited processing rate of the CPU.

Therefore, the distributed file system and cloud computing have become popular. Both of them can

compute in parallel and share the data of disks. Moreover, the hardware accelerator is suited for

data-intensive computation, and the function units of hardware accelerator are processed in parallel.

Graphics processing units (GPUs) and field programmable gate arrays (FPGAs) are potential

hardware accelerators for these data-intensive computations. K-means clustering algorithm is one of

the data mining techniques. In this paper, we implement k-means clustering algorithm to analyze the

dataset. The proposed FPGA-based hardware accelerators communicate with the computer through

Ethernet switch. The computer wraps data into packets then sends to the FPGAs, and it receives data

after the FPGAs finishing computations. Also, the host computer is employed as the master to

manage data and dispatch jobs, and the FPGAs are focused on accelerating data computation. Finally,

the proposed system performance is compared with the benchmark execution time.

Keywords: Big data, K-means clustering algorithm, hardware accelerator

1. Introduction

Specific technologies such as network, the internet, server, email, and mobile are growing up that

generates lots of data from devices [1]. The smart phones have launched a wave of revolution, not

only the user can directly access vast amounts of smart phone applications but also enables

individuals to use applications to reach mass audiences [2]. The conception of the internet of things

(IoT) is connectivity of network entities embedded with devices that can exchange data to physical

objects. However, IoT is evolved to the internet of anything (IoA) [3]. IoA can imagine everything as

part of the network ecosystem, like the internet operating system [3].

In fact, big data is difficult to be handled, not only the amount of data is large, but also it has special

properties. The properties of big data make it not easy to be handled. The “4Vs” is wide big data

definition that includes variety, volume, velocity and value [4]. Variety means the structure of data

has many flavors. Volume means the data are too large to analyze the data sets. Velocity means the

data are generated from everywhere and anytime, the processing rate of devices should match the

speed of data production. Finally, by analyzing big data valuable information can be found.

Obviously, processing big data has challenges, both hardware and software are evolved to adapt the

characteristics of big data. Therefore, many software frameworks and file systems are developed to

against big data issues, such as NoSQL database, Google file system, Facebook’s photo storage

haystack and Hadoop. NoSQL is complemented replacement relational database management

systems (RDBMS). Google file system (GFS) [5] runs on hundred inexpensive machines on Linux

operation system, and GFS has fault tolerance and atomic data recovery when inexpensive

commodity hardware devices are failed. Facebook developed haystack [6] to store the billions small

42

size of photos. Haystack achieves four goals: high throughput and low latency, fault-tolerant,

cost-effective and simple. Hadoop [7] is an open source programming framework that enables

distributed processing of data over large clusters of computing servers and numerous data storage.

Besides the development of software frameworks and distributed file systems, the computing servers

also require new system capabilities. Computing demand is kept increasing and with only CPUs is

dissatisfaction. Therefore, heterogeneous hardware accelerator helps to share computing loading and

becomes more attracted in recent years. Graphics processing units (GPUs), and field programmable

gate arrays (FPGAs) are potential hardware accelerators. The main advantages of the GPU are high

memory bandwidth, many programmable cores with multi-thread execution in parallel, coding with

high-level languages like CUDA, and changing functions easier than FPGAs. FPGAs have

high-density arrays of logic blocks which can execute computation in parallel. A user can use Verilog

or VHDL to implemented circuits in FPGA, and the vendors provide useful IPs to help developer

design [8]. Many researchers present the performance for diverse applications. The computation

which can process in parallel is a good fit to GPU, and applications which have many memory access

times are a bad fit to GPU. FPGA is a good fit at computation low-level bit-wise operations and is a

bad fit at the complex algorithm and data flow [8].

After discussion characteristics in both FPGA and GPU, we survey prior embedded hardware

accelerators systems architectures. In [9], the IBM Power8 processor contains private data cache per

core to improve performance. In addition, the server workloads will continue to evolve, the IBM

Power8 embeds the coherent accelerator processor interface (CAPI) to support the general purpose

cores for a heterogeneous computing solution with off-chip hardware accelerators. In [10], they

integrate ZedBorad platform which combines ARM processor and FPGA, and Hadoop to be a new

Zynq-based Hadoop cluster. It can inherit Hadoop frameworks, like the name node, the scheduler,

and the HDFS. A CPU system is employed as the name node that maintains file metadata. This

architecture can achieve speed up as compared to pure software approaches.

In this paper, we develop FPGA-based hardware accelerator through Ethernet switch to achieve high

scalability. We implement K-means algorithm in the VC707 FPGA evaluation boards (EVBs) [11],

and cooperate with the computing server and FPGAs. The computing server is employed as the

master to manage data and control the status, the FPGAs focus on computation. Besides, the values

of data set are single precision floating point numbers. K-means clustering algorithm is one of the

clustering algorithms for data analysis, and K-means clustering algorithm has intensive computation

and non-sequential working. These properties are suited for hardware accelerators.

The rest of this paper is organized as follows: The hardware accelerator architecture overview is

presented in Section 2. Section 3 shows K-means clustering algorithm implemented in the FPGA.

Section 4 shows the implementation and measurement results. Finally, the conclusion is given in

Section 5.

43

2. Proposed Hardware Accelerator Architecture

Fig. 1: The proposed FPGA-based hardware accelerator platform

The proposed accelerator platform is composed of three VC707 FPGA EVBs, as shown in Fig. 1. In

addition, each VC707 EVB has the same function. The computing server wraps the data into packets

and sends them to VC707 EVBs through a Gigabit Ethernet switch. Then, the workloads of the

computing server can be shared in FPGA EVBs. The data flow in the VC707 EVB architecture is

shown in Fig. 2. We implement three modules in the VC707 EVB including an Ethernet physical

layer IP, a DDR3 memory interface controller IP, and a user core. Ethernet physical IP is used to

received packets from the computing server, and return the computing results of the VC707 EVB to

the computing server. The Ethernet physical layer IP module splits received packets into byte data or

combines byte data into packets. The DDR3 memory interface controller IP helps the user core to

communicate with the onboard 1GB DDR3 memory. The command (cmd) and address (addr) can be

sent to the memory interface controller IP simultaneously when we request to the DDR3 memory.

For a write request, the written data (wm_d) need to be prepared before the write request sends to

memory interface controller IP. For a read request, the read data (rm_d) are output from memory

interface after several cycles.

Fig. 2: FPGA data flow in the VC707 EVB

The user core is composed of a TX FIFO, an RX FIFO, and processing circuits. The RX FIFO

receives data (rx_d) from the Ethernet physical layer IP and combines them. We use a counter to

combine receiving data (rx_d) when the reception signal (rx_en) is enabled. The RX FIFO module

outputs the receiving data to the user core module after checking the destination address and the

source address is correct. Subsequently, we assert the signal when reception is done. The TX FIFO

sends the byte data (tx_d) split from the packet to the Ethernet physical layer IP. The TX FIFO

module behavior is similar to the RX FIFO module. We assert the transmission signal (tx_en) after

the user core operation is finished. Subsequently, we wrap data into packets when the signal (tx_en)

44

is high. Finally, the packets are sent to the computing server through Ethernet physical IP. The

K-means clustering algorithm is implemented in the processing circuit module.

3. K-means Clustering Circuit

K-means clustering algorithm is one of the clustering algorithms for data analysis, and K-means

algorithm is used to image processing, cluster analysis, and feature learning. The goal of K-means

algorithm is to separate the input data into the number K of clusters. The data which are in a cluster

have similar properties to each other and be dissimilar in other clusters. Assume that the input data

are on a set of D-dimensional real vector, that , and partitions

into () sets , and each cluster is associated with a center value.

Therefore, the output of the objective function in the Euclidean distance is ,

where is the mean of points (center) in . K-means algorithm is iterative procedures, there are

steps as followed.

First, the initialization step selects initial values to be the centers and determines the number of

clusters. Basically, the programmer sometimes uses random numbers to be the centers, but initial

values affect the result of accuracy or iteration times. Second, the finding clusters step assigns

objects to the nearest cluster center. We can get the number of K clusters in this step. Third, in

finding centers step, calculates each cluster center as the mean of objects in the cluster. If all of the

new cluster centers are approximately the same, and then K-means algorithm iteration is finished.

Otherwise, the step returns to finding clusters step with new centers to find new cluster sets.

K-means algorithm is applied to many diverse domains, so we focus on hardware implementation. In

[12], they implement K-means algorithm for image processing on PCI board with an FPGA and

connects external two memories. One memory is storing the pixel data from the host computer and

the other memory is saving the cluster results. They use the FPGA to find each pixel cluster numbers,

and store sum of pixel values in accumulators. In the host computer side, they send the complete

image to the FPGA memories and computes new cluster centers. In [13], they modify architecture of

[12]. They add a floating-point division module in the FPGA. This architecture computes new cluster

centers on the FPGA side and saves each iteration results in the FPGA before the algorithm is

terminated. They also use PCI-e communicating between the host and the FPGA. At the beginning,

the host computer sends complete image data to the FPGA memory. Second, initial centers are

transmitted to the FPGA from the host. Before K-means algorithm is finished, there is no contact

between the host and the FPGA, it saves a lot of transmission time comparing with [12]. The

execution time speeds up because of programming in parallelism and reducing transmission time.

Nevertheless, the memory capacity is an obstacle, the volume of big data or others data set may be

larger than the size of memory.

In [14], they implement K-means cluster for the color image on an FPGA with the Euclidean distance

metric. A target pixel is 24-bit full-color RGB images. Each SRAM bank is 32-bit, four pixels are

stored in three memory banks and results are stored in rest memory banks. This architecture

calculates 96 squared Euclidean distances in parallel and the new center is calculated from four

partial sums. Furthermore, they implement filter algorithm that each pixel is less than or equal to 24,

and FEKM algorithm [15] can reduce scanning the number of pixels for iteration. They use two

techniques for reducing computation time, and the memories can load the next image when others

image is processing. However, the number of computing pixels for once operation is four that is not

satisfied.

In [16], they implement K-means in hardware for micro array data and compute the minimum

distance in parallel. However, all of the input data are stored in the on-chip memory that is not work

45

where the data set is larger than the capacity of the memory. Therefore, we develop FPGA-based

hardware accelerator through Ethernet switch to achieve high scalability. In addition, we do not use

the onboard DDR3 memory in the design, because the size of data set is larger than the capacity of

memories. Furthermore, the VC707 EVB memory access time could cause overload.

The implementation of the K-means clustering algorithm is shown in Fig. 3. First, we create the data

set with random three-dimensional nodes and store data set in a text file. Second, the master

processor reads the data set into arrays and wraps nodes, cluster centers, control signals into the

transmission packets. Subsequently, we send packets to the VC707 EVBs through the Ethernet

switch. Third, the VC707 EVBs groups nodes into the clusters after receiving node data and centers.

After that, the VC707 EVBs calculate the cluster number of each node. Consequently, the VC707

EVBs return the cluster value of nodes to the host computer. Fourth, the master processor has

calculated all cluster centers according to receiving the cluster number of nodes from the VC707

EVBs. Then, the master processor replaces initial centers with the new centers, and next iteration is

processed to find the new cluster centers. Finally, we write the results into the text file and display

the clusters distribution by MATLAB when the iteration times are terminated.

Fig. 3: Implementation of the K-means clustering algorithm

Fig. 4: K-means flow chart in a VC707 EVB

Fig. 4 shows the K-means algorithm flow chart in a VC707 EVB. We share the workloads in three

VC707 EVBs, and each VC707 EVB has same components and functions. The single VC707 EVB

can handle 115 data nodes in one packet simultaneously. Then, the VC707 EVB returns the sum of

the clusters coordinate values with three dimensions and the number of nodes in each cluster to the

46

host computer. Finally, the host computer can calculate new centers and finds the new centers to the

next iteration.

In K-means algorithm, the inputs are three-dimensional 115 floating-point nodes and 4 cluster

floating-point centers from the host computer. We store the node data and cluster centers when the

VC707 EVB has received the packet. Subsequently, we calculate the Euclidean distance to each

cluster centers in total 115 nodes. Consequently, we find the shortest distance in 4 Euclidean distance

of each cluster. After that, we accumulate the grouped nodes of one cluster coordinate floating-point

values that are x-coordinate, y-coordinate and z-coordinate in three 32-bit registers until 115 nodes

are computed. Moreover, we store the number of nodes in one cluster into a 96-bit register. Our

maximum number of cluster is four, so we have twelve 32-bit registers to store the clusters

coordinate values, and four 96-bit registers to store the number of nodes in each cluster. When the

transmission of the data set is complete, the VC707 EVB returns the sum of the clusters coordinate

values with three dimensions and the number of nodes in each cluster to the host computer. Besides,

we do not calculate new centers in the FPGA because we share the workloads to three VC707 EVBs.

We need to compute the new centers in the host computer.

Fig. 5: Euclidean distance calculation circuit

Fig. 5 shows the circuit for calculating the Euclidean distance. The values of nodes and centers are

single-precision floating point numbers, and the floating-point IPs help us to process floating-point

operations. We calculate 115 Euclidean distances between nodes and centers in parallel. The total of

the floating-point IPs has 1035 modules including 345 subtractions, 345 square operations, 230

adders, and 115 square root operations. Both the input and the output of every IP modules are 32 bits.

We get 115 distances of each node after six clock cycles. When the calculation is done, we replace

center values with next cluster centers.

After four cluster distances between each node and centers are already calculated, we find the

shortest distance in four distances by the comparing binary tree circuit, as shown in Fig. 6. Also, we

implement 115 comparing tree modules processing in parallel and get the 115 cluster number of

nodes after two clock cycles. Finally, we accumulate the coordinate values of 115 grouped nodes and

the number of nodes in each cluster into registers. Besides, we do not calculate the 115 grouped

nodes in parallel, because the resource of VC707 EVB is not enough to fulfill parallel circuits.

47

Fig. 6: Comparing binary tree circuit

The master processor is implemented in the host computer by visual studio C++ programming. The

master processor is used to composite transmission packets, analyze reception packets, and calculate

the new cluster centers. Moreover, the single reception packet from the VC707 EVBs contains the

sum of cluster coordinate values and the number of nodes in each cluster. We calculate the new

cluster centers after all data set is clustering from three VC707 EVBs. Subsequently, we can do next

iteration until the program is finished. Besides, the VC707 EVB is similar as a function that one

transmission to the FPGA can process 115 nodes, and one reception from the FPGA can get the sum

of cluster values and the number of nodes in each cluster in one iteration. Therefore, we reduce the

latency of reception time because the VC707 EVBs return one packet in one iteration.

4. Implementation and Measurement Results

Table 1 shows the hardware resource utilization of the proposed hardware accelerator for K-means

clustering circuits. Fig. 7 shows the execution time of K-means clustering algorithm (iteration three

times) without the latency of reading and writing data with the 125 million three-dimensional node

data set. The execution time is compared to a computer server with Intel I7-4770 CPU, a computer

server with Intel I5-3230M CPU, and the proposed hardware accelerator with three VC707 EVBs,

and the proposed design has less execution time at 125MHz clock rate. Fig. 8 shows the execution

time of K-means clustering algorithm (iteration three times) without the latency of reading and

writing data with the different size of three-dimensional nodes data set. The execution time is

increased with the growth of the data set size as shown in Fig. 8.

Table 1: FPGA resource utilization for K-means clustering circuit

Slice Logic

Utilization

Used Available Utilization

K-means clustering

Number of

 Slice Registers

125,761 607,200 20%

Number of

Slice LUTs

233,865 303,600 77%

Number of

Occupied Slices

71,005 75,900 93%

Number of

DSP48E1s

2,191 2,800 78%

48

Fig. 7: Execution time of 3-FPGA and the computer server with I5-3230M and I7-4770 CPU (at 125

million three-dimensional nodes data set)

Fig. 9 shows the execution time including the I/O latency of reading and writing data for Hadoop

cluster servers and the proposed hardware accelerator with three VC707 EVBs. In the Hadoop cluster,

the master server has 8 cores Xeon E5506 CPU(2.13GHz), and all slaves have 8 cores Xeon(R)

E5420 CPU(2.5GHz).We use open source Apache Mahout library [17] to implement K-means

clustering algorithm in the Hadoop cluster. The execution time of three VC707 EVBs (line

3-FPGA_1) is faster than Hadoop clusters when the size of the data set is small. However, with the

large size of data sets, the Hadoop cluster has less execution time than the proposed design with three

VC707 EVBs. However, if the data sets are partitioned into three parts and stored on the three host

computers, the execution time of three VC707 EVBs with three host computers (line 3-FPGA_2) can

be significantly reduced. As a result, the solid-state disks (SSDs) may be required to reduce the I/O

latency and the execution time of the proposed FPGA-based accelerator platform can be further

reduced.

Fig. 8: Execution time at different size of three-dimensional nodes data set

49

Fig. 9: Execution time of Hadoop clusters with 1/2/3/4/5/6-servers, 3-FPGA, and 3-FPGA with three

host computers

5. Conclusion

In this paper, an FPGA-based accelerator platform is proposed to greatly reduce the processing time

of the K-mean algorithm. The proposed accelerator platform can use many VC707 FPGA EVBs to

speed up the algorithm processing. Since server workloads will continue to evolve, the proposed

FPGA-based hardware accelerator platform provides an easy way to support the CPUs for a

heterogeneous computing solution with off-chip hardware accelerators.

Acknowledgments

This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant

MOST 106-2221-E-194-059. The EDA tools supported by the National Chip Implementation Center

are acknowledged as well.

6. References

[1] Aviv Segev, et al., “Analysis of technology trends based on big data,” in Proc. IEEE

International Congress on Big Data (BigData Congress), Jun. 2013, pp. 419-420.

[2] Gerd Kortuem, et al., “Market-based user innovation in the internet of things,” in Proc. Internet

of Things (IOT), Nov. 2010, pp.1-8.

[3] Irena Bojanova, et al., “Imagineering an internet of anything,” Computer, vol. 47, no. 5, pp.

983-987, Jun. 2014.

[4] Han Hu, et al., “Toward scalable systems for big data analytics: a technology tutorial,” IEEE

Access, vol. 2, pp. 652-687. Jul. 2014.

[5] Sanjay Ghemawat, et al., “The Google file system,” ACM SIGOPS Operating Systems Review,

vol. 37, no. 5, pp. 29-34, Dec. 2003.

[6] Doug Beaver, et al., “Finding a needle in haystack: Facebook’s photo storage,” in Proc. OSDI,

Oct. 2010, pp.1-8.

[7] Apache Hadoop. Available: https://hadoop.apache.org/

[8] Shuai Che, et al., “Accelerating compute-intensive applications with GPUs and FPGAs,” in

Proc. Symposium on Application Specific Processors, Jun. 2008, pp. 101-104.

[9] Joshua Friedrich, et al., “The POWER8TM processor: designed for big data, analytics, and

cloud environments,” in Proc. IEEE International Conference on IC Design and Technology

(ICICDT), May 2014.

[10] Zhongduo Lin, et al., “ZCluster: a Zynq-based Hadoop cluster,” in Proc. International

Conference on Field-Programmable Technology (FPT), Dec. 2013, pp. 450-453.

[11] VC707 evaluation board for the Virtex-7 FPGA user guide, Xilinx Inc.,

Available:http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707

50

_Eval_Bd.pdf

[12] Mike Estlick, et al., “Algorithmic transformations in the implementation of k-means clustering

on reconfigurable hardware,” in Proc. ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Feb. 2001, pp. 103-110.

[13] Xiaojun Wang, et al., “K-means clustering for multispectral images using floating-point divide,”

in Proc. IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 2007,

pp. 151-162.

[14] Tsutomu Maruyama, “Real-time k-means clustering for color images on reconfigurable

hardware,” in Proc. International Conference on Pattern Recognition, Aug. 2006, pp. 816-819.

[15] Anjan Goswami, et al., “Fast and exact out-of-core k-means clustering,” in Proc. IEEE

International Conference on Data Mining, Nov. 2004, pp. 83-90.

[16] Hanaa M. Hussain, et al., “FPGA implementation of k-means algorithm for bioinformatics

application: an accelerated approach to clustering microarray data,” in Proc. NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), Jun. 2011, pp. 248-255.

[17] Apache Mahout, Available: http://mahout.apache.org/

