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Abstract 

The VLIW processors with static instruction scheduling and 
thus deterministic execution times are very suitable for high-
performance real-time DSP applications.  But the two major 
weaknesses in VLIW processors prevent the integration of more 
functional units (FU) for a higher instruction issuing rate – the 
dramatically growing complexity in the register file (RF), and 
the poor code density.  In this paper, we propose a novel ring-
structure RF, which partitions the centralized RF into 2N sub-
blocks with an explicit N-by-N switch network for N FU.  Each 
sub-block only requires access ports for a single FU.  We also 
propose the hierarchical VLIW encoding with variable-length 
RISC-like instructions and NOP removal.  The ring-structure 
RF saves 91.88% silicon area and reduces 77.35% access time 
of the centralized RF.  Our simulation results show that the 
proposed instruction set architecture with the exposed ring-
structure RF has comparable performance with the state-of-the-
art DSP processors.  Moreover, the hierarchical VLIW 
encoding can save 32%~50% code sizes.

1. Introduction 

Programmable embedded solutions are attractive for their 
less development effort, the upgradability to support new 
standards and possibly field software patches.  These factors 
reduce the time-to-market, extend the time-in-market, and thus 
make the greatest profit.  Today’s media processing demands 
extremely high computations with real-time constraints in the 
audio, image or video applications.  Instruction parallelism is 
exploited to speed up the high-performance microprocessors.  
Compared to the dynamically hardware-scheduled superscalar 
processors, VLIW machines [1] have low-cost compiler 
scheduling with deterministic execution time and thus become 
the trends of high-performance DSP processors.  But VLIW 
processors are notorious for their poor code density, because the 
unused instruction slots must be filled by NOP.  The situation 
gets worse when the parallelism is limited.  Variable-length 
VLIW [2] eliminates NOP with alternative functional unit (FU) 
codes for run-time instruction dispatch and decoding, compared 
to the conventional position-coded VLIW processors (i.e. each 
FU has a corresponding bit-field in the instruction packet).  
Indirect VLIW [3] has an addressable internal micro-instruction 
memory (i.e. the programmable VIM) for the instruction packets.  
The RISC-like instruction words in existing packets can be 
reused to synthesize new packets to reduce the instruction 
bandwidth.  In addition to the code density problem, the 
complexity of the register file (RF) grows exponentially [4] as 
more and more FU are integrated on a chip, which operate 
concurrently to achieve the performance requirements.  The RF 
is frequently partitioned for execution clusters [2] with explicit 

interconnection networks among the clusters to significantly 
reduce the complexity at the cost of small performance penalty. 

This paper is organized as follows.  Section 2 gives a brief 
overview of the proposed 4-way VLIW DSP.  Section 3 and 4 
address the RF and the code density problems of the VLIW 
processors respectively.  The simulation results are available at 
the end of each section.  The trial silicon implementation of the 
proposed DSP processor is summarized in Section 5, which 
shows very promising results.  Finally, Section 6 concludes this 
work and outlines our future researches. 

2. Proposed VLIW DSP Architecture 

Fig 1 depicts the 2-tier instruction processing with separate 
control and data manipulations, which effectively smoothes the 
instruction flow to the DSP datapath.  The proposed DSP is a 
four-way VLIW processor with two load/store units and two 
ALU/MAC units.  The instruction dispatcher handles zero-
overhead looping and the unconditional branches (e.g. jumps 
and traps) transparently to the datapath, which receives an 
instruction packet (including four RISC-like instruction words) 
per cycle, regardless of the control flow, except the conditional 
branches (data-dependent control), which need the cooperation 
with the control/LS FU (instruction field 0) of the datapath.  
With the proposed ring-structure RF for efficient data exchange 
among FU, the proposed DSP processor can easily achieve its 
peak performance of four 16-bit data operations per cycle, or 
fifteen RISC-type operations per cycle (including four effective 
data manipulations, four data generations, four address updates, 
and three branch controls). 

Ring-structure RF

Instruction Dispatcher
(hardware decompression)

Control
LS

ALU
MAC

LS
ALU

E_MAC

datapath

Assembly Program

Assembler/Linker
(software compression)

Instruction Set Simulation

Fig 1  2-tier instruction processing 

In addition to the general assembling and linking, our code 
generation tool takes the responsibility for the code compression, 
while the dispatcher dynamically decompresses the instruction 
packets.  The proposed hierarchical VLIW encoding recodes the 
compressed variable-length instruction packets to simplify the 
target address calculation in the control flow for a fixed-length 
header (i.e. cap) and the variable-length code-words, which are 
stuffed from the beginning and the end respectively into a long 
fixed-length instruction bundle.  The linker assigns each label in 
the user’s assembly program the bundle number with the packet 
offset, instead of the target address of the packet directly to 
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simplify the control manipulations.  Note that the symbolic 
instruction-set simulation in the 2-tier instruction processing can 
be conducted independently from the instruction encoding and 
compression schemes in the implementations. 

3. VLIW Datapath with SIMD Capability 

3.1. Ring-structure register file 
A centralized register file (RF) provides storage for and 

interconnects to each functional unit (FU) in a general manner 
and each FU can read from or write to any register location.  For 
N concurrent FU, the silicon area of the centralized RF grows as 
N 3, the delay as N 3/2, and the power dissipation as N 3 [3].  Thus, 
the RF will soon dominate the area, the delay, and the power 
dissipation in the multi-issue processors as the number of FU 
increases.  The communication between FU is usually restricted 
by partitioning the RF to reduce the complexity significantly 
with some performance penalty.  In other words, each FU can 
only read and write a limited subset of registers.  In this paper, 
we partition the centralized RF into 2N sub-blocks and separate 
the interconnection from the RF with an explicit switch network.  
Each FU can simultaneously access two sub-blocks, one of 
which is private (i.e. dedicated to the FU) and the other is 
dynamically mapped for inter-FU communications.  Therefore, 
each sub-block only requires the access ports for a single FU.  
By the way, the shared sub-blocks are organized in a ring to 
reduce the control overheads, where the dynamic mapping is 
exposed to the VLIW ISA with log2N offset bits and is directly 
specified by the programmers for each instruction packet. 

Control / LS LS ALU / MAC ALU /
Enhanced MAC

R0~R7
(private, 32-bit)

R0~R7
(private, 32-bit)

R0~R7
(private, 40-bit)

R0~R7
(private, 40-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

local
registers

Instruction Dispatcher

24 24 24 24

ring
registers

Ring-structure Register File

Fig 2  Ring-structure register file 

The shaded region in Fig 2 shows the ring-structure RF in 
our proposed 4-way VLIW DSP processor.  Each sub-block has 
four access ports (2R/2W).  Imagine the four concurrent FU as 
individual RISC-like processors, and each processor has a 16-
element RF.  Each RF is partitioned into a private and a shared 
sub-block, each of which has eight registers.  The shared sub-
blocks (i.e. ring registers) are used for data exchanges among the 
four FU and are concatenated as a ring with a 2-bit control to 
reduce the context for dynamic port mapping.  The shared sub-
blocks are all identical and each has eight 32-bit elements 
(r8~r15).  The private sub-blocks (i.e. local registers) of the 
control/LS FU have eight 32-bit elements for general-purpose 
uses and memory addresses, while those of ALU/MAC have 
eight 40-bit accumulators.  The port mapping is controlled by 
the 2-bit ring offset attached to each instruction packet without
any state, which is completely transparent to the FU. 

3.2. SIMD functional units 

The ALU/MAC unit can perform two 16-bit ALU operations 
simultaneously.  Moreover, it supports two concurrent 16-bit 
MAC operations with 40-bit accumulators with the instruction 

MAC_V ri, rm, rn,

which executes ri ri+rm.Hi×rn.Hi, and ri+1 ri+1+rm.Lo
×rn.Lo in parallel.  It needs four concurrent accesses to the RF 
(two reads and two writes respectively).  The index i must be 
even, with i+1 implicitly specified.  Besides, the DSP also 
supports powerful double load (store) instructions of the form 

LW_D rm, rn, (ri)+j,

which performs two parallel memory accesses (rm Mem[ri],
rn Mem[ri+1]) with concurrent address updates (ri ri+j,
and ri+1 ri+1+j).  These instructions require six concurrent 
RF accesses (including two reads and four writes for loads, or 
four reads and two writes for stores).  The accesses do not 
conflict because ri and ri+1 are local address registers while rm
and rn are ring registers that deliver data to ALU/MAC.  They 
locate in independent register sub-blocks. 

Finally, the ALU/enhanced MAC unit supports single-cycle 
16-bit complex MAC/MUL or single-cycle 32-bit MAC/MUL.  
These instructions exhaust all multiplication resources (i.e. our 
DSP totally has four 16-bit multipliers) and prevent the other 
ALU/MAC unit from any operation involving multiplication. 

3.3. Programming model 
The assembly syntax for our VLIW DSP starts with the ring 

offset, followed by the four RISC-like instruction words to form 
an instruction packet as 

ring offset; i0; i1; i2; i3;.

The summary of our instruction set is available in Appendix. 
Fig 3 is an illustrating example of a 64-tap finite-impulse 

response (FIR) filter that produces 1,024 outputs.  The memory 
subsystem uses half-word addressing and the input and output 
data are 16-bit fractional and 32-bit fixed-point numbers 
respectively.  The RPT instruction (the repeat instruction for 
zero-overhead looping; see line 4 and line 6) is carried out in the 
instruction dispatcher and consumes no execution cycle of the 
datapath.  Note that only two-level loop nesting is allowed in 
our current implementation. 

The inner loop (line 7-8) loads four 16-bit inputs and four 
16-bit coefficients into two 32-bit r8 and two 32-bit r9 with the 
two SIMD LS units respectively, while the address registers 
(two r0 and two r1) are updated simultaneously.  In the 
meanwhile, the two ALU/MAC units perform 16-bit SIMD 
MAC operations of the form 
MAC_V r0, r8, r9

for four taps (i.e. r0 r0+r8.Hi×r9.Hi, and r1 r1+r8.Lo×
r9.Lo for each ALU/MAC).  After summing up the 32 32-bit 
products with 40-bit accumulators, r0 are r1 are added together 
and rounded to the 32-bit r8 in the ring registers.  Finally, two 
32-bit outputs are stored in the memory subsystem by the two 
LS units via r8.  In this FIR example, the outer loop (line 5 and 
line 7-12) can produce two filter outputs in 35 cycles.  In other 
words, the proposed DSP can compute 3.66 taps every cycle. 

The conditional branches in our DSP processor evaluate the 
conditions through the register ports of control/LS FU, which 
execute in parallel with the succeeding instruction packet.  
Therefore, NOP must be inserted if the access port conflicts. 
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1 0; MOV r0,COEF; MOV r0,COEF; MOV r0,0; MOV r0,0; 
2 0; MOV r1,X; MOV r1,X+1; NOP; NOP; 
3 0; MOV r2,Y; MOV r2,Y+2; NOP; NOP; 
4 RPT 512,8; 
5 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MOV r1,0; MOV r1,0; 
6 RPT 15,2; 
7 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 
8 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 
9 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 

10 0; MOV r0,COEF; MOV r0,COEF; MAC_V r0,r8,r9; MAC_V r0,r8,r9; 
11 0; ADDI r1,r1,-60; ADDI r1,r1,-60; ADD r8,r0,r1; ADD r8,r0,r1; 
12 2; SW (r2)+4,r8; SW (r2)+4,r8; MOV r0,0; MOV r0,0; 

Fig 3  Example: 64-tap FIR Filter 

3.4. ISA performance with exposed ring-structure RF 
This section evaluates the performance degradation due to 

the access restrictions of the ring-structure RF, where the port 
mapping is under the direct control of the programmers.  We 
have constructed an instruction-set simulator for the proposed 4-
way VLIW DSP processor using the assembly syntax described 
in Section 3.3. 

Table 1 Performance comparison

TI     
C’55x [5] 

TI     
C’64x [2] 

NEC 
SPXK5[6] 

Intel/ADI 
MSA [7] 

Proposed

FIR NT/2 NT/4 NT/2 NT/2 NT/4

FFT 4,768 2,403 2,944 3,176 2,340 

Viterbi 1 (0.4) N.A. 1 (1) 1 (N.A.) 1 (0.84)

ME N.A. 2 2 4 2 

Table 1 summarizes the performance comparisons between 
the state-of-the-art high-performance DSP processors and the 
proposed ISA with the exposed ring-structure RF.  The second 
row shows the number of cycles required for N-sample T-tap 
FIR filtering, which indicates the on-chip MAC resources.  The 
third row lists the performance of the radix-2 256-point fast 
Fourier transform (FFT), which is measured in the number of 
execution cycles.  The maximum ACS (add-select-compare) 
operations per cycle are given in the fourth row, which is the 
kernel of the Viterbi algorithm.  The numbers in parentheses 
show the results that consider the load/store overheads when the 
depth is 16.  The performance of TI C’64s is not included 
because it has a specific Viterbi coprocessor.  Finally, the last 
row compares the performance of the motion estimation under 
the MAE (mean absolute error) criteria, which is measured in 
pixels per cycle.  The simulation shows that the performance of 
our proposed DSP processor is comparable with the state-of-the-
art DSP for various benchmarks if the dataflow can be 
appropriately arranged through the ring-structure RF. 

4. Hierarchical VLIW Encoding 

The poor code density of the VLIW processors comes from 
the redundancy inside (1) the fixed-length RISC-like instruction 
words because most operations do not actually need all control 
bits, and (2) the position-coded instruction packet, where NOP
must be inserted in the corresponding fields of idle functional 
units (FU).  HAT [8] is an efficient variable-length instruction 
format to solve the first problem with simple control flow.  We 
solve the second one with an explicitly specified ‘valid’ bit-field 
of the instruction packets to remove all NOP codes.  Each FU 
has a correspondent bit in ‘valid’ to indicate whether it is idle.  
The variable-word instruction packets with the variable-length 
RISC-like instruction words are then packed into a large fixed-

length bundle for easy instruction accesses.  The instruction 
encoding is described in Section 4.1 with complete instruction 
formats in Appendix, of which the layout is for simple decoding 
illustrated in Section 4.2. 

4.1. Instruction format 
A variable-length RISC-like instruction word is divided into 

a fixed-length ‘head’ and a variable-length ‘tail’ as HAT [8] to 
deliver the control information on demand for the instruction 
and execution pipelines arranged as Fig 4(c).  Fig 7(a) and (b) in 
Appendix show the instruction formats for the load/store, and 
ALU/MAC units in our DSP.  The effective instruction words in 
an execution cycle (i.e. without NOP codes) are packed into an 
instruction packet with a fixed-length control ‘cap’.  The fixed-
length caps and the variable-length packets are then placed from 
the beginning and the end of the 1024-bit instruction bundle 
respectively as depicted in Fig 4 (a).  For each instruction packet, 
the fixed-length heads are placed in order ahead of the variable-
length tails. 

Cap
Cap

Cap H0H2T0T2

instruction packet

1,024-bit instruction bundle

Valid Tail Length Ring

12-bit

2-bit 4-bit 4-bit 2-bit

00: VLIW instruction

10: RPT (repeat) instruction

01: other control instructions

11: end of bundle

instruction
pipelineHeads

Heads
Tails

Tails

Read
Read EXE/

MEM

EXE/
MEM Write

Write
execution
pipeline

00

(a)

(b) (c)

Fig 4  Instruction bundle 

  In our 4-way VLIW DSP, the cap is a 12-bit control word 
including the aforementioned 4-bit ‘valid’ and the 2-bit ring 
offset.  Because an instruction bundle contains various numbers 
of instruction packets, the leading two bits are used to detect the 
bundle end.  Moreover, they help to recognize the zero-overhead 
flow controls before the detailed packet decoding.  Finally, the 
total length of the tails is attached, to easily locate the next 
instruction packet for the pipelined instruction dispatcher.  Fig 
4(b) shows the packet cap format.   

The instruction dispatcher handles the control instructions, 
which have fixed-length caps and variable-length tails, but 
without heads as depicted in Fig 7(a).  Branch instructions re-
direct the instruction flow to a new instruction bundle with the 
packet index.  To easily locate the target instruction packet, the 
pointer for the first instruction head is also available in the 
instruction encoding.  Our first DSP implementation has 128 
instruction memory pages, each of which contains 256 bundles 
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(32 Kbytes).  In other words, the maximum instruction memory 
is 4 Mbytes. 

4.2. Decoder with incremental/logarithmic shifters 
To extract from the instruction bundle the appropriate bit 

fields for decoding is complex, especially for the variable-length 
instruction packets.  Instead of large multiplexers, we utilize 
incremental and logarithmic shifters shown in Fig 5, where the 
decoder operates only on the fixed positions.  In the simulations, 
a bundle contains 16~17 packets in average and thus we limit 
the number of packets in a bundle to 32 in our implementation.  
Thus, the cap decoder only needs to examine the leading 14 bits 
of the 386-bit shifter, which shifts out one 12-bit cap constantly 
every cycle.  The four multiplexers at the right-hand-side Fig 5 
shift out the fixed-length heads depending on the ‘valid’ bits of 
the cap.  The logarithmic tail shifter follows to shift out all tails 
of the instruction packet.  In brief, the head/tail shifter is aligned 
to the next instruction packet at succeeding clock cycle as the 
12-bit cap shifter.  Finally, for branch instructions, two coarse 
logarithmic shifters are used to align the new instruction bundle 
with the index and the packet pointer respectively.  Note that the 
cap and head/tail shifters contain overlapped bits because of the 
non-deterministic boundary between caps and packets. 

32KByte On-chip Instruction Memory
(including 256 instruction bundles)

Cap shifter (12-bit)

Cap buffer (384-bit)

Cap decoder

12+2

384

H0 shifter (16-bit)

H1 shifter (16-bit)

H2 shifter (12-bit)

H3 shifter (12-bit)

Tail & fine branch shifter (0~60-bit)

HT buffer (928-bit)

Tail
decoder

928

16

16

12

12

Coarse
branch shifter

(0~896-bit)

928

60

Head
decoder

2nd/3rd pipeline
stages

2nd/3rd pipeline
stages

Cap decoding
Cap/HT buffer alignment

Head dispatching

Cap decoding
Cap/HT buffer alignment

Head dispatching

928384

Coarse
branch shifter

(0~360-bit)

Fig 5  Instruction dispatcher 

4.3. Code compression 
Actually, the HAT format has already been extended for 

VLIW processors [9].  The major distinction between our 
proposed hierarchical VLIW encoding and VLIW-HAT is that 
we use the explicit ‘valid’ bits in the cap to maintain the 
position-coded VLIW that enables distributed decoding, instead 
of individual dispatch codes with a complex centralized decoder.  
For an N-way VLIW processor, our approach uses N ‘valid’ bits 
for each packet to dispatch its instruction words.  By contrast, 
VLIW-HAT requires log2(N+1) bits for each packet to indicate 
the number of active FU and additional log2N bits of each 
effective instruction word for FU mapping.  Assume the average 
number of instruction words in a packet is P (0 P N), and the 
number of bits for instruction dispatch in VLIW-HAT is 
log2(N+1)+P log2N.  Thus, VLIW-HAT has better compression 
ratio only for codes with extremely low parallelism.  Moreover, 
we use the 2-bit control in the cap to indicate the bundle end 
instead of specifying the number of packets for each bundle as 
VLIW-HAT, which reduces some bits further. 

Table 2 summarizes the code sizes for the benchmarks in 
Table 1 with different coding schemes.  The original codes 
contain 24-bit fixed-length RISC-like instruction words, and an 

instruction packet has 98 bits including the 2-bit ring offset.  
VLIW-HAT has a 6-bit packet number in each bundle and a 3-
bit instruction number in each packet, and the instruction 
formats are very similar to those in Appendix.  Our proposed 
scheme has better compression ratio for all cases.  Moreover, it 
has better layout to simplify the decoding than VLIW-HAT. 

Table 2 Code size comparison

 Original VLIW-HAT [9] Proposed 

FIR 2,450 1,452 (59%) 1,354 (55%) 

FFT 39,298 23,726 (60%) 22,214 (56%) 

Viterbi 4,998 3,610 (72%) 3,414 (68%) 

ME 2,156 1,194 (55%) 1,086 (50%) 

5. Silicon Implementation 

We have implemented in Verilog RTL the ring-structure RF 
for the proposed 4-way VLIW DSP and the centralized one with 
the same number of registers.  The designs are synthesized using 
Synopsys with 0.35µm cell library and automatically placed and 
routed in 1P4M CMOS technology using Apollo.  The results 
are summarized in Table 3.  Our approach reduces the delay and 
the area by factors of 4.42 and 87.37 respectively.  PowerMill is 
used to estimate the power dissipation of the ring-structure RF 
to perform FFT at 100 MHz.  We do not have the power 
measure for the centralized RF due to the limited tool capability. 

Table 3  Comparison of RF structures

 Centralized RF Ring-Structure RF 

Delay 38.46 ns 8.71 ns 

Gate Count 591K 48K 

Area 17.76mm×17.76mm 1.9mm×1.9mm  

Power N.A. 356mW @3.3V 100MHz 

Fig 6 shows the layout of our trial implementation of the 
proposed 4-way VLIW DSP processor with 32-Kbyte data and 
32-Kbyte instruction memories.  The processor is pipelined into 
five stages (3-stage instruction pipeline and 3-stage execution 
pipeline with one overlapping stage) and operates at 133 MHz.  
The estimated gate count is 552,492 (133,992 for core only) 
with 7.5mm×7.5mm chip area. 

6. Conclusions 

This paper presents an efficient VLIW DSP architecture for 
baseband processing, where the two major weaknesses of VLIW 
processors are effectively improved.  We propose a novel ring-
structure register file (RF), which saves 91.88% silicon area of a 
centralized one, and reduces its access time by 77.35%.  The 
simulation shows that the ISA with the exposed ring-structure 
RF has comparable performance for various DSP kernels with 
the state-of-the-art DSP processors.  The preliminary results of 
our trial implementation are very promising.  We are currently 
working on the custom designs of the register sub-blocks, the 4-
by-4 switch network, and critical components of the datapath.  
Extensive clock gating will be applied to reduce the power. 

Besides efficient datapath designs, we also improve the poor 
code density with the proposed hierarchical VLIW encoding, 
which reduces redundant bits with variable-length instruction 
words and NOP removal.  Our simulation shows the proposed 
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encoding scheme reduces 32%~50% code sizes.  Finally, there 
still exists redundancy between instruction packets due to loop 
unrolling and software pipelining techniques [1], which improve 
the instruction-level parallelism.  The integration of differential 
encoding scheme [10] will be studied to remove the repetitive 
codes for the unrolled loops to further improve the compression 
ratio. 

32Kbyte Instruction Memory
(256 1024-bit bundles)

32Kbyte Data Memory
(4 banks)

Instruction
Dispatcher

Instruction
Decoder

ALU/eMACALU/MACL/SL/S

Local Registers

4-by-4 Switch Network

Ring Registers

Fig 6  Layout of the proposed VLIW DSP 
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Appendix 

Table 5  Instruction set summary

Mnemonic Action 

INSTRUCTION DISPATCHER

RPT Repeat the following m packets n times 
J Jump; unconditional branch 

JAL Jump and link 
JR Jump register 

BNEZ Branch on not equal zero 
TRAP Trap; system call 

COMMON TO ALL FIELDS

NOP No operation 
ADDI Add immediate 
XOR Exclusive OR 

MOV32 Move 32-bit immediate 

FIELD 0/1

LH / SH Load/store half word 
LW / SW Load/store word 

LH_D / SH_D Double load/store halfword 
LW_D / SW_D Double load word 

LH_V / SH_V (SIMD) load/store halfword vector 

FIELD 2/3

MUL 16-bit Hi/Lo multiply 
MAC 16-bit Hi/Lo multiply & accumulate 
ADD Add 
SUB Subtract 
AND AND 

OR OR 
SLL Shift left logical 
SRL Shift right logical 
SRA Shift right arithmetic 
BF2 Radix-2 butterfly 

MUL_V (SIMD) 16-bit multiply with 32-bit result 
MUL_16V (SIMD) 16-bit multiply with 16-bit result 

MAC_V (SIMD) 16-bit multiply with 40-bit accumulate 
ADD_V (SIMD) 16-bit add 
SUB_V (SIMD) 16-bit subtract 
ABS_V (SIMD) absolute value 
SRA_V (SIMD) shift right arithmetic 
MIN_V (Subword) select the small element 

MAX_V (Subword) select the large element 
PACK Merge low 16-bit of two registers 

SPECIFIC TO FIELD 3

CMUL 16-bit complex multiply with 32-bit result 
CMUL_16V 16-bit complex multiply with 16-bit result 

CMAC 16-bit complex multiply with 40-bit accumulate
MUL32 32-bit multiply 
MAC32 32-bit multiply & accumulate 
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10 repeat # instr #RPT

00 000000 syscall #TRAP 0001

01 bundle #00 page #J index head pointer

01 bundle #01 page #JAL index head pointer

01 Rs10JR unused

01 bundle offset11 RsBNEZ index head pointerRing

Cap (12-bit) Tail (4~20-bit)

unused

VLIW format

(a)

00 Rsaddr_offset func: 00(LH), 01(LW), 10(SH), 11(SW)Rdfunc

01 Rd_0 addr_offsetRd_1func func: 00(LH_D), 01(LW_D), 10(SH_D), 11(SW_D)Rs

100 Rs_1 Rdf func: 0(LH_V), 1(SH_V)Rs_0 ad_offset_0 ad_offset_1

1101 Imm.RsADDI Rd

111 Imm.uMOV32 24-bit Imm.

1100 Rs_1XOR RdRs_0

Tail (0~24-bit)Head (16-bit)

L/S

vector L/S

double L/S

Rd

Imm.

u

(b)

00 Rs_0Rs_1 func: 00(ADD),01(SUB),10(ADD_V),11(SUB_V)Rdfunc

unuse

Tail (0~28-bit)Head (12-bit)

add/sub

0100 Rs_0Rs_1 Rdlogical func

0110 funcshamtshift Rs

0111 RdADDI Rs Imm.

shamt func: 00(SLL),01(SRL),10(SRA),11(SRA_V)

111 Imm.MOV32 24-bit Imm.Rd

110 Rd Rs fu func: 0(MAC), 1(MUL)10multiply

110 Rd Rs funcu 0min/max func: 00(MIN_V), 01(MAX_V), 10(ABS_V)

10 Rdmac Rs_0 func: 0(MAC_V), 1(CMAC)

func: 00(AND), 01(OR), 10(XOR)

0101 Rs_0Rs_1 Rdmultiply func func: 00(MUL_V), 01(MUL16_V)
10(CMUL), 11(CMUL16)

Rs_1

Rs_1 Rdother ALU func func: 00(PACK), 01(BF2)Rs_0

f

0101 u

u0

1

u

u

u

(c) 

Fig 7 Instruction format for (a) instruction dispatcher, (b)load/store, and (c) ALU/MAC functional units 
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