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ABSTRACT 

The hardware complexity of digital filters is not controllable by 
straightforwardly rounding the coefficients to the quantization 
levels.  In this paper, we propose an effective alternative that 
distributes a pre-defined addition budget to the multiplier-less 
FIR filters, which takes into account the common sub-expression 
sharing inside the computations.  We successfully integrate a 
heuristic common sub-expression elimination (CSE) algorithm 
and the coefficient quantization by successive approximation 
proposed by Li et al.  Besides, we also propose an improved 
search algorithm for an optimal scale factor to settle the 
coefficients collectively into the quantization space.  Simulation 
results show that CSE effectively reduces 29.1%~31.5% budgets 
for comparable filter responses.  Besides, the improved scale 
factor exploration helps to find an identical or a better (never 
worse) quantization result with only 32.67%~44.53% run time, 
whether or not CSE is applied. 

1. INTRODUCTION 

Most DSP kernels are linear transforms with fixed coefficients, 
such as FIR filters, discrete cosine transforms (DCT), and fast 
Fourier transforms (FFT), etc.  Adders and shifters can thus 
replace multipliers for area-efficient implementations, where 
common sub-expression elimination (CSE) [1]-[3] can further 
reduce the required additions and shifts.  Besides, given an 
acceptable gain variance (e.g. ±3dB), an optimal scale factor (SF) 
can be found such that the number of additions after CSE is 
minimized.  The filter characteristics in terms of pass-band ripple 
and stop-band attenuation are preserved with the magnitude gain 
equal to the SF [4]. 

The hardware complexity of the FIR implementation is not under 
direct control by straightforwardly rounding the coefficients to 
the quantization levels.  An iterative algorithm was proposed by 
Li et al. [1] to quantize the filter coefficients by successive 
approximation, which controls the hardware complexity with a 
pre-defined budget of non-zero terms.  The budget gives a rough 
estimate for the required additions in the implementation, which 
may lead to a less optimal design, especially when CSE is 
applied.  In this paper, we propose an area-aware algorithm to 
quantize the FIR coefficients, which approximates the ideal 
coefficients under an exact addition budget instead of the non-
zero terms.  An optimal scale factor is explored to settle the 
coefficients into the quantization space.  Besides, common sub-
expressions in the filter computation are considered as zero-
overhead terms that consume no addition budget. 

The rest of this paper is organized as follows.  Section 2 covers 
the background materials that lay the foundations of the 
proposed area-aware coefficient quantization, which is detailed 
in Section 3.  Simulation results are available in Section 4, and 
Section 5 concludes this work and outlines our future research. 

2. BACKGROUND 

2.1 Coefficient Quantization by Successive 
Approximation 

Straightforward quantization on the ideal filter coefficients by 
truncation or rounding is not aware of the hardware complexity.  
Successively approximating the ideal coefficients is an effective 
alternative [5], which gradually assigns non-zero terms to the 
quantized coefficients (QC) under a pre-defined budget.  Besides, 
it applies an additional scale factor (SF) to settle the coefficients 
collectively into the optimal quantization space.  Fig 1(a) shows 
the algorithm.  The ideal coefficients (IC) are first normalized as 
the maximum magnitude to be one.  An optimal SF is searched 
from 0.4375 to 1.13 with a fixed step-size of 2-w, where w 
denotes the word-length including the sign bit.  For each SF, the 
QC’s are initialized to zeros and a non-zero term is gradually 
allocated to the QC that differs most from the scaled and 
normalized IC, until the budget is exhausted or the differences 
between IC & QC pairs are all less than 2-w.  Finally, the 
compensated QC (for previous scaling and normalization) with 
the least error is chosen.  Fig 1(b) is an illustrating example of 
the quantization algorithm when SF=0.5. 

Normalize IC so that the maximum coefficient magnitude is 1 
FOR SF=0.4375: 2-w : 1.13 
{    Scale the normalized IC with SF 

WHILE (budget >0 & difference between QC & IC >2-w) 
{    Allocate a non-zero term to QC  } 

Estimate the error between IC & the normalized QC  } 
Choose the QC that has the minimum error 

(a) 
IC = [0.26  0.131  0.087  0.011] 
Normalized IC (NIC) = [1 0.5038 0.3346 0.0423] 
SF = 0.5 
Scaled NIC = [0.5  0.2519  0.1673  0.0212] 
QC_0 = [0  0  0  0] 
QC_1 = [0.5  0  0  0] 
QC_2 = [0.5  0.25  0  0] 
QC_3 = [0.5  0.25  0.125  0] 
QC_4 = [0.5  0.25  0.15625  0] 
QC_5 = [0.5  0.25  0.15625  0.015625] 

 (b) 
Fig. 1  Quantization by successive approximation 
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The fixed 2-w-step SF exploration may step through multiple 
candidates that result in an identical QC result, while omitting 
significant SF’s at finer granularity, i.e. the higher computational 
complexity may have a worse quantization result.  In this paper, 
we propose an improved searching algorithm in Section 3, which 
explores significant SF’s only with a variable step-size.  Besides, 
we also take account of the common sub-expressions sharing of 
the filter computation, where the non-zero terms require no extra 
addition and thus consume no budget. 

2.2 Common Sub-expression Elimination 

For brevity, this paper considers two common sub-expressions in 
the direct-form FIR filters, namely, the common sub-expressions 
across coefficients (CSAC) and the common sub-expressions 
within coefficients (CSWC) [1].  Consider a 4-tap FIR filter with 
the coefficients: h0=0.0111011, h1=0.0101011, h2=1.0110011, 
and h3=1.1001001, which are four fractional numbers in the 8-bit 
2’s complement form.  The output is computed as 

yn = h0 · xn + h1 · xn-1 + h2 · xn-2 + h3 · xn-3. 
Additions and shifts can be substituted for the multiplications as 

yn =  xn»2 + xn»3 + xn»4 + xn»6 + xn»7 
+ xn-1»2 + xn-1»4 + xn-1»6 + xn-1»7 
- xn-2 + xn-2»2 + xn-2»3 + xn-2»6 + xn-2»7 
- xn-3 + xn-3»1 + xn-3»4 + xn-3»7  (1), 

where “»” denotes arithmetic right shift (i.e. with sign extension).  
Each output requires 17 additions (including 2 subtractions), and 
16 shifts.  The h0 and h2 multiplications, i.e. the first and the third 
rows in Equation (1), have four terms with the same shifts.  
Restructuring the equation by adding xn and xn-2 first effectively 
eliminates the redundant CSAC between h0 and h2 as 

yn = (xn+xn-2)»2 + (xn+xn-2)»3 + (xn+xn-2)»6 + (xn+xn-2)»7 
+ xn»4 - xn-2 
+ xn-1»2 + xn-1»4 + xn-1»6 + xn-1»7 
- xn-3 + xn-3»1 + xn-3»4 + xn-3»7  (2), 

where the total additions and shifts are reduced to 14 and 12, 
respectively.  The extraction and elimination process of CSAC 
can be more concisely manipulated in tabular form as Fig 2. 
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Fig. 2  CSAC extraction & elimination 

Within a single coefficient or CSAC, bit-pairs with identical bit 
displacement are recognized as CSWC, where the redundant 
CSWC can be eliminated by reusing the computation result.  For 
example, the sub-expression in the first row of Equation (2) can 
be simplified as (x02+x02»1)»2+(x02+x02»1)»6 to reduce both the 
addition and the shift by one, where x02 stands for xn+xn-2. 
The CSE quality depends on the elimination order.  A steepest-
descent approach [1] is applied as a heuristic to reduce the search 
space, which first eliminates the redundant CSAC between the 
coefficient pair with the most non-zero terms in identical bit-
positions.  One-level look-ahead can further distinguish the 

candidates of the same weight.  A similar strategy is applied to 
eliminate redundant CSWC, too.  Fig 3 shows the CSE algorithm 
for CSAC and CSWC of direct-form FIR filters [1]. 

Eliminate zero coefficients 
Merge coefficients with the same value (e.g. linear-phase FIR) 
Construct a coefficient matrix of size N×W, where N is the number 
of coefficients for CSE and W is the word-length (Fig 2) 
WHILE (highest weight > 1)   // CSAC elimination 
{   Find the coefficient pair with the highest weight 

Update the coefficient matrix  } 
FOR each row in the coefficient matrix   // CSWC elimination 
{   Find bit-pairs with identical bit displacement 

Extract the distances between those bit-pairs 
Update the coefficient matrix with the shift information  } 

Output the SDFG with addition, shift and negation 

Fig. 3  CSE for direct-form FIR filters [1] 

3. PROPOSED AREA-AWARE QUANTIZATION 

Allocating a non-zero term to the quantized coefficient (QC) set 
either forms an isolated term to sum up, or just enlarges a 
common sub-expression without any addition overhead.  In other 
words, the number of additions in the multiplier-less FIR filters 
is non-decreasing during the successive approximation.  The 
property guarantees the termination conditions in Fig 1 are valid 
when CSE is incorporated. 
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Fig. 4  Insert a non-zero term but reduce the additions 

In fact, the number of additions is not always ‘non-decreasing’ 
because of the steepest-descent CSE heuristic.  For example, if 
the optimum CSE for a coefficient set does not start with the pair 
with the most CSAC terms and thus the steepest-descent 
heuristic cannot find the optimum result.  Allocating a non-zero 
term increases the weight of the allocated pair and possibly alters 
the CSE order, which may lead to a better CSE result.  Fig. 4 is 
an example where the number of additions decreases after 
inserting one non-zero term.  The left matrices are original 
coefficients with eliminated CSAC terms marked.  The right 
matrix in (a) is the steepest-descent CSE result with the CSWC 
highlighted, which requires 19 additions.  Then, a zero-overhead 



term is allocated to the LSB of h1 as shown in (b), which changes 
the CSE order and introduces a new budget of two additions (17 
additions are required here).  Applying the CSE order in (b) for 
(a), we can find a better result as (c), which also requires 17 
additions only.  The following is our approach to integrate CSE 
and the successive approximation with improved SF exploration. 

As the algorithm shown in Fig 1, our proposed area-aware 
quantization algorithm first normalizes the ideal coefficients (IC) 
such that the magnitude of the maximum coefficient is one.  An 
optimal scale factor (SF) is then explored to collectively settle 
the coefficients into the quantization space, but with a more 
efficient searching strategy.  Instead of the fixed-size stepping 
from the lower bound, the next SF is calculated as 

SF’ = SF × [min |QD| + |coef(min QD)|] / |coef(min QD)|, 
where QD denotes the distance of a coefficient to its next 
quantization level, depending on the approximation strategy (e.g. 
rounding to the nearest value, toward 0, or toward -∞, etc).  
|coef(min QD)| denotes the magnitude of the coefficient with the 
minimum QD.  In short, the next SF is chosen as the minimum 
value to scale up one coefficient to its next quantization level.  
For 16-bit wordlength and ±3dB acceptable gain, the number of 
candidates ranges from 14,986 to 20,429 in our simulation, 
which depends on the filter coefficients.  By contrast, the fixed 
step-size exploration has 45,875 candidates for all coefficients. 
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Fig. 5  Proposed area-aware coefficient quantization 

For each SF, the QC’s are initialized as zeros and a non-zero 
term is gradually allocated to a QC that differs most from the 
scaled and normalized IC.  Once the allocated terms amount to 
the remnant budget, CSE is performed to introduce a new budget.  
The iterations continue until no additional budget exists.  Zero-
overhead terms (i.e. those enlarge the common sub-expressions 
without any addition overhead) are inserted as a post-processing 
step.  Note that the zero-overhead insertion can introduce new 
budgets as the illustrating example shown in Fig. 6.  A queue is 
needed to insert the skipped (i.e. with addition overheads), but 

more significant terms, once such a new budget is available.  The 
already-allocated zero-overhead terms that are less significant 
should be removed.  Finally, additional CSE is performed to 
check if there exists another CSE order for a better result.  The 
successive approximation resumes if the skip queue is empty and 
a new budget is available.   
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Fig. 6  Zero-overhead insertion by pattern matching 

The steepest-descent heuristic CSE can have a worse result after 
the insertion of a group of non-zero terms, and the remnant 
budget will be negative (i.e. the required additions exceed the 
pre-defined budget).  We save this situation just by canceling the 
latest allocation and using the previous CSE order as the steps 
shown in the right-hand side of Fig 5.  With the original CSE 
order, the addition overhead is estimated with pattern matching 
to use up the remnant budget, which is very similar to the zero-
overhead insertion except no queue is required here.  By the way, 
the approximation stops, of course, whenever all the difference 
between QC and IC pairs are all less than 2-w, because the QC 
cannot improve anymore. 

4. SIMULATION RESULTS 

The ideal coefficients in our simulation are generated in Matlab 
for linear-phase and low-pass FIR filters using the Hamming 
window (fir1).  The quantized coefficients are fractional 
numbers in the 16-bit 2’s complement form.  
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Fig. 7  Effectiveness of CSE & variable step-size exploration 

Fig 7 shows the square error versus the given addition budget for 
a 20-tap filter, which demonstrates the effectiveness of CSE and 
the proposed SF searching with variable step-sizes.  CSE saves 
29.1%~31.5% addition budgets for comparable filter responses.  
The solid lines (variable step-size SF exploration) are always 
below their corresponding dashed lines (fixed step-size) or just 
on them.  That is, the proposed searching approach never finds a 
QC result that introduces higher quantization error, whether or 
not CSE is applied. 



 
Table 1 Comparison of quantization results with CSE 

 DIRECT_V1 Suc_F2 Suc_V3  Suc_F_90%4 Suc_V_90%5 
TAP SF Error (10-7) Add SF Error (10-7) SF Error (10-7)  SF Error (10-7) SF Error (10-7)
12 0.994738 0.928092 27 0.994677 0.928092 0.994738 0.928092  0.994540 38.068010 0.994738 38.068010
16 0.981586 1.556596 37 0.981555 1.556596 0.981681 1.556596  0.838504 91.450613 0.838683 91.450613
20 1.121206 2.725406 45 1.123400 8.482496 1.121206 2.725406  1.121218 163.872263 1.121206 59.289435
24 1.125531 5.147758 54 1.125994 3.436487 1.125981 3.436487  1.126605 181.767276 1.126600 181.767276
28 0.743739 10.684378 61 0.743701 10.684378 0.743819 10.684378  0.751602 167.711315 0.751498 167.711315
32 1.263281 4.431486 72 1.263293 4.431486 1.263281 4.431486  1.008407 108.630690 1.008411 108.630690

1 Straightforward quantization & variable step-size SF exploration  
2 Quantization by successive approximation & fixed step-size SF exploration; adder budget is given by the DIRECT_V result 
3 Quantization by successive approximation & variable step-size SF exploration; adder budget is identical to Suc_F 
4 Suc_F with 90% adder budget 
5 Suc_V with 90% adder budget 
 

Our proposed variable step-size searching algorithm has 18,899 
instead of 45,875 candidates of the fixed step-size one, and runs 
2.43× faster in average.  To be brief, our method finds the same 
(with identical bit patterns) or better quantization results with 
only 41.2 % computations. 

Table 1 summarizes the CSE results for different taps.  The first 
column lists the number of taps and the simulation results for the 
straightforward quantization (DIRECT_V) follow immediately, 
where the ideal coefficients are rounded to their nearest 16-bit 2’s 
complement fractional numbers.  An optimal SF is explored with 
variable step-sizes to minimize the number of additions.  The 
applied SF, the square error, and the resultant minimum additions 
are shown respectively in the second, third and fourth columns.  
By the way, the numbers of additions are used as budgets for the 
rest experiments.  It should be noted that DIRECT_V has no 
control over the required additions.  Suc_F and Suc_V denote the 
quantization results by successive approximation, with fixed and 
variable step-size SF exploration respectively. 

For the 24-tap case, DIRECT_V finds a QC set with 54 additions 
by performing CSE on the arbitrarily distributed non-zero terms 
(i.e. the non-zero terms are not optimally allocated by quantizing 
the scaled coefficients straightforwardly).  Another QC set with 
55 additions exists, which significantly outperforms that with 54 
additions.  DIRECT_V skips this candidate, for it always tries to 
find the minimum additions.  But the QC set has better response 
after precisely removing the least significant non-zero terms (i.e. 
this is what successive approximation does), which also needs 54 
additions. 

The rightmost four columns summarize the Suc_F and Suc_V 
results with only 90% of the previous addition budgets.  In most 
cases, the two methods have identical results and equivalent 
square error after normalization, except for the 20-tap one.  The 
variable-step searching finds better quantization results, because 
the fixed-step SF exploration jumps over some significant SF that 
leads to smaller error. 

5. CONCLUSION 

This paper presents an area-aware quantization algorithm to 
optimize coefficients for non-recursive filters.  It integrates the 
quantization by successive approximation and the heuristic 
common sub-expression elimination to precisely distribute a pre-
defined addition budget to the quantized coefficients.  We also 
propose an improved exploration algorithm with variable step-

sizes to find an optimal SF that collectively settles the filter 
coefficients into the quantization space.  The simulation results 
show that CSE effectively reduces 29.1%~31.5% budgets for 
comparable responses.  Besides, our algorithm finds the same 
(with identical bit patterns) or better quantization results with 
only 32.67%~44.53% run time, whether CSE is applied or not. 

We have implemented the proposed algorithm in C, which takes 
the double-precision coefficients as input and generates the 
coefficient matrix with a compensation factor (i.e. to compensate 
the normalization, scaling and also for zero-mean quantization 
error).  The automatic generation of bit-serial implementations 
[6][7] is still on-going.  Common sub-expressions for transposed-
form FIR (also known as multiple constant multiplication; MCM 
[2][3]) will be considered in the future, which is more sensitive to 
the computation order in our bit-serial architectures.  Finally, the 
compensation factor is regarded as free, since multiple factors 
can be combined and carried out once, or just moved to the 
analog parts.  Self-compensated coefficient scaling that considers 
this effect will be studied in the future. 
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