
PERFORMANCE EVALUATION OF RING-STRUCTURE REGISTER FILE IN
MULTIMEDIA APPLICATIONS*

Tay-Jyi Lin, Chin-Chi Chang, Tsung-Hsun Yang, Yu-Ming Chang,

Chien-Hung Lin, Chen-Chia Lee, Hung-Yueh Lin, and Chein-Wei Jen

Department of Electronics Engineering
National Chiao Tung University, Taiwan

ABSTRACT

As the concurrent functional units in media processors increase
continuously to meet the performance needs, the required access
(i.e. read or write) ports of the centralized register file (RF)
multiply rapidly and cannot be efficiently implemented. We
propose a novel ring-structure RF, which is composed of register
sub-blocks identical to the RF for a single functional unit. Data
exchanges among functional units occur on the switch network
of the ring registers. The proposed RF has been integrated into a
four-way VLIW DSP processor successfully that demonstrates
its effectiveness in DSP kernels. The synthesis result shows that
our proposed ring-structure RF saves 91.88% silicon area of the
centralized one, while reducing its access time by 77.35%.

1. INTRODUCTION

Multimedia processing in audio, image, and video applications
demands extremely high computing power for the real-time
constraints. More functional units (FU) are integrated, which
operate concurrently to achieve the performance requirements.
Programmable solutions are attractive for their less development
efforts, the upgradability to support new standards and possibly
filed software patches. These factors together effectively reduce
the time-to-market, extend the time-in-market, and thus make
the greatest profit. High-performance processors with multiple
concurrent FU exploit finer granularity of parallelism than multi-
processor systems, which can improve the performance of DSP
kernels more effectively. The major distinction between multi-
processor systems and microprocessors resides in their inter-FU
communications. Microprocessors have a direct and efficient
data exchange mechanism among FU through a centralized
register file (RF).

The centralized RF provides storage for and interconnects
to each FU in a general manner and each FU can read from or
write to any register location. For N concurrent FU, the silicon
area of the centralized RF grows as N 3, the delay as N 3/2, and
the power dissipation as N 3 [1]. Thus, RF will soon dominate
the area, the delay, and the power dissipation as the number of
FU increases. Restricting the communication between FU and

registers, so that each FU can only read and write a limited
subset of registers, can significantly reduce the RF complexity
with small performance penalty. In this paper, we propose a
novel ring-structure RF, which partitions the centralized RF into
2N sub-blocks. Each FU is able to access two sub-blocks
simultaneously, one of which is private (i.e. dedicated to the FU)
and the other is dynamically mapped to facilitate inter-FU
communications. Therefore, each register sub-block requires the
access ports for a single FU only. The shared sub-blocks are
organized in a ring and globally controlled to reduce the
overheads. The synthesis results of the proposed ring-structure
RF saves 91.88% silicon area of the centralized one, while
reducing its access time by 77.35%. The proposed ring-structure
RF has been integrated into a four-way VLIW DSP processor to
evaluate the performance degradation due to the access
restrictions, where the port mapping is under the direct control
of programmers. The instruction-set simulation shows that the
performance of our proposed DSP processor is comparable with
the state-of-the-art high-performance DSP processors.

The rest of this paper is organized as follows. Section 2
summarizes the features of the four-way VLIW DSP processor
and discusses the ring-structure RF. Section 3 describes the
programming model with explicit port mapping and compares its
performance with commercially available high-performance
DSP processors. The silicon implementations of the proposed
ring-structure RF and the VLIW DSP processor are available in
Section 4. Finally, Section 5 concludes this paper and outlines
our future works.

2. VLIW DSP PROCESSOR WITH PROPOSED
RING-STRUCTURE REGISTER FILE

Instruction parallelism is exploited to improve the speed of the
high-performance microprocessors. Compared to the dynamic
hardware scheduling of superscalar processors, VLIW machines
have low-cost compiler scheduling with deterministic execution
time and thus become the trends of high-performance DSP
processors. In this section, we will introduce a novel four-way
VLIW DSP processor of two load/store and two ALU/MAC
units with SIMD capability. We propose the 2-tier instruction
processing, which manipulates data and control separately and
effectively smoothes the instruction flow to the DSP datapath.
With the proposed ring-structure RF for efficient data exchange
among FU, the proposed DSP processor can easily achieve its * This work was supported by the National Science Council, Taiwan

under Grant NSC91-2218-E009-011

peak performance of 4 16-bit data operations/cycle, or 15 RISC-
type operations/cycle (including 4 effective data manipulations,
4 data generations, 4 address updates, and 3 branch controls).

2.1. 2-tier Instruction Processing

Fig 1 depicts our proposed 2-tier instruction processing with
separate control and data manipulations. The instruction
dispatcher handles unconditional branches (e.g. jumps and traps)
and zero-overhead looping transparently to the datapath, which
can thus receive an instruction word (including four instructions)
per cycle, regardless of the control flow. Conditional branches
(data-dependent control) are resolved in cooperation with the
control/LS FU (instruction field 0) in the datapath.

Ring-structure RF

Instruction Dispatcher
(hardware decompression)

Control
LS

ALU
MACLS ALU

E_MAC

datapath

Assembly Program

Assembler/Linker
(software compression)

Instruction Set Simulation
Figure 1 2-tier Instruction Processing

VLIW processors are notorious for their poor code density,
for the unused instruction slots must be filled by NOP. The
situation gets worse when the parallelism is limited. Variable-
length VLIW [2] eliminates NOP with alternative FU codes for
run-time instruction dispatch and decoding, other than the fixed
position codes in conventional VLIW processors (i.e. each FU
has a corresponding field in the long instruction word). The
instruction fetch unit needs queues to regulate the varying rate of
instruction consumption, which also work as the instruction
buffer for zero-overhead looping. Indirect VLIW [3] uses short
instructions to address the internal micro-instruction memory (i.e.
the programmable VIM) for the long instruction words. Existing
instructions (inside an instruction word) can be reused to
synthesize new instruction words, and thus reduce the
instruction bandwidth. Differential VLIW encoding [4]
eliminates repeated instructions in neighboring codes, which is
very efficient in software pipelining [5] and our explicit
programming model for dynamic port mapping, which will be
described in Section 3. In addition to general assembling/linking,
our code generation tool is also responsible for the instruction
compression in the 2-tier instruction processing. The instruction
dispatcher decompresses the instruction word dynamically. By
the way, it is worthy to note that the symbolic instruction-set
simulation is independent from the instruction encoding and
compression schemes in the processor implementation.

To simplify the target address calculation for control flow,
the compressed and variable-length instruction word is re-coded
for a fixed-length header and the remnant code. These two parts
are then stuffed into the head and the tail of a large fixed-length
instruction packet respectively [6]. The linker assigns each label
of the user’s assembly program the packet address with the
offset of the target instruction word, instead of the target address
of the instruction word directly.

2.2. Ring-Structure Register File

Imagine the four concurrent FU in our VLIW DSP processor as
individual RISC, each of which has a 16-element RF. Each RF
is partitioned into a private and a shared sub-block, each of
which has 8 registers. The latter is used for data exchanges
among FU. Every FU can access two sub-blocks with total 16
registers simultaneously. The four shared sub-blocks are
concatenated as a ring with a 2-bit offset to reduce the context
for dynamic port mapping.

The shaded region in Fig 2 depicts the proposed ring-
structure RF. Each sub-block has 4 access ports (i.e. 2 reads and
2 writes respectively). All ring registers (i.e. the shared sub-
blocks) are identical and each has 8 (R8~R15) 32-bit elements.
The local registers (i.e. the private sub-blocks) of the control/LS
FU have 8 32-bit elements for general-purpose uses and memory
addresses, while those of ALU/MAC have 8 40-bit accumulators.
A 2-bit ring offset is attached to every instruction word without
state. The instruction dispatcher is responsible for the dynamic
port mapping, which is transparent to the FU.

Control / LS LS ALU / MAC ALU /
Enhanced MAC

R0~R7
(private, 32-bit)

R0~R7
(private, 32-bit)

R0~R7
(private, 40-bit)

R0~R7
(private, 40-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

local
registers

Instruction Dispatcher

16 16 16 16

ring
registers

Ring-structure Register File
Figure 2 Proposed VLIW DSP Datapath

2.3. SIMD Capability

Besides two parallel 16-bit ALU operations, the ALU/MAC can
simultaneously perform two 16-bit MAC operations with 40-bit
accumulators with the instruction

MAC_V ri,rm,rn

which performs ri←ri+rm.Hi×rn.Hi, and ri+1←ri+1+rm.Lo×rn.Lo.
This instruction has four concurrent accesses to the RF (2 reads
and 2 writes respectively). The index i must be even with i+1
implicitly specified.

Our DSP also supports very powerful double load (store)
instructions of the form

LW_D rm,rn,(ri)+j

which performs rm←Mem[ri], rn←Mem[ri+1] (memory accesses),
ri←ri+j, and ri+1←ri+1+j (address updates) in parallel. This
instruction requires 6 RF accesses simultaneously (including 2
reads and 4 writes). Fortunately, the four write accesses do not
conflict because ri and ri+1 are local registers to store memory
addresses while rm and rn are ring registers to deliver data to
ALU/MAC. They locate in independent sub-blocks.

The enhanced MAC in our DSP supports a single-cycle 16-
bit complex MAC/MUL or a single-cycle 32-bit MAC/MUL.
These instructions exhaust all multiplication resources (i.e. our
DSP has total 4 16-bit multipliers) and prevent the other
ALU/MAC unit from any operation involving multiplication.

1 0; MOV r0,COEF; MOV r0,COEF; MOV r0,0; MOV r0,0;
2 0; MOV r1,X; MOV r1,X+1; NOP; NOP;
3 0; MOV r2,Y; MOV r2,Y+2; NOP; NOP;
4 RPT 512,8;
5 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MOV r1,0; MOV r1,0;
6 RPT 15,2;
7 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
8 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
9 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;

10 0; MOV r0,COEF; MOV r0,COEF; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
11 0; ADDI r1,r1,-60; ADDI r1,r1,-60; ADD r8,r0,r1; ADD r8,r0,r1;
12 2; SW (r2)+4,r8; SW (r2)+4,r8; MOV r0,0; MOV r0,0;

Figure 3 Example: 64-tap FIR Filter

3. PROGRAMMING MODEL &
PERFORMANCE EVALUATION

We have constructed the instruction-set simulator for our VLIW
DSP processor [7] with the proposed ring-structure RF. The
assembly syntax for our simulator starts with the ring offset,
followed by the four instructions to form an instruction word –

ring offset; instr 0; instr 1; instr 2; instr 3;

The data memory subsystem uses half-word addressing. Fig 3 is
an illustrating example of a 64-tap finite-impulse response (FIR)
filter that produces 1,024 outputs. The input and output data are
16-bit fractional and 32-bit fixed-point numbers respectively.
RPT (the repeat instruction; line 4 and line 6) is carried out in
the instruction dispatcher and consumes no execution cycle of
the datapath. Note that only two-level loop nesting is allowed in
our implementation.

The inner loop (line 7-8) loads four 16-bit inputs and four
16-bit coefficients every cycle into two 32-bit r8 and two 32-bit
r9 respectively with the two LS units. The four address
registers (two r0 and two r1) are updated simultaneously. In
the meanwhile, the two ALU/MAC units perform 16-bit SIMD
MAC operations of the form

MAC_V r0,r8,r9

for four taps (i.e. r0←r0+r8.Hi×r9.Hi, and r1←r1+r8.Lo×r9.Lo
for each ALU/MAC). After summing up the 32 32-bit products
with 40-bit accumulators, r0 are r1 are added together and
rounded to the 32-bit r8 in the ring registers. Finally, two 32-
bit outputs are stored in the memory subsystem by the two LS
units via r8. In this 64-tap FIR example, the outer loop (line 5
and line 7-12) produces two filter outputs in 35 cycles. In other
words, the proposed DSP processor can compute 3.66 taps every
cycle.

In the proposed VLIW DSP processor, conditional branches
evaluate the data values (i.e. the conditions) through the register
ports from control/LS FU (i.e. instruction field 0), which execute
in parallel with the succeeding instruction word. NOP must be
inserted if the access ports conflict.

Table 1 summarizes the performance comparisons of state-
of-the-art high-performance DSP processors with the proposed
VLIW DSP processor with the ring-structure RF. The second
row shows the number of cycles required for N-sample, T-tap
FIR filtering. The third row lists the performance of the radix-2
256-point fast Fourier transform (FFT), which is estimated in the
number of execution cycles. Maximum numbers of add-select-

compare (ACS) operations per cycle are given in the fourth row,
which is the kernel of the Viterbi algorithm. The numbers in
parentheses show the results that account for the load/store
overheads when the depth is 16. TI C’64s DSP has a specific
Viterbi coprocessor and is not included for the comparison. The
last row compares the performance of the motion estimation
algorithm with MAE (mean absolute error) criteria, which is
measured in the maximum number of pixels per cycle.

Table 1 Performance Comparison

 TI
C’55x [9]

TI
C’64x [2]

NEC
SPXK5[8]

Intel/ADI
MSA [10] Proposed

FIR NT/2 NT/4 NT/2 NT/2 NT/4
FFT 4,768 2,403 2,944 3,176 2,340

Viterbi 1 (0.4) N.A. 1 (1) 1 (N.A.) 1 (0.84)
ME N.A. 2 2 4 2

4. SILICON IMPLEMENTATION

We have implemented in Verilog RTL the ring-structure RF and
the centralized one with the same number of registers and the
required access ports for the proposed VLIW DSP processor.
The designs are synthesized using Synopsys with 0.35µm cell
library and automatically placed and routed in 1P4M technology
using Apollo. Table 2 summarizes the implementation results.
Our approach reduces the delay and the area by factors of 4.42
and 87.37 respectively. PowerMill is used to estimate the power
dissipation of the ring-structure RF to perform FFT at 100 MHz.
We do not have the power estimation for the centralized RF
because of the limited tool capability.

Table 2 Implementation Results
 Centralized RF Ring-Structure RF

Delay 38.46 ns 8.71 ns
Gate Count 591K 48K

Area 17.76mm×17.76mm
1.9mm×1.9mm

(2.34mm×1.53mm)
Power N.A. 356mW @3.3V 100MHz

Fig 4 shows the trial implementation of our 4-way VLIW
DSP datapath with the ring-structure RF. The core size of this
single-cycle implementation is 2.34mm×2.34mm. Its maximum
operating frequency is 20MHz, which is going to be pipelined at
least into three stages.

Ring
Register 0

Switch Network

Parallel Functional Units

Ring
Register 1

Ring
Register 2

Ring
Register 3

Local
Register 0

Local
Register 1

Local
Register 2

Local
Register 3

Figure 4 Layout of the DSP Datapath

5. CONCLUSIONS

As the number of concurrent FU increases, the complexity of the
centralized RF grows exponentially. For N concurrent FU, the
area grows as N 3, the delay as N 3/2, and the power dissipation as
N 3. We propose a novel ring-structure RF, which consists of an
N-by-N switch network and 2N register sub-blocks with access
ports only for a single FU. The synthesis result shows that our
approach saves 91.88% gates of the centralized one, while
reducing the access time by 77.35%. The ring-structure RF has
been successfully integrated into a 4-way VLIW DSP processor
with explicit port mapping to demonstrate its effectiveness in
various DSP kernels.

We are going on the full-custom designs of the 2R/2W
register sub-blocks and the 4-by-4 switch network to improve
the area and the power consumption of our first chip realization.
Clock gating will also be investigated to further reduce the
power dissipation. Besides, more DSP kernels and benchmark
programs will be developed to verify the effectiveness of our
proposed VLIW DSP processor with the ring-structure RF.

REFERENCES

[1] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J.
D. Owens, “Register Organization for Media Processing,”
International Symposium on High Performance Computer
Architecture (HPCA), pp.375-386, 2000

[2] TMS320C64x DSP Library Programmer's Reference, Texas
Instruments Inc., Apr 2002

[3] G. G. Pechanek and S. Vassiliadis, "The ManArray Embedded
Processor Architecture," Euromicro Conference, vol.1, pp.348-355,
September, 2000

[4] G. Fettweis, M. Bolle, J. Kneip, and M. Weiss, “OnDSP: A New
Architecture for Wireless LAN Applications, Embedded Processor
Forum, May 2002

[5] J. L Hennessy, and D. A. Patterson, Computer Architecture – A
Quantitative Approach, 3rd Edition, Morgan Kaufmann, 2002

[6] H. Pan and K. Asanovic, “Heads and Tails: A Variable-Length
Instruction Format Supporting Parallel Fetch and Decode,”
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES 2001), Nov 2001

[7] DSP Architecture v.2 Instruction Set Manual [Online], available:
http://twins.ee.nctu.edu.tw/dspv2

[8] T. Kumura, M. Ikekawa, M. Yoshida, and I. Kuroda, “VLIW DSP
for Mobile Applications,” IEEE Signal Processing Magazine,
pp.10-21, July 2002

[9] TMS320C55x DSP Programmer’s Guide, Texas Instruments Inc.,
July 2000

[10] R. K. Kolagotla, et al, “A 333-MHz Dual-MAC DSP Architecture
for Next-Generation Wireless Applications,” IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP
2001), vol. 2, pp.1013-1016, May 2001

[11] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals – Architectures and Features, IEEE Press, 1996

APPENDIX

Instructions of the VLIW DSP with Ring-Structured RF [7]
Mnemonic Action

INSTRUCTION DISPATCHER
RPT Repeat m instructions n times; zero-overhead looping

J Jump; unconditional branch
TRAP Trap; system call

COMMON TO ALL FIELDS
NOP No operation
ADDI Add immediate
MOV Move; pseudo instruction

SPECIFIC TO FIELD 0
BNEZ Branch on not equal zero

JAL Jump and link
JR Jump register

COMMON TO FIELD 0/1
LH Load half word
LW Load word

LH_D Double load halfword*
LW_D Double load word
LH_V Load halfword vector (SIMD)*

SH Store halfword
SW Store word

SH_D Double store halfword
SW_D Double store word
SH_V Store halfword vector (SIMD)

SPECIFIC TO FIELD 3
CMUL 16-bit complex multiply
CMAC 16-bit complex multiply & accumulate

MUL32 32-bit multiply
MAC32 32-bit multiply & accumulate

COMMON TO FIELD 2/3
MUL 16-bit multiply
MAC 16-bit multiply & accumulate
ADD Add
SUB Subtract
AND AND

OR OR
XOR Exclusive OR
SLL Shift left logical
SRL Shift right logical
SRA Shift right arithmetic
BF2 Radix-2 butterfly

MUL_V Two 16-bit multiply (SIMD)*
MAC_V Two 16-bit multiply & accumulate (SIMD)*
ADD_V Two 16-bit add (SIMD)
SUB_V Two 16-bit subtract (SIMD)
MIN_V Compare & store the small one (subword)

MAX_V Compare & store the large one (subword)
ABS_V Two absolute value (SIMD)
PACK Merge low 16-bit of two registers

* See Section 2.3 for instruction syntax

