
CASCADE – CONFIGURABLE AND SCALABLE DSP ENVIRONMENT

Tay-Jyi Lin and Chein-Wei Jen

Department of Electronics Engineering,
National Chiao Tung University, Taiwan

ABSTRACT
As the complexity of embedded systems grows rapidly, it is
common to accelerate critical tasks with hardware. Designers
usually use off-the-shelf components or licensed IP cores to
shorten the time to market, but the hardware/software interfacing
is tedious, error-prone and usually not portable. Besides, the
existing hardware seldom matches the requirements perfectly.
CASCADE, the proposed design environment as an alternative,
generates coprocessing datapaths from the executing algorithms
specified in C/C++ and attaches these datapaths to the embedded
processor with an auto-generated software driver. The number of
datapaths and their internal parallel functional units are scaled to
fit the application. It seamlessly integrates the design tools of the
embedded processor to reduce the re-training/design efforts and
maintains short product development time as the pure software
approaches. A JPEG encoder is built in CASCADE successfully
with an auto-generated four-MAC accelerator to achieve 623%
performance boost for our video application.

1. INTRODUCTION
Technology improvement and personal fashion statements
represented by electronic products significantly shorten the
product lifecycle. Thus, time to market has disproportionate
impact upon the profits of a product and even determines its
success or failure. By the way, the drift from analog to digital
signal processing enables the integration of multiple complex
functions on a single chip. Platform-based design methodology
effectively handles this design complexity to reduce the overall
time to market, which enables the designers to spin different
products quickly [1]. Fig 1 shows the computing kernel of a
heterogeneous platform for most data-intensive applications. It
consists of two subsystems with distinct computing paradigms –
control-flow and data-flow. The former controls and coordinates
the system tasks and performs some reactive tasks such as the user
interface. It is usually composed of a controller licensed from
third-party IP vendors such as ARM, MIPS or low-cost 8051,
6502. Controller-related coprocessors, such as floating-point
accelerators or memory management units (MMU), may be
plugged in if required. The latter efficiently handles the
transformational tasks with more regular and predictable
behaviors, such as the small and well-defined workloads in DSP
applications. Small loop-nests with high parallelism usually
dominate the execution time in audio, image or video processing,
but they are much more deterministic. Data-flow subsystems
range from programmable DSP processors with the most
flexibility, customized DSP datapaths that can be configured for a
specific domain, or some fixed-function ASIC to achieve the
maximum performance. An optimal embedded system allocates

tasks on a subsystem depending on the characteristics to achieve
higher speed, lower power consumption and, most important, the
minimum system cost.

Baseband processors in cell-phones are composed of two
programmable processors (i.e. RISC & DSP) [2][3], which
comply with the aforementioned computing model. The main
drawback is their complicated programming model, which
supports DSP applications only through limited C libraries.
Designers always need to optimize their applications with hand-
coded assembly. Because the DSP processor is not customized
for this dual-processor configuration, repeated and redundant
functions exist in both of the two subsystems. In this paper, we
propose an alternative that attaches an existing controller with
customized DSP datapaths, which are data-driven and can be
easily configured for a wide range of DSP applications through
our automatic generator. These coprocessing datapaths are
synchronized by simple host instructions. Their performance is
scalable as the internal SIMD-like parallel functional units are
chosen to fit distinct requirements of various DSP applications.
To be brief, based on a controller, our proposed CASCADE
design environment synthesizes a tailored computing platform
automatically for an application specified in C/C++, while still
meeting the short time to market constraints.

MCU-related
Coprocesors

foreground memory
(Cache)

6502
8051

MIPS
ARM

Microcontroller Subsystem

communication &
background memory

Motorola
Oak

ADI
TI

program
memory

data
memory

DSP Processors

foreground
memory

(SIU)

Parallel
Functional

Units

Configurable DSP Datapath

ASIC 4
ASIC 3

ASIC 2
ASIC 1

interface
unit

Dedicated Hardware

Control-oriented Computation-intensive
function computation, signal processing

Figure 1. The heterogeneous computing platform

The rest of this paper is organized as follows. Section 2
summarizes some related works and illustrates the computing
model of the configurable kernel in our proposed heterogeneous
DSP platform. The synchronization mechanism between the two
subsystems is also detailed. Then, we introduce our design
environment – CASCADE in Section 3, which maps data-
intensive applications onto our heterogeneous computing platform.
Section 4 describes the configuration of scalable coprocessing

This work was supported by the National Science Council, Taiwan under
Grant NSC89-2218-E009-078.

datapaths. Section 5 shows the effectiveness of CASCADE with a
standard JPEG encoder. Another modified Motion JPEG
implementation is also given to demonstrate our heterogeneous
approach features improved silicon area and power consumption
than pure software approaches with high-end processors. Finally,
Section 6 concludes our work.

2. RELATED WORKS & OUR PROPOSED MODEL
Hardware accelerators with handcrafted interfaces, which have
traditionally been used to boost system performance, to reduce
power consumption, or to cut manufacturing cost, are error-prone
and seldom reusable. New methodologies are emerging from the
CAD domain in the field of hardware/software (HW/SW) co-
design. Cosyma [4] uses extended C with concurrency and timing
constraints for system specification. HW and SW are partitioned
automatically based on simulation annealing with estimated
schedule times to maximize speedup. The HW/SW interfacing is
done manually. Vulcan [5] takes HardwareC with timing and
resource constraints as its input. In contrast to Cosyma, it
minimizes hardware cost by moving operations to software from
an initial pure-hardware implementation while satisfying the
imposed timing constraints. Recent researches, mainly in the
embedded processor community, propose configurable and/or
extensible architectures that easily adapt for specific application
requirements. Tensilica Xtensa [6] allows the designers to
manually define specific instructions with its TIE language and
generates the synthesizable processor core with a rich set of
customized software tools. HP PICO [7] partitions an application
written in C between custom non-programmable hardware and the
compiled software code executing on an application-specific
VLIW processor. The hardware interfaces to the global memory
with a specific controller.

Micro-
Controller

Task
Interpreter

Configurable SIU
(Stream Interfacing Unit)

Data-Driven DSP Accelerator

Functional Units

I/O
 B

us

Figure 2. The proposed DSP computing platform

Fig. 2 shows our proposed computing platform for data-
intensive applications. The controller is responsible for system
coordination and all interfaces. The data-driven datapaths serve
as slave coprocessing accelerators attached to the controller,
which are much more efficient for coarse-grain tasks with regular,
predictable behaviors and high parallelism. The task interpreter
translates the original control-flow semantics of the dispatched
C/C++ task into dataflow mechanism and drives the attached
coprocessing datapaths. The stream interface unit (SIU) [8] is an
application-specific foreground memory with configurable routing
that interacts with the task interpreter. Fig. 3 shows the baseline
SIU model, which consists chiefly of multiple register queues for
temporary storage and MUX-based interconnection networks.
Various extension models exist in the literature, such as [9][10].
The SIU handles data format conversion if required and supports
extremely high data bandwidth to the parallel functional units by
massive data reuse explored in the executing DSP algorithms.
The coprocessing datapaths boost the performance through (i)

highly parallel computation with SIMD-like functional units, (ii)
elimination of control overheads with configurable data routing,
and (iii) reduction of loads and stores with foreground SIU
buffering and embedded address generation.

Register Queue

MUX-based Interconnection

Register Queue

MUX-

I/O Ports
based

Functional Units &
Task Interpreter

Figure 3. Multi-queue Stream Interface Unit (SIU)

The accelerators are I/O-mapped to the address space of the
host controller with 4 memory-mapped registers in the task
interpreter, which is coordinated by software. Software codes for
the dispatched task are replaced with an auto-generated driver,
which has an identical interface to remnant software modules (i.e.
the software driver together with the data-driven accelerators
maintains the same semantics as the original dispatched task). Fig
4 depicts the template of the simple software driver, where the
dataflow constructs guarantee correct execution under the
optimization by the compiler, the assembler statically or even
dynamically with the RTOS. The driver prepares and feeds data,
while handshaking with the task interpreter through the 4
memory-mapped registers. Because data movement is completely
under the host control, no explicit data coherence mechanism is
required. By the way, additional FIFO queues are allocated in the
task interpreter to regulate the execution of the data-driven
accelerators for heavy-loaded I/O buses or distinct operating
frequencies between host and accelerators. The type or the
number of parallel functional units is chosen to match the
specification.

void dispatch_fun(fix *Din, int size, fix *Dout)
{ int index1=0, index2=0;
 fix din, dout;
 bool valid_in, valid_out;

 Codes for Exception Handling

 while(index2 <= size)
 { valid_in = (index1 < size);
 din = Din[index1++];
 IO_Operation (din, valid_in, &dout, &valid_out);
 Dout[index2] = dout;
 index2 = index2 + valid_out;
} }

Figure 4. The software driver template
Optimal workload distribution at task level between the two

subsystems with appropriate computing paradigm significantly
reduces the synchronization overheads. The proposed DSP
computing platform provides a more optimal embedded system
solution with higher speed, and/or lower power consumption, and
the most important, reduced total cost.

3. CASCADE DESIGN ENVIRONMENT
CASCADE is the design environment that targets data-intensive
embedded systems on our DSP computing platform. It seamlessly
integrates the original design environment of any available micro-
controller and maps various DSP algorithms onto customized
coprocessing datapaths. Designers that are already familiar with
the micro-controller design flow do not need much retraining
effort. CASCADE provides design validation of the auto-
generated DSP datapaths with the software driver by HW/SW co-
simulation and a preliminary formal verifier.

3.1. Design Flow
The CASCADE design flow is shown in Fig. 5. The software
design flow is tightly coupled with the micro-controller design
environment and shown on the left-hand side. The algorithm
development/simulation and code debugging of a new product are
completed in software. Designers first compile and assemble the
source codes following the original micro-controller design flow.
The performance estimation in the trial compilation is forwarded
to CASCADE. Designers that are indeed experts of the target
application domain supervise the task dispatch with special
compiler directives. Code segments with high parallelism are
selected as candidates to be accelerated on the coprocessing
datapaths at function/task level. With the assisted profiling
information, inexperienced designers can also explore an optimal
architecture with minimal iterations.

C/C++
Host Programs

Prior Compilation &
Performance Evaluation

Parallelism Analysis &
Task Dispatch

Code Replacement
(Software Driver)

Functional Unit Determination

Operation Allocation/Scheduling

Optimal Binding

Dataflow Control Optimization

Synthesizable Verilog

Compilation

Executable

Micro-Controller

Data-driven Accelerators

Co-Simulation & Performance Evaluation

Figure 5. The CASCADE design flow
The dispatched candidates usually contain code segments for

rarely occurring exceptional cases, which effectively improve the
software robustness. Predication techniques in VLIW compilers
are used here to extract a hyperblock [11] by joining basic blocks
along frequently executed control paths with highly parallelism.
A synchronous dataflow graph (SDFG) is derived from the
hyperblock for the hardware flow on the right-hand side, which
generates optimal coprocessing datapaths in synthesizable RTL
Verilog. The auto-generated software driver prepares and
generates proper I/O sequence to the coprocessing datapaths with
the same procedural interface as the original task. The driver also
takes care of the remnant codes for exceptions and those non-
supported operations. For synchronous interfacing, CASCADE
collects deterministic performance parameters from the HW
synthesis result, such as the computation time and latency. The
software driver is ANSI-C compatible and thus the modified
codes (i.e. the dispatch task replaced by the driver) can be still
compiled and simulated again easily in the original micro-
controller environment.

3.2. Design Validation
Assuming code debugging is finished in the micro-controller
design environment, CASCADE only needs to guarantee no error
is introduced in our proposed flow (i.e. the target system is
functionally equivalent to the all-software specification). Direct
FPGA emulation with the host controller is used here, because
instruction-set simulators from most vendors provide no or very
poor interface to programming languages. CASCADE then
performs equivalence checking (EC) on the auto-generated
datapaths to verify their functional equivalence to the original
C/C++ sources. We have also constructed a preliminary formal
equivalence checker [12]. It provides complete EC as opposed to
simulation or emulation, which checks the equivalence only to
some extent that the test suite exercises the design.

4. GENERATION OF COPROCESSING DATAPATH
A tool set has been constructed to generate the synthesizable
coprocessing datapaths that have proper computing power to meet
the application requirements. These tools communicate in plain-
text files and have been integrated with user-friendly GUI.

4.1. Functional Unit Determination
Designers choose the types of functional units in our interactive
tool to construct the coprocessing datapaths, such as multipliers
with adders, adders with shifters or some other combinations.
CASCADE performs required transformations on the SDFG
derived from the hyperblock (e.g. shift-add decompositions [13]
for multiplication operations). Bit-width analysis [14] can be
used here to reduce the wordlength of the synthesized datapaths.
This first CASCADE prototype supports linear operations only
and uses identical wordlength to the host for simplicity.

4.2. Operation Scheduling and Allocation
Depending on the profiling information and the specification from
the trail compilation, CASCADE estimates the required speedup
factor for the dispatched tasks with the Amdahl’s law [15]. It
computes the maximum allowable computation cycles with an
acceptable latency depending on this factor. Then, it performs
time-constrained scheduling (force-directed scheduling [16]) and
allocation based on these parameters while trying to minimize the
number of functional units in the coprocessing datapaths.

4.3. Optimal Binding
CASCADE first calculates the number of required queuing cycles
for each variable, including new arriving input samples or
computed data items from the parallel functional units. For each
edge in the scheduled SDFG, this number equals to

() () uvPewNVUD U
e

F −+−⋅=→
i.e. the number of delay elements on the edge, w(e), multiplied by
the operation period, N, for one iteration, minus the number of
internal delays (models pipelining) of the computation unit, PU,
and then adjusted with the scheduled indices v and u within the N
cycles [17]. The default value of PU is 2, which represents the I/O
registers of the functional units to allow a full clock-cycle delay in
SIU routing. Optional retiming [18] for minimal buffering
improves the binding, which is formulated as an ILP problem:

Minimize
()∑ Uq

Subject to

(a) Feasibility constraints

() () ()







 →
≤−

N
VUD

VrUr
e

F

(b) Maximum queue for each variable
() ()UqVUD e

F ≤→

, where
()

()
() () ()[] .uvPUrVrewN

uvPewN
VUD

U

Ur

e
F

−+−−+⋅=
−+−⋅=

→

Here, q(U) stands for the number of maximum queuing cycles for
the variable U by constraints (b) among the multiple fanouts from
U. Feasibility constraints (a) force each DF to be non-negative
after retiming to guarantee system causality. This ILP problem is
solved using Lindo package [19] in CASCADE. It saves 25% to
35% SIU registers in average in our experiments.

4.4. Dataflow Control Optimization (DCO)
SIU controls and buffers the dataflow among the functional units
and I/O ports to task interpreter. Various SIU architectures exist
and CASCADE targets and optimizes the SIU in this stage. For
example, lifetime analysis is first performed to determine the
number of required registers in each queue of the baseline SIU in
Fig. 3. The variables are then allocated to the register queues
while minimizing the routing complexity [8]. Finally, the
synthesizable Verilog description is generated.

5. EXAMPLE
We have ported a standard JPEG [20] encoder with CASCADE
on an ARM7TDMI-hosted DSP computing platform for video-
rate (thirty 320×240 frames per second). The host runs at 50MHz
with DCT dispatched to a 4-MAC coprocessing datapath. Table 1
summarizes the performance improvement by the auto-generated
DCT accelerator. The required computation of the run-length
calculation and modified Huffman coding is highly data
dependent, so the average cycle count is used.

Table 1 Performance comparison*
 ARM alone +Accelerator

5,595 cycles 246 cycles 8×8 DCT 111.90 µs 4.92 µs
320×240 Frame 152.928 ms 24.552 ms

* An ideal memory subsystem is assumed for simplicity (i.e. the system does not
have memory stalls), and performance improvement is pessimistically estimated.

The standard JPEG encoder was modified for a surveillance
system that has a still background most of time. It completely
skips an 8×8 block coding if the block is similar to that of the
received frame in the same position. The criterion for similarity is
the DC difference (thus DCT is not required for similarity testing)
with an adjustable threshold. To reduce power consumption, the
synthesized DCT accelerator is shut down and stays powered off
with simple circuitry, while the host continuously performs the
similarity testing and skips blocks. To meet real-time constraints,
pure software implementation requires a high-performance micro-
controller at a high price, but infrequently achieves the peak
performance. Power management is therefore crucial but very
complicated through the “SLEEP” mode switching available in
most modern processors. This is because the similarity testing is
still needed for each incoming block (36,000 blocks per second
isochronously in the modified JPEG encoder). The proposed
heterogeneous DSP computing platform with attached datapaths
provides a much more cost- and energy-effective solution.

6. CONCLUSION
We have presented CASCADE design environment in this paper.
It can easily configure the proposed DSP computing platform,
which attaches the auto-generated accelerators to an existing
micro-controller, and scale its performance. The coprocessing
datapaths are driven by host instructions in the software interface,
which is also auto-generated with a memory map table, to simplify
the synchronization problem. CASCADE seamlessly integrates
the original micro-controller design environment to reduce the
time-to-market as short as pure software approaches. It can
effectively lengthen the life span of an existing controller IP
licensed from the third-party (i.e. maximize the usage) for more
complex applications.

7. REFERENCES
[1] H. Chang, et al, Surviving the SOC Revolution – a Guide to Platform-

Based Design, Kluwer Academic Publishers, 1999
[2] A. Gatherer, et al, “DSP-based Architectures for Mobile

Communications: Past, Present and Future,” IEEE Communications,
Jan 2000

[3] AD6522 Digital Baseband Processor Design Specification, Analog
Devices/TTP Comm., May 2000

[4] T. Benner, et al, “Scalable Performance Scheduling for Hardware-
Software Co-synthesis,” European Design Automation Conference
(EDAC), 1995

[5] R. K. Gupta and G. D. Micheli, “Hardware-Software Co-synthesis for
Digital Systems,” IEEE Design & Test of Computers, Sep 1993

[6] R. E. Gonzalez, “Xtensa: A Configurable and Extensible Processor,”
IEEE Micro, Mar-Apr 2000

[7] B. R. Rau and M. S. Schlansker, “Embedded Computer Architecture
and Automation,” IEEE Computers, Apr 2001

[8] T. J. Lin and C. W. Jen, “Data Stream Generation for Concurrent
Computation in VLSI Signal Processors,” International Conference on
Signal Processing (ICSP), 2000

[9] K. Srivatsan, C. Chakrabarti and L. Lucke, “Low Power Data Format
Converter Design Using Semi-Static Register Allocation,”
International Conference on Computer Design, 1995

[10] M. Majumdar and K. K Parhi, “Design of Data Format Converters
Using Two-Dimensional Register Allocation,” IEEE Transactions on
Circuits and Systems II, April 1998

[11] S. A. Mahlke, et al, “Effective Compiler Support for Predicated
Execution Using the Hyperblock,” International Symposium on
Microarchitecture (MICRO 25), 1992

[12] T. J. Lin and C. W. Jen, “Formal Equivalence Checking of Folded
Architectures,” WSES/IEEE World Multiconference on Circuits,
Systems, Communications & Computers (CSCC), July 2001

[13] H. T. Nguyen and A. Chatterjee, “Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, August 2000

[14] M. Stephenson, J. Babb and S. Amarasinghe, “Bitwidth Analysis with
Application to Silicon Compilation,” International Conference on
Programming Language Design and Implementation (PLDI), 2000

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture – A
Quantitative Approach, 2nd Edition, 1996

[16] D. D. Gajski, et al, High Level Synthesis – Introduction to Chip and
System Design, Kluwer Academic Publisher, 1992

[17] K. K. Parhi, VLSI Digital Signal Processing Systems – Design and
Implementation, John Wiley & Sons, 1999

[18] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, June 1991

[19] Lindo Package, available at http://www.lindo.com
[20] W. B. Pennebaker and J. L. Mitchell, JPEG – Still Image Data

Compression standard, Van Nostrand Reinhold, 1993

