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Abstract

Signal processing usually requires extremely high
computing power. Fortunately, with advance in
VLSI technology, the required performance could be
achieved with more functional units performing
Supplying
demanding data streams to these computational units

concurrent computations on a chip.

soon becomes the system-performance bottleneck
because of slow off-chip I/O and memory with less
improvement speed. We have proposed a data
stream generation (DSG) scheme that explores data
reuse property existing in most signal processing
supplying
This scheme can make the VLSI signal

algorithms  while appropriate  data
sequences.
processors much more latency and cost efficient.
In the illustrating example, our DSG supplies the
specified streams with 4-cycle setup time at the
beginning (latency), instead of 48 cycles for each
block in conventional FIFO approaches and only

requires 1/6-storage elements.

1. Introduction

Standard microprocessors today cannot provide a
cost-efficient platform with enough computing power
for dramatically growing multimedia applications with
intensive-computation requirements.  Application-
specific circuits are an obvious choice, but lack
flexibility. Digital signal processors with separate
data/program accesses, adapted interconnections and
functional units could only satisfy speech-/audio-

processing requirements. With an embedded micro-
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controller and customized hardware accelerators,
application specific instruction-set processors (ASIPs)
[1] with both flexibility and computing power are very
attractive. Most VLSI signal-processing applications
adopt this ASIP model as the basic underlying
platform for multimedia computing.

Conventional ASIPs consist of one embedded micro-
controller to synchronize all operations and handle
some sequential tasks, some customized hardware
accelerators such as array coprocessors, SIMD and
MMX-like datapath that explore the concurrency in
DSP algorithms to provide computing power boost.
A memory subsystem is also included as shown in
figure 1(a). Data-hungry concurrent computations
usually block the memory accesses by other functional
units, or lose some performance themselves due to
Address

generation and data formation, possibly at bit level,

bandwidth limitation on system bus.

might exhaust the micro-controller.
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Figure 1 (a) Conventional ASIP Model (b) Modified
ASIP Model with our Proposed SIU



A stream interface unit (SIU) is inserted as an
alternative [2], to decouple the accelerating DSP
datapath from the system bus as shown in figure 1(b).
The customized SIU datapath handles data format
conversions if necessary and support a very high data
rate to the accelerating DSP datapath while
maintaining the lowest system bus occupation and
hence less off-chip data acquisition. The asymmetric
data rate property at the SIU I/O comes from massive
data reuse.

Design methodologies for algorithm-specific array
processors in accelerating DSP datapath were well
developed but performance might be limited by /O
constraints. Our proposed data stream generation
(DSG) scheme can release these /0O constraints via
the customized SIU that could be automatically
synthesized. In next section we describe the DSG
problem. SIU implementation issues and our
proposed two-stage procedure for automatic circuit
generation are summarized in section 3. Section 4

concludes our work.

2. Data Stream Generation

Our stream interface unit (SIU) supplies huge data
streams required by concurrent computation while
keeping low data acquisition rate from the system bus.
The asymmetric SIU I/O-rate could be in the form of
different clock rates, different data widths or both.
For simplicity, we assume the single-input / multiple-
output under one synchronous clock, i.e. the SIU

receives scalar inputs and generates array outputs.
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Figure 2 Output Sequence Specification

Suppose there are three tasks in sequence, which
access identical 4*4 data block with elements A~P but

in different orders as figure 2 — three widely-used
scanning ways in image applications. Parallelizing
these tasks directly triples the system bandwidth. We
can eliminate redundant memory accesses to keep the
same bandwidth as the original sequential hardware
by introducing a small latency and some storage
The proposed SIU for 3-channel data

stream generation is shown in figure 3.  The

elements.

hardware cost could be measured as the number of
storage elements together with the routing complexity

for the MUX-based interconnection network.

Figure 3 3-Channel Data Stream Generation

We first assume that the SIU acquires data in raster-
scan order from the system bus. Each channel is
equivalent to an individual data format conversion
(DFC) problem. The DFC methodology, which
applies lifetime analysis followed by forward-
backward register allocation [3], is generalized here to
handle asymmetric /O rates with multiple data
outputs. To maintain a smooth data flow into the
parallel functional units, a small latency is introduced,
which equals the most negative difference between T,
(data arriving time) and T, (data consumed time with
zero latency). Lifetime for each variable is then
derived from its birth (T,) till death (the last
consumed time of the three channels, i.e. MAX [T,,]).
Minimum register count is then obtained, which
equals the maximum number of concurrent live
The 3-channel SIU

requires 9-cycle latency and 13 storage elements as

variables, via lifetime analysis.

shown in figure 4. Internal copies of identical data

samples are not allowed for simplicity.

3. Stream Interface Unit (SIU)
Implementation



Following (1) /O specification (2) circuit mapping,
the SIU could be systematically generated. More
sophisticated I/O specification than raster-scan can
efficiently reduce latency and SIU complexity with
some assistance from the microcontroller and the on-
chip memory subsystem. Minimizing the storage
MUX-based

interconnection network while keeping an acceptable

and routing complexity in the
low latency leads the I/O specification to an NP-
complete problem. A linear-time heuristic scheduler
is shown to efficiently reduce almost half latency and
storage elements in figure 5 while re-transmitting the
same data item is not allowed for minimum bandwidth
requirement.

Forward-backward register allocation [3] allocates the
variables to the storage elements that are initially self-
organized as a FIFO. The routing problem is
significantly simplified based on this underlying FIFO
structure with some additional feedback paths.
Figure 6 shows the allocation table and the SIU
The SIU hardware

consists of 8 storage elements; one 7-input, two 6-

hardware for scheduled input.

input MUX for output ports and only one 2-input
MUX for data feedback in the MUX-based
interconnection network.  Various register allocation
schemes [4-7] could be utilized here as well with
some adaptation of the input scheduling heuristics.

The methodology for SIU generation can be easily
packaged as a soft-IP (silicon Intellectual Property
Once the

data streams are specified, tradeoff among latency,

[11]) that finds applications in many fields.

register count and interconnection complexity can be
evaluated via various heuristic schedulers and register
allocation schemes. Automatic pattern generation
for functional verification and testing can be also
supported.  Users can easily instantiate our SIU

module in the top-level Verilog design.

4. Conclusion

The concept of System-on-Chip (SoC) and increasing
gates available makes heterogeneous architectures
more practical. We propose an alternative general

computation model for embedded systems with data-

flow intensive tasks in this paper. The proposed data
stream generation (DSG) scheme makes data-driven
computing blocks much more efficient in terms of
power, speed, and memory usage with an additional
A two-step

procedure with simplified algorithms is summarized

customized stream interface unit (SIU).

for automatic SIU circuit generation. We use a 3-

channel SIU example to demonstrate the validity of

our DSG scheme. The resulting hardware shows

great improvement both in area and latency over

conventional heterogeneous VLSI signal processors.
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Figure 4 Lifetime Analysis for Raster-Scan Input: latency = |[MIN (Tdiff1~3)| and life period = Tinput ~ MAX
(Tout1~3). The SIU needs 13 storage elements and 9-cycle latency.
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Figure 5 Lifetime Analysis for Scheduled Input: “Small MIN [T,] first” reduces latency. When variables with
identical MIN [T,] exist, latency does not depend on how these variables are scheduled. “Small MAX
[T.] first” schedules late-dying ones last to efficiently decrease their lifetime and hence storage
requirement. The scheduled-input SIU only requires 8 storage elements and 4-cycle latency.
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Figure 6 Forward Backward Register Allocation for Scheduled Input: The MUX-based network requires one
7-input, two 6-input MUX in I/O and one 2-input MUX in datapath.



