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ABSTRACT 

This paper presents the systematic synthesis of multiplier-less 
FIR filters with a novel complexity-aware quantization algorithm.  
Both signed-digit representations and common subexpression 
elimination (CSE) are investigated to reduce the computational 
complexity at the bit level.  For comparable filter responses, the 
simulation shows that our approach requires only half (49.06%~ 
50.94%) additions of the straightforward quantized filters.  Both 
with CSE, our FIR synthesizer has comparable results with the 
CSD-encoded coefficients, which have the theoretically 
minimum non-zero terms.  Moreover, our approach outperforms 
CSD in most cases because of the direct control over additions 
and the zero-overhead insertion of non-zero terms. 

1 INTRODUCTION 

Most DSP kernels are transforms with fixed coefficients, such as 
FIR filters, discrete cosine transform (DCT), and fast Fourier 
transform (FFT), etc.  Adders and shifters can replace the 
constant multipliers for area-efficient implementations, where 
the area can be further reduced by common subexpression 
elimination (CSE).  But the hardware complexity is not under 
control during the rounding of the infinite-wordlength 
coefficients to the quantization levels.  An iterative algorithm 
was proposed by Li et al. [1] to distribute a pre-defined SPT 
(signed power-of-two terms) budget, which gives an approximate 
estimate of the additions of the implementation, to the quantized 
coefficients (QC).  This may lead to a less optimal design, 
especially when CSE is applied.  In this paper, we propose a 
complexity-aware algorithm to quantize the coefficients by 
allocating SPT terms under an exact adder budget, while taking 
into account of the common subexpressions of the computations.  
Different coefficient approximation strategies are investigated, 
where the combinations with a novel CSE scheme can reduce up 
to 50.94% budget for comparable filter responses. 

The rest of this paper is organized as follows.  Section 2 
reviews the common subexpressions in FIR filters and the 
coefficient quantization by successive approximation.   Section 3 
describes the proposed complexity-aware quantization algorithm 
with the discussions of different approximation strategies in 
Section 4, where a new kind of common subexpression is also 
introduced.  Section 5 summarizes the simulation results and 
finally Section 6 concludes this work and outlines our future 
research. 

2 PRELIMINARY 

Consider a 4-tap FIR filter with the coefficients: h0=0.0111011, 
h1=0.0101011, h2=1.0110011, and h3=1.1001001, which are four 
fractional numbers represented in the 8-bit 2’s complement 
format.  The filter output is computed as 

yn = h0 · xn + h1 · xn-1 + h2 · xn-2 + h3 · xn-3. 
Additions and shifts can be substituted for the multiplications as 

yn =  xn»2 + xn»3 + xn»4 + xn»6 + xn»7 
+ xn-1»2 + xn-1»4 + xn-1»6 + xn-1»7 
- xn-2 + xn-2»2 + xn-2»3 + xn-2»6 + xn-2»7 
- xn-3 + xn-3»1 + xn-3»4 + xn-3»7  (1), 

where “»” denotes the arithmetic right shift.  Each output needs 
17 additions (including subtractions), and 16 shifts. 
2.1 Common Subexpression Elimination 
The number of additions and shifts of the multiplier-less direct-
form FIR filter can be reduced by eliminating the common 
subexpressions across coefficients (CSAC), within coefficients 
(CSWC) [2], and across iterations (CSAI) [3]. 
CSAC:  The h0 and h2 multiplications, i.e. the first and the third 
rows in Equation (1), have four common terms with identical 
shifts.  Restructuring (1) by adding xn and xn-2 first can eliminate 
the redundant CSAC between h0 and h2 as 

yn = (xn+xn-2)»2 + (xn+xn-2)»3 + (xn+xn-2)»6 + (xn+xn-2)»7 
+ xn»4 - xn-2 
+ xn-1»2 + xn-1»4 + xn-1»6 + xn-1»7 
- xn-3 + xn-3»1 + xn-3»4 + xn-3»7  (2), 

where the total additions and shifts are reduced to 14 and 12, 
respectively.  The extraction and elimination process of CSAC 
can be more concisely manipulated in tabular form as Fig 1. 
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Figure 1 CSAC extraction & elimination 
CSWC:  Within a coefficient or a CSAC term, bit-pairs with 
identical bit displacement are recognized as CSWC, which can 
also be eliminated by reusing the computation.  For example, the 
subexpression in the first row of Equation (2) can be simplified 
as (x02+x02»1)»2+(x02+x02»1)»6 to reduce one addition and one 
shift, where x02 stands for xn+xn-2. 
CSAI:  The subexpression xn+xn-1+xn-2+xn-3 in Equation (1) can be 
restructured as (xn+xn-1)+z-2·(xn+xn-1) to reduce one addition, 
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which is referred to as the elimination of CSAI.  But the z-1 is 
costly to implement, especially in the bit-serial architectures, 
which requires w flops, where w denotes the input word-length.  
The silicon area is roughly equivalent to w adders.  Therefore, 
we do not consider CSAI in this paper. 

CSE quality depends on the elimination order.  A steepest-
descent approach is applied as a heuristic to reduce the search 
space, which first eliminates the redundant CSAC between the 
coefficient pair with the most non-zero terms in identical bit-
positions.  One-level look-ahead can further distinguish the 
candidates of the same weight.  CSWC elimination can use a 
similar strategy.  Fig 2 shows the CSE algorithm for CSAC and 
CSWC. 

Eliminate zero coefficients 
Merge coefficients with the same value (e.g. linear-phase FIR filters) 
Construct a coefficient matrix of size N×W, where N is the number of 
coefficients for CSE and W is the word-length (as shown in Fig 1) 
WHILE (highest weight > 1)  // CSAC elimination 
{    Find the coefficient pair with the highest weight 

Update the coefficient matrix } 
FOR each row in the coefficient matrix  // CSWC elimination 
{    Find bit-pairs with identical bit displacement 

Extract the distances between those bit-pairs 
Update the coefficient matrix and record the shift information } 

Output the SDFG with addition, shift and negation 

Figure 2 CSE algorithm for direct-form FIR filters 

2.2 Coefficient Quantization by Successive Approximation 
Straightforward quantization by truncating or rounding the ideal 
coefficients is not aware of its implementation complexity.  
Small variation on the coefficient magnitudes that slightly 
impacts the filter characteristics can reduce the non-zero terms or 
improve the CSE result significantly.  Quantization by iteratively 
allocating the signed power-of-two (SPT) terms [1] is an 
alternative.  It gradually assigns SPT terms to the quantized 
coefficients (QC) under a pre-defined SPT budget.  Besides, an 
additional scale factor (SF) is applied to collectively settle the 
coefficients into an optimal quantization space. 

Normalize IC so that the maximum coefficient magnitude is 1 
SF = lower bound 
WHILE (SF < upper bound) 
{    Scale the normalized IC with SF 

WHILE (budget >0 & the largest difference between QC & IC >2-w) 
{    Allocate an SPT to the QC that differs most from the scaled NIC } 

Estimate the square error between IC & the normalized QC 
SF = SF × [min |QD| + |coef(min QD)|] / |coef(min QD)| } 

Choose the QC that has the minimum square error 
(a) 

IC = [0.26  0.131  0.087  0.011] 
Normalized IC (NIC) = [1 0.5038 0.3346 0.0423], NF = max(IC) = 0.26 
When SF = 0.5 
Scaled NIC = [0.5  0.2519  0.1673  0.0212] 
QC_0 = [0  0  0  0] 
QC_1 = [0.5  0  0  0] 
QC_2 = [0.5  0.25  0  0] 
QC_3 = [0.5  0.25  0.125  0] 
QC_4 = [0.5  0.25  0.15625  0] 
QC_5 = [0.5  0.25  0.15625  0.015625] 

(b) 

Figure 3 Quantization by successive approximation 

Fig 3(a) is our modified algorithm [4] with the improved SF 
exploration.  The ideal coefficients (IC) with infinite word-length 

are first normalized so that the maximum coefficient is one.  An 
optimal SF is explored within the given gain tolerance (e.g. 
±3dB).  Instead of the fixed 2-w stepping [1] from the lower 
bound (w denotes the wordlength), the next SF is calculated as 

SF’ = SF × [min |QD| + |coef(min QD)|] / |coef(min QD)|, 
where QD denotes the distance of an ideal coefficient to its next 
quantization level, which depends on the approximation strategy 
(e.g. rounding to the nearest value, toward 0, or toward -∞, etc), 
and |coef(min QD)| denotes the magnitude of the ideal 
coefficient with the minimum QD.  In brief, the next SF is the 
minimum value that scales the magnitude of any coefficient to its 
next quantization level.  In 16-bit quantization with ±3dB 
acceptable gain, the fixed 2-w stepping SF exploration has 45,875 
SF candidates, while our proposed variable step-size approach 
has 14,986 to 20,429 candidates only, depending on the 
coefficients in our simulation.  This is because the former one 
steps over multiple SF’s that have an identical QC result [4]. 

For each SF, the QC’s are first initialized to zeros and SPT is 
iteratively allocated to the QC that differs most from the scaled 
NIC (normalized IC).  The allocation stops whenever the SPT 
budget is exhausted or all differences between IC and QC pairs 
are less than 2-w.  Finally, the normalized QC with the least 
square error from the IC is chosen.  Fig 3(b) is an example to 
illustrate the SPT allocation when SF=0.5. 

3 PROPOSED COMPLEXITY-AWARE 
COEFFICIENT QUANTIZATION 

Allocating an SPT term to the quantized coefficient (QC) set 
either results in an isolated term to sum up, or just enlarges a 
common subexpression without any addition overhead.  But the 
number of additions during the SPT allocation process is not 
always ‘non-decreasing’ because of the steepest-descent CSE 
heuristic.  For example, if the optimum CSE for a QC set does 
not start with the coefficient pair with the most CSAC terms (i.e. 
the steepest-descent heuristic cannot find the minimum number 
of additions).  Allocating a zero-overhead SPT term, which 
increases the weight of the allocated pair by one, may alter the 
CSE order and possibly leads to a better CSE result with reduced 
additions. 
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Figure 4 Example – inserting a zero-overhead SPT term reduces 

the required number of additions 



Fig 4 is an example where the number of additions decreases 
after extra SPT insertion.  The left three matrices are coefficients 
before CSE with marked CSAC terms to be eliminated.  The 
right matrix in (a) is the heuristic CSE result with the CSWC 
terms highlighted, which requires 19 additions.  A zero-overhead 
SPT term is then allocated to the LSB of h1 as shown in (b), 
which reorders the CSE and introduces a new budget of 2 
additions by a better CSAC elimination (it needs 17 additions 
only).  Changing the order of (a) into that of (b), the CSE result 
of (c) also requires 17 additions only.  Thus, the number of 
additions is non-decreasing only if CSE is optimum. 

Fig 5(a) is our complexity-aware quantization algorithm that 
controls the CSE heuristic to ensure the minimum allocated 
additions during successive approximation.  The QC’s are first 
initialized to zeros and an SPT term is continuously assigned to 
the QC that differs most from the scaled NIC.  Once the 
allocated SPT terms amount to the remnant budget, CSE is 
performed to introduce a new budget.  The iteration of SPT 
allocation continues until no budget is found.  Zero-overhead 
SPT terms are then inserted by pattern matching.  The post-
processing can introduce a new budget as the illustrating 
example given in Fig 5(b).  Therefore, a skip queue is needed to 
insert more significant SPT terms, once such budget is available.  
The less significant zero-overhead SPT terms that are already 
allocated should be completely removed.  Finally, additional 
CSE is performed to check if there exists a new order for better 
CSE.  If a new budget is found and the skip queue is empty, the 
iterative SPT allocation resumes.  Otherwise, the original CSE 
order is used. 
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Figure 5 Complexity-aware coefficient quantization 

The steepest-descent heuristic CSE can have a worse result 
after the SPT insertion, and the remnant budget will be negative 
(i.e. the required adders of the resultant QC set exceeds the pre-
defined budget).  We save this situation just by canceling the 
latest SPT allocation and using the previous CSE order instead, 
as the procedures in the right-hand side of Fig 5(a).  The remnant 
budget is used up with the fixed CSE order, where the overhead 
is estimated with pattern matching.  The procedure is similar to 
the insertion of zero-overhead SPT terms except that no skip 

queue is implemented.  By the way, the algorithm terminates of 
course, whenever the maximum difference between each QC & 
IC pair is less than 2-w, because the QC cannot improve anymore. 

4 COEFFICIENT APPROXIMATION 
STRATEGIES & SHIFTED CSAC 

The strategy for coefficient approximation strongly affects the 
implementation complexity.  Fig 6 shows an illustrating example 
of several rounding strategies to quantize 0.484375 via 
successive approximation.  If the quantized coefficient must be 
represented in the 2’s complement form (i.e. only the MSB has a 
negative weight), always approximating the ideal coefficient 
with the nearest quantization step may cause bit flips.  It may 
destroy the previous CSE result in our proposed complexity-
aware algorithm described in Section 3.  Besides, no single SPT 
term can improve the error anymore, as depicted in Fig 6.  The 
“always below” strategy (i.e. rounding to the nearest 
quantization level toward -∞) solve this problem.  A 
compensation factor is used as the post-processing to normalize 
the mean quantization error to be zero. 

Always using the nearest SPT to approximate the coefficients 
can significantly reduce the number of non-zero terms for an 
acceptable quantization error.  But CSE of the resultant signed-
digit coefficients is somewhat more complicated.  The N×(N-1)/2 
candidates to be first eliminated of the N-row coefficient matrix 
are doubled to consider the polarity of two rows.  Fig 7(a) is an 
example for CSE on signed-digit coefficients. 
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Figure 6 Quantization of 0.484375 

We propose the shifted CSAC in this paper for sparse 
coefficient matrices (such as the CSD-encoded coefficients), 
which considers the common subexpressions across the shifted 
versions of the coefficients.  The shift amount is limited to 
reduce the search space and to constrain the truncation error 
during the arithmetic operations.  The notation of the shifted 
CSAC is left aligned with the other term right shifted, such as x0 
- x1 »1 shown in Fig 7(b), to simplify the hardware generation 
process.  Besides, a row pair with shifted CSAC is searched only 
if its overall displacement is within the shift limit.  Our 
experiment shows that ±2-bit shift with maximum 5-bit span is 
enough for most cases. 
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Figure 7 (a) CSAC in signed-digit coefficients (b) shifted CSAC 



5 SIMULATION RESULTS 

All ideal coefficients (IC) in our simulation are synthesized using 
the Parks-McClellan’s method [5] with its passband and 
stopband frequencies at 0.4π and 0.6π respectively.  The 
synthesized IC set are represented in the IEEE754 double-
precision format.  The optimal scale factor is explored between 
0.7 and 1.4 for an octave about ±3dB gain tolerance.  Note that 
the range is complete because the quantization results repeat 
when the IC’s are scaled with a power-of-two factor. 

Fig 8 shows the comparison of the different approximation 
strategies in Section 4 and demonstrates the effectiveness of our 
proposed shifted CSAC elimination.  The IC set is for a 20-tap 
linear-phase FIR filter.  First, the two dash lines show the square 
error versus the pre-defined adder budgets without CSE for the 
2’s complement (left) and the signed-digit (right) quantized 
coefficient (QC) sets respectively.  The number of the allocated 
SPT terms is just one more than the given addition budget.  For 
comparable filter responses, the nearest approximation approach 
with the signed-digit QC saves 37.88%~43.14% SPT budgets. 
The saving is even greater than the 29.1%~33.3% by CSE [4], 
which is shown as the solid line between. 
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Figure 8 Comparison of approximation strategies & CSE 

Signed-digit CSE also helps to reduce the additions, but much 
less significantly.  As shown in the figure, the two curves almost 
go in parallel as the budget decreases, which means no more 
common subexpressions are extracted and eliminated.  The 
rightmost three curves are results from our proposed shifted 
CSAC elimination with different shift limits.  For comparable 
filter responses, the proposed method saves 10.34% ~19.51% 
addition budgets for the signed-digit QC set without CSE, while 
reducing 49.06%~50.94% budgets of the 2’s complement one.  
CSAC with a shift limit ±2 is enough for most cases. 

Table 1 Comparison between CSD & SPT coefficients 
 CSAC Shifted CSAC (±2) 

taps add CSD* SPT* add CSD* SPT*
12 23 8.817235 2.727223 21 5.084159 2.727223
16 31 6.773190 3.696292 28 5.209612 3.835811
20 39 5.645929 4.975382 33 17.641685 15.349970
24 44 11.626458 20.547154 40 9.803638 17.781817
28 53 18.317564  8.483186 48 7.218225 20.590703
32 57 20.067199 15.768930 52 23.353057 17.632664

(*square error in the unit of 10-10) 

Approximation with the nearest SPT has comparable coding 
performance with CSD [6], which has the theoretically minimum 
non-zero terms to represent a signed value.  Table 1 summarizes 
the square error of the linear-phase low-pass FIR filters with 
different taps.  For all SF candidates, the scaled NIC’s are first 
rounded to the nearest 16-bit quantization levels and represented 
in the 2’s complement form.  The QC’s are then converted into 
the CSD format for signed-digit CSE.  Finally, the SF that results 
in the minimum number of additions is chosen.  The second 
column in Table 1 lists that minimum numbers of adders with the 
elimination of CSAC (no shift), and the square errors are shown 
in the third column.  The minimum adders are then used as the 
budgets for our proposed complexity-aware algorithm to 
quantize the coefficients and the resultant minimum square errors 
are shown in the fourth column.  Similarly, the rest three 
columns show the simulation results for ±2 shifted CSAC. 

6 CONCLUSIONS 

This paper presents a complexity-aware algorithm to quantize 
the coefficients of FIR filters, which precisely distributes a pre-
defined addition budget to the quantized coefficients by 
eliminating the common subexpressions.  The proposed 
algorithm applies an optimal scale factor within the gain 
tolerance to settle the coefficients collectively into the 
quantization space.  Our simulation shows only 49.06%~50.94% 
adders are required for similar square error.  Moreover, the 
proposed algorithm has comparable performance with the CSD 
coefficients, which have the theoretically minimum non-zero 
terms.  We have implemented a design automation tool that takes 
the double-precision FIR coefficients and a pre-defined budget 
as input to synthesize the minimum filter structure with a 
compensation factor.  Automatic generation of the synthesizable 
RTL is still ongoing.  Common subexpressions for transposed-
form FIR filters (also known as multiple constant multiplication; 
MCM [7]) and the optimal signed-digit representation for CSE 
will be studied in the future. 

REFERENCES 

[1] D. Li, Y. C. Lim, Y. Lian, and J. Song, “A polynomial-time 
algorithm for designing FIR filters with power-of-two coefficients,” 
IEEE Trans. Signal Processing, vol. 50, pp.1935-1941, Aug. 2002 

[2] M. Mehendale, S. D. Sherlekar, VLSI Synthesis of DSP Kernels - 
Algorithmic and Architectural Transformations, Kluwer Academic 
Publishers, 2001 

[3] Y. Jang, and S. Yang, “Low-power CSD linear-phase FIR filter 
structure using vertical common subexpression,” Electronics Letters, 
vol. 38, pp.777-779, July 2002 

[4] T. J. Lin, T. H. Yang, and C. W. Jen, “Area-effective FIR filter 
design for multiplier-less implementation,” International 
Symposium on Circuits and Systems (ISCAS), May 2003 

[5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time 
Signal Processing, 2nd Edition, Prentice Hall, 1999 

[6] K. K. Parhi, VLSI Digital Signal Processing Systems – Design and 
Implementation, Wiley, 1999 

[7] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple 
constant multiplication – efficient and versatile framework and 
algorithms for exploring common subexpression elimination,” IEEE 
Trans. Computer-Aided Design, pp.151-165, Feb 1996 


