
Area-Effective FIR Filter Design for Multiplier-less Implementation

Tay-Jyi Lin, Tsung-Hsun Yang, and Chein-Wei Jen

Department of Electronics Engineering
National Chiao Tung University, Taiwan

ABSTRACT

The hardware complexity of digital filters is not controllable by
straightforwardly rounding the coefficients to the quantization
levels. In this paper, we propose an effective alternative that
distributes a pre-defined addition budget to the multiplier-less
FIR filters, which takes into account the common sub-expression
sharing inside the computations. We successfully integrate a
heuristic common sub-expression elimination (CSE) algorithm
and the coefficient quantization by successive approximation
proposed by Li et al. Besides, we also propose an improved
search algorithm for an optimal scale factor to settle the
coefficients collectively into the quantization space. Simulation
results show that CSE effectively reduces 29.1%~31.5% budgets
for comparable filter responses. Besides, the improved scale
factor exploration helps to find an identical or a better (never
worse) quantization result with only 32.67%~44.53% run time,
whether or not CSE is applied.

1. INTRODUCTION

Most DSP kernels are linear transforms with fixed coefficients,
such as FIR filters, discrete cosine transforms (DCT), and fast
Fourier transforms (FFT), etc. Adders and shifters can thus
replace multipliers for area-efficient implementations, where
common sub-expression elimination (CSE) [1]-[3] can further
reduce the required additions and shifts. Besides, given an
acceptable gain variance (e.g. ±3dB), an optimal scale factor (SF)
can be found such that the number of additions after CSE is
minimized. The filter characteristics in terms of pass-band ripple
and stop-band attenuation are preserved with the magnitude gain
equal to the SF [4].

The hardware complexity of the FIR implementation is not under
direct control by straightforwardly rounding the coefficients to
the quantization levels. An iterative algorithm was proposed by
Li et al. [1] to quantize the filter coefficients by successive
approximation, which controls the hardware complexity with a
pre-defined budget of non-zero terms. The budget gives a rough
estimate for the required additions in the implementation, which
may lead to a less optimal design, especially when CSE is
applied. In this paper, we propose an area-aware algorithm to
quantize the FIR coefficients, which approximates the ideal
coefficients under an exact addition budget instead of the non-
zero terms. An optimal scale factor is explored to settle the
coefficients into the quantization space. Besides, common sub-
expressions in the filter computation are considered as zero-
overhead terms that consume no addition budget.

The rest of this paper is organized as follows. Section 2 covers
the background materials that lay the foundations of the
proposed area-aware coefficient quantization, which is detailed
in Section 3. Simulation results are available in Section 4, and
Section 5 concludes this work and outlines our future research.

2. BACKGROUND

2.1 Coefficient Quantization by Successive
Approximation

Straightforward quantization on the ideal filter coefficients by
truncation or rounding is not aware of the hardware complexity.
Successively approximating the ideal coefficients is an effective
alternative [5], which gradually assigns non-zero terms to the
quantized coefficients (QC) under a pre-defined budget. Besides,
it applies an additional scale factor (SF) to settle the coefficients
collectively into the optimal quantization space. Fig 1(a) shows
the algorithm. The ideal coefficients (IC) are first normalized as
the maximum magnitude to be one. An optimal SF is searched
from 0.4375 to 1.13 with a fixed step-size of 2-w, where w
denotes the word-length including the sign bit. For each SF, the
QC’s are initialized to zeros and a non-zero term is gradually
allocated to the QC that differs most from the scaled and
normalized IC, until the budget is exhausted or the differences
between IC & QC pairs are all less than 2-w. Finally, the
compensated QC (for previous scaling and normalization) with
the least error is chosen. Fig 1(b) is an illustrating example of
the quantization algorithm when SF=0.5.

Normalize IC so that the maximum coefficient magnitude is 1
FOR SF=0.4375: 2-w : 1.13
{ Scale the normalized IC with SF

WHILE (budget >0 & difference between QC & IC >2-w)
{ Allocate a non-zero term to QC }

Estimate the error between IC & the normalized QC }
Choose the QC that has the minimum error

(a)
IC = [0.26 0.131 0.087 0.011]
Normalized IC (NIC) = [1 0.5038 0.3346 0.0423]
SF = 0.5
Scaled NIC = [0.5 0.2519 0.1673 0.0212]
QC_0 = [0 0 0 0]
QC_1 = [0.5 0 0 0]
QC_2 = [0.5 0.25 0 0]
QC_3 = [0.5 0.25 0.125 0]
QC_4 = [0.5 0.25 0.15625 0]
QC_5 = [0.5 0.25 0.15625 0.015625]

 (b)
Fig. 1 Quantization by successive approximation

* This work was supported by the National Science Council, Taiwan
under Grant NSC91-2218-E009-011

The fixed 2-w-step SF exploration may step through multiple
candidates that result in an identical QC result, while omitting
significant SF’s at finer granularity, i.e. the higher computational
complexity may have a worse quantization result. In this paper,
we propose an improved searching algorithm in Section 3, which
explores significant SF’s only with a variable step-size. Besides,
we also take account of the common sub-expressions sharing of
the filter computation, where the non-zero terms require no extra
addition and thus consume no budget.

2.2 Common Sub-expression Elimination

For brevity, this paper considers two common sub-expressions in
the direct-form FIR filters, namely, the common sub-expressions
across coefficients (CSAC) and the common sub-expressions
within coefficients (CSWC) [1]. Consider a 4-tap FIR filter with
the coefficients: h0=0.0111011, h1=0.0101011, h2=1.0110011,
and h3=1.1001001, which are four fractional numbers in the 8-bit
2’s complement form. The output is computed as

yn = h0 · xn + h1 · xn-1 + h2 · xn-2 + h3 · xn-3.
Additions and shifts can be substituted for the multiplications as

yn = xn»2 + xn»3 + xn»4 + xn»6 + xn»7
+ xn-1»2 + xn-1»4 + xn-1»6 + xn-1»7
- xn-2 + xn-2»2 + xn-2»3 + xn-2»6 + xn-2»7
- xn-3 + xn-3»1 + xn-3»4 + xn-3»7 (1),

where “»” denotes arithmetic right shift (i.e. with sign extension).
Each output requires 17 additions (including 2 subtractions), and
16 shifts. The h0 and h2 multiplications, i.e. the first and the third
rows in Equation (1), have four terms with the same shifts.
Restructuring the equation by adding xn and xn-2 first effectively
eliminates the redundant CSAC between h0 and h2 as

yn = (xn+xn-2)»2 + (xn+xn-2)»3 + (xn+xn-2)»6 + (xn+xn-2)»7
+ xn»4 - xn-2
+ xn-1»2 + xn-1»4 + xn-1»6 + xn-1»7
- xn-3 + xn-3»1 + xn-3»4 + xn-3»7 (2),

where the total additions and shifts are reduced to 14 and 12,
respectively. The extraction and elimination process of CSAC
can be more concisely manipulated in tabular form as Fig 2.

b7 b6 b5 b4 b3 b2 b1 b0

h0

h1

h2

h3

0 0 1 1 1 0 1 1

0 0 1 0 1 0 1 1

-1 0 1 1 0 0 1 1

-1 1 0 0 1 0 0 1

h0

h1

h2

h3

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 1

-1 0 0 0 0 0 0 0

-1 1 0 0 1 0 0 1

h02 0 0 1 1 0 0 1 1

b7 b6 b5 b4 b3 b2 b1 b0

Fig. 2 CSAC extraction & elimination

Within a single coefficient or CSAC, bit-pairs with identical bit
displacement are recognized as CSWC, where the redundant
CSWC can be eliminated by reusing the computation result. For
example, the sub-expression in the first row of Equation (2) can
be simplified as (x02+x02»1)»2+(x02+x02»1)»6 to reduce both the
addition and the shift by one, where x02 stands for xn+xn-2.
The CSE quality depends on the elimination order. A steepest-
descent approach [1] is applied as a heuristic to reduce the search
space, which first eliminates the redundant CSAC between the
coefficient pair with the most non-zero terms in identical bit-
positions. One-level look-ahead can further distinguish the

candidates of the same weight. A similar strategy is applied to
eliminate redundant CSWC, too. Fig 3 shows the CSE algorithm
for CSAC and CSWC of direct-form FIR filters [1].

Eliminate zero coefficients
Merge coefficients with the same value (e.g. linear-phase FIR)
Construct a coefficient matrix of size N×W, where N is the number
of coefficients for CSE and W is the word-length (Fig 2)
WHILE (highest weight > 1) // CSAC elimination
{ Find the coefficient pair with the highest weight

Update the coefficient matrix }
FOR each row in the coefficient matrix // CSWC elimination
{ Find bit-pairs with identical bit displacement

Extract the distances between those bit-pairs
Update the coefficient matrix with the shift information }

Output the SDFG with addition, shift and negation

Fig. 3 CSE for direct-form FIR filters [1]

3. PROPOSED AREA-AWARE QUANTIZATION

Allocating a non-zero term to the quantized coefficient (QC) set
either forms an isolated term to sum up, or just enlarges a
common sub-expression without any addition overhead. In other
words, the number of additions in the multiplier-less FIR filters
is non-decreasing during the successive approximation. The
property guarantees the termination conditions in Fig 1 are valid
when CSE is incorporated.

h0

h1

h2

h3

-1 1 1 1 1 0 1 0 0 0 0 0 10

0 0

0 0

1 0

0 1 0 0

1 1 1

1

1

001

1 1 1 10 1 1 1

0 1 0 0

0 0 0 0-1 1 1 1

0 0 1 0

-1 0 0 0 0 0 0 0 0 0 0 0 10

0 0

0 0

1 0

0 1 0 0

0 1 1

0

0

000

0 0 0 10 0 0 0

0 0 0 0

0 0 0 0-1 1 1 1

0 0 1 0

0 1 1 1 1 0 1 0 0 0 0 0 00

0 010010 1 0 00 0 0 0

h03

h23

h0

h1

h2

h3

h0

h1

h2

h3

-1 1 1 1 1 0 1 0 0 0 0 0 10

0 1

0 0

1 0

0 1 0 0

1 1 1

1

1

001

1 1 1 10 1 1 1

0 1 0 0

0 0 0 0-1 1 1 1

0 0 1 0

h0

h1

h2

h3

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0

0 0

1 0

0 1 0 0

0 1 1

0

0

000

0 0 0 10 1 0 1

0 0 0 0

0 0 0 00 0 0 0

0 0 0 0

h01 0 10 0 0 00 0 0 0-1 1 1 1

h23 0 010010 1 0 00 0 1 0

h03 0 0 0 0 1 0 1 0 0 0 0 0 00

h0

h1

h2

h3

-1 1 1 1 1 0 1 0 0 0 0 0 10

0 0

0 0

1 0

0 1 0 0

1 1 1

1

1

001

1 1 1 10 1 1 1

0 1 0 0

0 0 0 0-1 1 1 1

0 0 1 0

h0

h1

h2

h3

0 0 0 0 0 0 0 0 0 0 0 0 10

0 0

0 0

1 0

0 1 0 0

0 1 1

0

0

000

0 0 0 10 1 0 1

0 0 0 0

0 0 0 00 0 0 0

0 0 0 0

h01 0 00 0 0 00 0 0 0-1 1 1 1

h23 0 010010 1 0 00 0 1 0

h03 0 0 0 0 1 0 1 0 0 0 0 0 00

(a)

(b)

(c)
Fig. 4 Insert a non-zero term but reduce the additions

In fact, the number of additions is not always ‘non-decreasing’
because of the steepest-descent CSE heuristic. For example, if
the optimum CSE for a coefficient set does not start with the pair
with the most CSAC terms and thus the steepest-descent
heuristic cannot find the optimum result. Allocating a non-zero
term increases the weight of the allocated pair and possibly alters
the CSE order, which may lead to a better CSE result. Fig. 4 is
an example where the number of additions decreases after
inserting one non-zero term. The left matrices are original
coefficients with eliminated CSAC terms marked. The right
matrix in (a) is the steepest-descent CSE result with the CSWC
highlighted, which requires 19 additions. Then, a zero-overhead

term is allocated to the LSB of h1 as shown in (b), which changes
the CSE order and introduces a new budget of two additions (17
additions are required here). Applying the CSE order in (b) for
(a), we can find a better result as (c), which also requires 17
additions only. The following is our approach to integrate CSE
and the successive approximation with improved SF exploration.

As the algorithm shown in Fig 1, our proposed area-aware
quantization algorithm first normalizes the ideal coefficients (IC)
such that the magnitude of the maximum coefficient is one. An
optimal scale factor (SF) is then explored to collectively settle
the coefficients into the quantization space, but with a more
efficient searching strategy. Instead of the fixed-size stepping
from the lower bound, the next SF is calculated as

SF’ = SF × [min |QD| + |coef(min QD)|] / |coef(min QD)|,
where QD denotes the distance of a coefficient to its next
quantization level, depending on the approximation strategy (e.g.
rounding to the nearest value, toward 0, or toward -∞, etc).
|coef(min QD)| denotes the magnitude of the coefficient with the
minimum QD. In short, the next SF is chosen as the minimum
value to scale up one coefficient to its next quantization level.
For 16-bit wordlength and ±3dB acceptable gain, the number of
candidates ranges from 14,986 to 20,429 in our simulation,
which depends on the filter coefficients. By contrast, the fixed
step-size exploration has 45,875 candidates for all coefficients.

Start

Allocate a number of
non-zero terms = the

remnant budget

CSE

Remnant
budget?

Zero-overhead
term insertion

(with a skip queue)

CSE

Remnant
budget?

End

> 0

> 0

= 0

= 0

Cancel the latest
allocation

Non-zero term insertion
& overhead estimation by

patten matching

Remnant
budget?= 0

> 0

< 0

< 0
Use the previous order

Fig. 5 Proposed area-aware coefficient quantization

For each SF, the QC’s are initialized as zeros and a non-zero
term is gradually allocated to a QC that differs most from the
scaled and normalized IC. Once the allocated terms amount to
the remnant budget, CSE is performed to introduce a new budget.
The iterations continue until no additional budget exists. Zero-
overhead terms (i.e. those enlarge the common sub-expressions
without any addition overhead) are inserted as a post-processing
step. Note that the zero-overhead insertion can introduce new
budgets as the illustrating example shown in Fig. 6. A queue is
needed to insert the skipped (i.e. with addition overheads), but

more significant terms, once such a new budget is available. The
already-allocated zero-overhead terms that are less significant
should be removed. Finally, additional CSE is performed to
check if there exists another CSE order for a better result. The
successive approximation resumes if the skip queue is empty and
a new budget is available.

h0

h1

h2

h3

h01

h012

h0123

1

1
0

1
0
0
0

h0

h1

h2

h3

h01

h012

h0123

1

1
1

1
0
0
0

h0

h1

h2

h3

h01

h012

h0123

0

0
0

0
0
0
1

insert
one
term pattern m

atch

Fig. 6 Zero-overhead insertion by pattern matching

The steepest-descent heuristic CSE can have a worse result after
the insertion of a group of non-zero terms, and the remnant
budget will be negative (i.e. the required additions exceed the
pre-defined budget). We save this situation just by canceling the
latest allocation and using the previous CSE order as the steps
shown in the right-hand side of Fig 5. With the original CSE
order, the addition overhead is estimated with pattern matching
to use up the remnant budget, which is very similar to the zero-
overhead insertion except no queue is required here. By the way,
the approximation stops, of course, whenever all the difference
between QC and IC pairs are all less than 2-w, because the QC
cannot improve anymore.

4. SIMULATION RESULTS

The ideal coefficients in our simulation are generated in Matlab
for linear-phase and low-pass FIR filters using the Hamming
window (fir1). The quantized coefficients are fractional
numbers in the 16-bit 2’s complement form.

0.1

1

10

100

1000

78 73 68 63 58 53 48 43

Pre-defined adder budget

Sq
ua

re
 e

rro
r (

10
-7

)

Suc_V Suc_F

Suc_V+CSE Suc_F+CSE

Fig. 7 Effectiveness of CSE & variable step-size exploration

Fig 7 shows the square error versus the given addition budget for
a 20-tap filter, which demonstrates the effectiveness of CSE and
the proposed SF searching with variable step-sizes. CSE saves
29.1%~31.5% addition budgets for comparable filter responses.
The solid lines (variable step-size SF exploration) are always
below their corresponding dashed lines (fixed step-size) or just
on them. That is, the proposed searching approach never finds a
QC result that introduces higher quantization error, whether or
not CSE is applied.

Table 1 Comparison of quantization results with CSE

 DIRECT_V1 Suc_F2 Suc_V3 Suc_F_90%4 Suc_V_90%5
TAP SF Error (10-7) Add SF Error (10-7) SF Error (10-7) SF Error (10-7) SF Error (10-7)
12 0.994738 0.928092 27 0.994677 0.928092 0.994738 0.928092 0.994540 38.068010 0.994738 38.068010
16 0.981586 1.556596 37 0.981555 1.556596 0.981681 1.556596 0.838504 91.450613 0.838683 91.450613
20 1.121206 2.725406 45 1.123400 8.482496 1.121206 2.725406 1.121218 163.872263 1.121206 59.289435
24 1.125531 5.147758 54 1.125994 3.436487 1.125981 3.436487 1.126605 181.767276 1.126600 181.767276
28 0.743739 10.684378 61 0.743701 10.684378 0.743819 10.684378 0.751602 167.711315 0.751498 167.711315
32 1.263281 4.431486 72 1.263293 4.431486 1.263281 4.431486 1.008407 108.630690 1.008411 108.630690

1 Straightforward quantization & variable step-size SF exploration
2 Quantization by successive approximation & fixed step-size SF exploration; adder budget is given by the DIRECT_V result
3 Quantization by successive approximation & variable step-size SF exploration; adder budget is identical to Suc_F
4 Suc_F with 90% adder budget
5 Suc_V with 90% adder budget

Our proposed variable step-size searching algorithm has 18,899
instead of 45,875 candidates of the fixed step-size one, and runs
2.43× faster in average. To be brief, our method finds the same
(with identical bit patterns) or better quantization results with
only 41.2 % computations.

Table 1 summarizes the CSE results for different taps. The first
column lists the number of taps and the simulation results for the
straightforward quantization (DIRECT_V) follow immediately,
where the ideal coefficients are rounded to their nearest 16-bit 2’s
complement fractional numbers. An optimal SF is explored with
variable step-sizes to minimize the number of additions. The
applied SF, the square error, and the resultant minimum additions
are shown respectively in the second, third and fourth columns.
By the way, the numbers of additions are used as budgets for the
rest experiments. It should be noted that DIRECT_V has no
control over the required additions. Suc_F and Suc_V denote the
quantization results by successive approximation, with fixed and
variable step-size SF exploration respectively.

For the 24-tap case, DIRECT_V finds a QC set with 54 additions
by performing CSE on the arbitrarily distributed non-zero terms
(i.e. the non-zero terms are not optimally allocated by quantizing
the scaled coefficients straightforwardly). Another QC set with
55 additions exists, which significantly outperforms that with 54
additions. DIRECT_V skips this candidate, for it always tries to
find the minimum additions. But the QC set has better response
after precisely removing the least significant non-zero terms (i.e.
this is what successive approximation does), which also needs 54
additions.

The rightmost four columns summarize the Suc_F and Suc_V
results with only 90% of the previous addition budgets. In most
cases, the two methods have identical results and equivalent
square error after normalization, except for the 20-tap one. The
variable-step searching finds better quantization results, because
the fixed-step SF exploration jumps over some significant SF that
leads to smaller error.

5. CONCLUSION

This paper presents an area-aware quantization algorithm to
optimize coefficients for non-recursive filters. It integrates the
quantization by successive approximation and the heuristic
common sub-expression elimination to precisely distribute a pre-
defined addition budget to the quantized coefficients. We also
propose an improved exploration algorithm with variable step-

sizes to find an optimal SF that collectively settles the filter
coefficients into the quantization space. The simulation results
show that CSE effectively reduces 29.1%~31.5% budgets for
comparable responses. Besides, our algorithm finds the same
(with identical bit patterns) or better quantization results with
only 32.67%~44.53% run time, whether CSE is applied or not.

We have implemented the proposed algorithm in C, which takes
the double-precision coefficients as input and generates the
coefficient matrix with a compensation factor (i.e. to compensate
the normalization, scaling and also for zero-mean quantization
error). The automatic generation of bit-serial implementations
[6][7] is still on-going. Common sub-expressions for transposed-
form FIR (also known as multiple constant multiplication; MCM
[2][3]) will be considered in the future, which is more sensitive to
the computation order in our bit-serial architectures. Finally, the
compensation factor is regarded as free, since multiple factors
can be combined and carried out once, or just moved to the
analog parts. Self-compensated coefficient scaling that considers
this effect will be studied in the future.

6. REFERENCES

[1] M. Mehendale, S. D. Sherlekar, VLSI Synthesis of DSP Kernels -
Algorithmic and Architectural Transformations, Kluwer Academic
Publishers, 2001

[2] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple
Constant Multiplication – Efficient and Versatile Framework and
Algorithms for Exploring Common Sub-expression Elimination,”
IEEE Trans. Computer-Aided Design Systems, vol.15, pp.151-165,
Feb 1996

[3] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D.
Durackova, “A New Algorithm for Elimination of Common
Subexpressions,” IEEE Trans. Computer-Aided Design, vol.18,
pp.58-68, Jan 1999

[4] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time
Signal Processing, 2nd Edition, Prentice Hall, 1999

[5] D. Li, Y. C. Lim, Y. Lian, and J. Song, “A Polynomial-Time
Algorithm for Designing FIR Filters with Power-of-Two
Coefficients,” IEEE Trans. Signal Processing, vol.50, pp.1935-1941,
Aug 2002

[6] K. K. Parhi, VLSI Digital Signal Processing Systems – Design and
Implementation, Wiley, 1999

[7] J. Valls, M. M. Peiro, T. Sansaloni, and E. Boemo, “Design and
FPGA Implementation of Digit-Serial FIR Filters,” IEEE
International Conference on Electronics, Circuits, and Systems
(ICECS), vol.2, pp.191-194, 1998

