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ABSTRACT 

As the concurrent functional units in media processors increase 
continuously to meet the performance needs, the required access 
(i.e. read or write) ports of the centralized register file (RF) 
multiply rapidly and cannot be efficiently implemented.  We 
propose a novel ring-structure RF, which is composed of register 
sub-blocks identical to the RF for a single functional unit.  Data 
exchanges among functional units occur on the switch network 
of the ring registers.  The proposed RF has been integrated into a 
four-way VLIW DSP processor successfully that demonstrates 
its effectiveness in DSP kernels.  The synthesis result shows that 
our proposed ring-structure RF saves 91.88% silicon area of the 
centralized one, while reducing its access time by 77.35%. 

1. INTRODUCTION 

Multimedia processing in audio, image, and video applications 
demands extremely high computing power for the real-time 
constraints.  More functional units (FU) are integrated, which 
operate concurrently to achieve the performance requirements.  
Programmable solutions are attractive for their less development 
efforts, the upgradability to support new standards and possibly 
filed software patches.  These factors together effectively reduce 
the time-to-market, extend the time-in-market, and thus make 
the greatest profit.  High-performance processors with multiple 
concurrent FU exploit finer granularity of parallelism than multi-
processor systems, which can improve the performance of DSP 
kernels more effectively.  The major distinction between multi-
processor systems and microprocessors resides in their inter-FU 
communications.  Microprocessors have a direct and efficient 
data exchange mechanism among FU through a centralized 
register file (RF). 

The centralized RF provides storage for and interconnects 
to each FU in a general manner and each FU can read from or 
write to any register location.  For N concurrent FU, the silicon 
area of the centralized RF grows as N 3, the delay as N 3/2, and 
the power dissipation as N 3 [1].  Thus, RF will soon dominate 
the area, the delay, and the power dissipation as the number of 
FU increases.  Restricting the communication between FU and 

registers, so that each FU can only read and write a limited 
subset of registers, can significantly reduce the RF complexity 
with small performance penalty.  In this paper, we propose a 
novel ring-structure RF, which partitions the centralized RF into 
2N sub-blocks.  Each FU is able to access two sub-blocks 
simultaneously, one of which is private (i.e. dedicated to the FU) 
and the other is dynamically mapped to facilitate inter-FU 
communications.  Therefore, each register sub-block requires the 
access ports for a single FU only.  The shared sub-blocks are 
organized in a ring and globally controlled to reduce the 
overheads.  The synthesis results of the proposed ring-structure 
RF saves 91.88% silicon area of the centralized one, while 
reducing its access time by 77.35%.  The proposed ring-structure 
RF has been integrated into a four-way VLIW DSP processor to 
evaluate the performance degradation due to the access 
restrictions, where the port mapping is under the direct control 
of programmers.  The instruction-set simulation shows that the 
performance of our proposed DSP processor is comparable with 
the state-of-the-art high-performance DSP processors. 

The rest of this paper is organized as follows.  Section 2 
summarizes the features of the four-way VLIW DSP processor 
and discusses the ring-structure RF.  Section 3 describes the 
programming model with explicit port mapping and compares its 
performance with commercially available high-performance 
DSP processors.  The silicon implementations of the proposed 
ring-structure RF and the VLIW DSP processor are available in 
Section 4.  Finally, Section 5 concludes this paper and outlines 
our future works. 

2. VLIW DSP PROCESSOR WITH PROPOSED 
RING-STRUCTURE REGISTER FILE 

Instruction parallelism is exploited to improve the speed of the 
high-performance microprocessors.  Compared to the dynamic 
hardware scheduling of superscalar processors, VLIW machines 
have low-cost compiler scheduling with deterministic execution 
time and thus become the trends of high-performance DSP 
processors.  In this section, we will introduce a novel four-way 
VLIW DSP processor of two load/store and two ALU/MAC 
units with SIMD capability.  We propose the 2-tier instruction 
processing, which manipulates data and control separately and 
effectively smoothes the instruction flow to the DSP datapath.  
With the proposed ring-structure RF for efficient data exchange 
among FU, the proposed DSP processor can easily achieve its * This work was supported by the National Science Council, Taiwan 
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peak performance of 4 16-bit data operations/cycle, or 15 RISC-
type operations/cycle (including 4 effective data manipulations, 
4 data generations, 4 address updates, and 3 branch controls). 

2.1. 2-tier Instruction Processing 

Fig 1 depicts our proposed 2-tier instruction processing with 
separate control and data manipulations.  The instruction 
dispatcher handles unconditional branches (e.g. jumps and traps) 
and zero-overhead looping transparently to the datapath, which 
can thus receive an instruction word (including four instructions) 
per cycle, regardless of the control flow.  Conditional branches 
(data-dependent control) are resolved in cooperation with the 
control/LS FU (instruction field 0) in the datapath. 

Ring-structure RF

Instruction Dispatcher
(hardware decompression)

Control
LS

ALU
MACLS ALU

E_MAC

datapath

Assembly Program

Assembler/Linker
(software compression)

Instruction Set Simulation  
Figure 1 2-tier Instruction Processing 

VLIW processors are notorious for their poor code density, 
for the unused instruction slots must be filled by NOP.  The 
situation gets worse when the parallelism is limited.  Variable-
length VLIW [2] eliminates NOP with alternative FU codes for 
run-time instruction dispatch and decoding, other than the fixed 
position codes in conventional VLIW processors (i.e. each FU 
has a corresponding field in the long instruction word).  The 
instruction fetch unit needs queues to regulate the varying rate of 
instruction consumption, which also work as the instruction 
buffer for zero-overhead looping.  Indirect VLIW [3] uses short 
instructions to address the internal micro-instruction memory (i.e. 
the programmable VIM) for the long instruction words.  Existing 
instructions (inside an instruction word) can be reused to 
synthesize new instruction words, and thus reduce the 
instruction bandwidth.  Differential VLIW encoding [4] 
eliminates repeated instructions in neighboring codes, which is 
very efficient in software pipelining [5] and our explicit 
programming model for dynamic port mapping, which will be 
described in Section 3.  In addition to general assembling/linking, 
our code generation tool is also responsible for the instruction 
compression in the 2-tier instruction processing.  The instruction 
dispatcher decompresses the instruction word dynamically.  By 
the way, it is worthy to note that the symbolic instruction-set 
simulation is independent from the instruction encoding and 
compression schemes in the processor implementation. 

To simplify the target address calculation for control flow, 
the compressed and variable-length instruction word is re-coded 
for a fixed-length header and the remnant code.  These two parts 
are then stuffed into the head and the tail of a large fixed-length 
instruction packet respectively [6].  The linker assigns each label 
of the user’s assembly program the packet address with the 
offset of the target instruction word, instead of the target address 
of the instruction word directly. 

2.2. Ring-Structure Register File 

Imagine the four concurrent FU in our VLIW DSP processor as 
individual RISC, each of which has a 16-element RF.  Each RF 
is partitioned into a private and a shared sub-block, each of 
which has 8 registers.  The latter is used for data exchanges 
among FU.  Every FU can access two sub-blocks with total 16 
registers simultaneously.  The four shared sub-blocks are 
concatenated as a ring with a 2-bit offset to reduce the context 
for dynamic port mapping. 

The shaded region in Fig 2 depicts the proposed ring-
structure RF.  Each sub-block has 4 access ports (i.e. 2 reads and 
2 writes respectively).  All ring registers (i.e. the shared sub-
blocks) are identical and each has 8 (R8~R15) 32-bit elements.  
The local registers (i.e. the private sub-blocks) of the control/LS 
FU have 8 32-bit elements for general-purpose uses and memory 
addresses, while those of ALU/MAC have 8 40-bit accumulators.  
A 2-bit ring offset is attached to every instruction word without 
state. The instruction dispatcher is responsible for the dynamic 
port mapping, which is transparent to the FU. 
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Figure 2 Proposed VLIW DSP Datapath 

2.3. SIMD Capability 

Besides two parallel 16-bit ALU operations, the ALU/MAC can 
simultaneously perform two 16-bit MAC operations with 40-bit 
accumulators with the instruction 

MAC_V ri,rm,rn 

which performs ri←ri+rm.Hi×rn.Hi, and ri+1←ri+1+rm.Lo×rn.Lo.  
This instruction has four concurrent accesses to the RF (2 reads 
and 2 writes respectively).  The index i must be even with i+1 
implicitly specified. 

Our DSP also supports very powerful double load (store) 
instructions of the form 

LW_D rm,rn,(ri)+j 

which performs rm←Mem[ri], rn←Mem[ri+1] (memory accesses), 
ri←ri+j, and ri+1←ri+1+j (address updates) in parallel.  This 
instruction requires 6 RF accesses simultaneously (including 2 
reads and 4 writes).  Fortunately, the four write accesses do not 
conflict because ri and ri+1 are local registers to store memory 
addresses while rm and rn are ring registers to deliver data to 
ALU/MAC.  They locate in independent sub-blocks. 

The enhanced MAC in our DSP supports a single-cycle 16-
bit complex MAC/MUL or a single-cycle 32-bit MAC/MUL.  
These instructions exhaust all multiplication resources (i.e. our 
DSP has total 4 16-bit multipliers) and prevent the other 
ALU/MAC unit from any operation involving multiplication. 



1 0; MOV r0,COEF; MOV r0,COEF; MOV r0,0; MOV r0,0; 
2 0; MOV r1,X; MOV r1,X+1; NOP; NOP; 
3 0; MOV r2,Y; MOV r2,Y+2; NOP; NOP; 
4  RPT 512,8;    
5 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MOV r1,0; MOV r1,0; 
6  RPT 15,2;    
7 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 
8 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 
9 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 

10 0; MOV r0,COEF; MOV r0,COEF; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 
11 0; ADDI r1,r1,-60; ADDI r1,r1,-60; ADD r8,r0,r1; ADD r8,r0,r1; 
12 2; SW (r2)+4,r8; SW (r2)+4,r8; MOV r0,0; MOV r0,0; 

Figure 3 Example: 64-tap FIR Filter 

3. PROGRAMMING MODEL & 
PERFORMANCE EVALUATION 

We have constructed the instruction-set simulator for our VLIW 
DSP processor [7] with the proposed ring-structure RF.  The 
assembly syntax for our simulator starts with the ring offset, 
followed by the four instructions to form an instruction word – 

ring offset; instr 0; instr 1; instr 2; instr 3; 

The data memory subsystem uses half-word addressing.  Fig 3 is 
an illustrating example of a 64-tap finite-impulse response (FIR) 
filter that produces 1,024 outputs.  The input and output data are 
16-bit fractional and 32-bit fixed-point numbers respectively.  
RPT (the repeat instruction; line 4 and line 6) is carried out in 
the instruction dispatcher and consumes no execution cycle of 
the datapath.  Note that only two-level loop nesting is allowed in 
our implementation. 

The inner loop (line 7-8) loads four 16-bit inputs and four 
16-bit coefficients every cycle into two 32-bit r8 and two 32-bit 
r9 respectively with the two LS units.  The four address 
registers (two r0 and two r1) are updated simultaneously.  In 
the meanwhile, the two ALU/MAC units perform 16-bit SIMD 
MAC operations of the form 

MAC_V r0,r8,r9 

for four taps (i.e. r0←r0+r8.Hi×r9.Hi, and r1←r1+r8.Lo×r9.Lo 
for each ALU/MAC).  After summing up the 32 32-bit products 
with 40-bit accumulators, r0 are r1 are added together and 
rounded to the 32-bit r8 in the ring registers.  Finally, two 32-
bit outputs are stored in the memory subsystem by the two LS 
units via r8.  In this 64-tap FIR example, the outer loop (line 5 
and line 7-12) produces two filter outputs in 35 cycles.  In other 
words, the proposed DSP processor can compute 3.66 taps every 
cycle. 

In the proposed VLIW DSP processor, conditional branches 
evaluate the data values (i.e. the conditions) through the register 
ports from control/LS FU (i.e. instruction field 0), which execute 
in parallel with the succeeding instruction word.  NOP must be 
inserted if the access ports conflict. 

Table 1 summarizes the performance comparisons of state-
of-the-art high-performance DSP processors with the proposed 
VLIW DSP processor with the ring-structure RF.  The second 
row shows the number of cycles required for N-sample, T-tap 
FIR filtering.  The third row lists the performance of the radix-2 
256-point fast Fourier transform (FFT), which is estimated in the 
number of execution cycles.  Maximum numbers of add-select-

compare (ACS) operations per cycle are given in the fourth row, 
which is the kernel of the Viterbi algorithm.  The numbers in 
parentheses show the results that account for the load/store 
overheads when the depth is 16.  TI C’64s DSP has a specific 
Viterbi coprocessor and is not included for the comparison.  The 
last row compares the performance of the motion estimation 
algorithm with MAE (mean absolute error) criteria, which is 
measured in the maximum number of pixels per cycle. 

Table 1 Performance Comparison 

 TI     
C’55x [9]

TI     
C’64x [2]

NEC 
SPXK5[8] 

Intel/ADI 
MSA [10] Proposed

FIR NT/2 NT/4 NT/2 NT/2 NT/4 
FFT 4,768 2,403 2,944 3,176 2,340 

Viterbi 1 (0.4) N.A. 1 (1) 1 (N.A.) 1 (0.84)
ME N.A. 2 2 4 2 

4. SILICON IMPLEMENTATION 

We have implemented in Verilog RTL the ring-structure RF and 
the centralized one with the same number of registers and the 
required access ports for the proposed VLIW DSP processor.  
The designs are synthesized using Synopsys with 0.35µm cell 
library and automatically placed and routed in 1P4M technology 
using Apollo.  Table 2 summarizes the implementation results.  
Our approach reduces the delay and the area by factors of 4.42 
and 87.37 respectively.  PowerMill is used to estimate the power 
dissipation of the ring-structure RF to perform FFT at 100 MHz.  
We do not have the power estimation for the centralized RF 
because of the limited tool capability. 

Table 2 Implementation Results 
 Centralized RF Ring-Structure RF 

Delay 38.46 ns 8.71 ns 
Gate Count 591K 48K 

Area 17.76mm×17.76mm 
1.9mm×1.9mm 

(2.34mm×1.53mm) 
Power N.A. 356mW @3.3V 100MHz 

Fig 4 shows the trial implementation of our 4-way VLIW 
DSP datapath with the ring-structure RF.  The core size of this 
single-cycle implementation is 2.34mm×2.34mm.  Its maximum 
operating frequency is 20MHz, which is going to be pipelined at 
least into three stages. 
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Figure 4 Layout of the DSP Datapath 

5. CONCLUSIONS 

As the number of concurrent FU increases, the complexity of the 
centralized RF grows exponentially.  For N concurrent FU, the 
area grows as N 3, the delay as N 3/2, and the power dissipation as 
N 3.  We propose a novel ring-structure RF, which consists of an 
N-by-N switch network and 2N register sub-blocks with access 
ports only for a single FU.  The synthesis result shows that our 
approach saves 91.88% gates of the centralized one, while 
reducing the access time by 77.35%.  The ring-structure RF has 
been successfully integrated into a 4-way VLIW DSP processor 
with explicit port mapping to demonstrate its effectiveness in 
various DSP kernels. 

We are going on the full-custom designs of the 2R/2W 
register sub-blocks and the 4-by-4 switch network to improve 
the area and the power consumption of our first chip realization.  
Clock gating will also be investigated to further reduce the 
power dissipation.  Besides, more DSP kernels and benchmark 
programs will be developed to verify the effectiveness of our 
proposed VLIW DSP processor with the ring-structure RF. 
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APPENDIX 

Instructions of the VLIW DSP with Ring-Structured RF [7] 
Mnemonic Action 

INSTRUCTION DISPATCHER 
RPT Repeat m instructions n times; zero-overhead looping 

J Jump; unconditional branch 
TRAP Trap; system call 

COMMON TO ALL FIELDS 
NOP No operation 
ADDI Add immediate 
MOV Move; pseudo instruction 

SPECIFIC TO FIELD 0 
BNEZ Branch on not equal zero 

JAL Jump and link 
JR Jump register 

COMMON TO FIELD 0/1 
LH Load half word 
LW Load word 

LH_D Double load halfword* 
LW_D Double load word 
LH_V Load halfword vector (SIMD)* 

SH Store halfword 
SW Store word 

SH_D Double store halfword 
SW_D Double store word 
SH_V Store halfword vector (SIMD) 

SPECIFIC TO FIELD 3 
CMUL 16-bit complex multiply 
CMAC 16-bit complex multiply & accumulate 

MUL32 32-bit multiply 
MAC32 32-bit multiply & accumulate 

COMMON TO FIELD 2/3 
MUL 16-bit multiply 
MAC 16-bit multiply & accumulate 
ADD Add 
SUB Subtract 
AND AND 

OR OR 
XOR Exclusive OR 
SLL Shift left logical 
SRL Shift right logical 
SRA Shift right arithmetic 
BF2 Radix-2 butterfly 

MUL_V Two 16-bit multiply (SIMD)* 
MAC_V Two 16-bit multiply & accumulate (SIMD)* 
ADD_V Two 16-bit add (SIMD) 
SUB_V Two 16-bit subtract (SIMD) 
MIN_V Compare & store the small one (subword) 

MAX_V Compare & store the large one (subword) 
ABS_V Two absolute value (SIMD) 
PACK Merge low 16-bit of two registers 

* See Section 2.3 for instruction syntax 


