
An Efficient VLIW DSP Architecture for Baseband Processing

 Tay-Jyi Lin, Chin-Chi Chang, Chen-Chia Lee, and Chein-Wei Jen

 Department of Electronics Engineering
 National Chiao Tung University

Abstract

The VLIW processors with static instruction scheduling and
thus deterministic execution times are very suitable for high-
performance real-time DSP applications. But the two major
weaknesses in VLIW processors prevent the integration of more
functional units (FU) for a higher instruction issuing rate – the
dramatically growing complexity in the register file (RF), and
the poor code density. In this paper, we propose a novel ring-
structure RF, which partitions the centralized RF into 2N sub-
blocks with an explicit N-by-N switch network for N FU. Each
sub-block only requires access ports for a single FU. We also
propose the hierarchical VLIW encoding with variable-length
RISC-like instructions and NOP removal. The ring-structure
RF saves 91.88% silicon area and reduces 77.35% access time
of the centralized RF. Our simulation results show that the
proposed instruction set architecture with the exposed ring-
structure RF has comparable performance with the state-of-the-
art DSP processors. Moreover, the hierarchical VLIW
encoding can save 32%~50% code sizes.

1. Introduction

Programmable embedded solutions are attractive for their
less development effort, the upgradability to support new
standards and possibly field software patches. These factors
reduce the time-to-market, extend the time-in-market, and thus
make the greatest profit. Today’s media processing demands
extremely high computations with real-time constraints in the
audio, image or video applications. Instruction parallelism is
exploited to speed up the high-performance microprocessors.
Compared to the dynamically hardware-scheduled superscalar
processors, VLIW machines [1] have low-cost compiler
scheduling with deterministic execution time and thus become
the trends of high-performance DSP processors. But VLIW
processors are notorious for their poor code density, because the
unused instruction slots must be filled by NOP. The situation
gets worse when the parallelism is limited. Variable-length
VLIW [2] eliminates NOP with alternative functional unit (FU)
codes for run-time instruction dispatch and decoding, compared
to the conventional position-coded VLIW processors (i.e. each
FU has a corresponding bit-field in the instruction packet).
Indirect VLIW [3] has an addressable internal micro-instruction
memory (i.e. the programmable VIM) for the instruction packets.
The RISC-like instruction words in existing packets can be
reused to synthesize new packets to reduce the instruction
bandwidth. In addition to the code density problem, the
complexity of the register file (RF) grows exponentially [4] as
more and more FU are integrated on a chip, which operate
concurrently to achieve the performance requirements. The RF
is frequently partitioned for execution clusters [2] with explicit

interconnection networks among the clusters to significantly
reduce the complexity at the cost of small performance penalty.

This paper is organized as follows. Section 2 gives a brief
overview of the proposed 4-way VLIW DSP. Section 3 and 4
address the RF and the code density problems of the VLIW
processors respectively. The simulation results are available at
the end of each section. The trial silicon implementation of the
proposed DSP processor is summarized in Section 5, which
shows very promising results. Finally, Section 6 concludes this
work and outlines our future researches.

2. Proposed VLIW DSP Architecture

Fig 1 depicts the 2-tier instruction processing with separate
control and data manipulations, which effectively smoothes the
instruction flow to the DSP datapath. The proposed DSP is a
four-way VLIW processor with two load/store units and two
ALU/MAC units. The instruction dispatcher handles zero-
overhead looping and the unconditional branches (e.g. jumps
and traps) transparently to the datapath, which receives an
instruction packet (including four RISC-like instruction words)
per cycle, regardless of the control flow, except the conditional
branches (data-dependent control), which need the cooperation
with the control/LS FU (instruction field 0) of the datapath.
With the proposed ring-structure RF for efficient data exchange
among FU, the proposed DSP processor can easily achieve its
peak performance of four 16-bit data operations per cycle, or
fifteen RISC-type operations per cycle (including four effective
data manipulations, four data generations, four address updates,
and three branch controls).

Ring-structure RF

Instruction Dispatcher
(hardware decompression)

Control
LS

ALU
MAC

LS
ALU

E_MAC

datapath

Assembly Program

Assembler/Linker
(software compression)

Instruction Set Simulation

Fig 1 2-tier instruction processing

In addition to the general assembling and linking, our code
generation tool takes the responsibility for the code compression,
while the dispatcher dynamically decompresses the instruction
packets. The proposed hierarchical VLIW encoding recodes the
compressed variable-length instruction packets to simplify the
target address calculation in the control flow for a fixed-length
header (i.e. cap) and the variable-length code-words, which are
stuffed from the beginning and the end respectively into a long
fixed-length instruction bundle. The linker assigns each label in
the user’s assembly program the bundle number with the packet
offset, instead of the target address of the packet directly to

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

simplify the control manipulations. Note that the symbolic
instruction-set simulation in the 2-tier instruction processing can
be conducted independently from the instruction encoding and
compression schemes in the implementations.

3. VLIW Datapath with SIMD Capability

3.1. Ring-structure register file
A centralized register file (RF) provides storage for and

interconnects to each functional unit (FU) in a general manner
and each FU can read from or write to any register location. For
N concurrent FU, the silicon area of the centralized RF grows as
N 3, the delay as N 3/2, and the power dissipation as N 3 [3]. Thus,
the RF will soon dominate the area, the delay, and the power
dissipation in the multi-issue processors as the number of FU
increases. The communication between FU is usually restricted
by partitioning the RF to reduce the complexity significantly
with some performance penalty. In other words, each FU can
only read and write a limited subset of registers. In this paper,
we partition the centralized RF into 2N sub-blocks and separate
the interconnection from the RF with an explicit switch network.
Each FU can simultaneously access two sub-blocks, one of
which is private (i.e. dedicated to the FU) and the other is
dynamically mapped for inter-FU communications. Therefore,
each sub-block only requires the access ports for a single FU.
By the way, the shared sub-blocks are organized in a ring to
reduce the control overheads, where the dynamic mapping is
exposed to the VLIW ISA with log2N offset bits and is directly
specified by the programmers for each instruction packet.

Control / LS LS ALU / MAC ALU /
Enhanced MAC

R0~R7
(private, 32-bit)

R0~R7
(private, 32-bit)

R0~R7
(private, 40-bit)

R0~R7
(private, 40-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

local
registers

Instruction Dispatcher

24 24 24 24

ring
registers

Ring-structure Register File

Fig 2 Ring-structure register file

The shaded region in Fig 2 shows the ring-structure RF in
our proposed 4-way VLIW DSP processor. Each sub-block has
four access ports (2R/2W). Imagine the four concurrent FU as
individual RISC-like processors, and each processor has a 16-
element RF. Each RF is partitioned into a private and a shared
sub-block, each of which has eight registers. The shared sub-
blocks (i.e. ring registers) are used for data exchanges among the
four FU and are concatenated as a ring with a 2-bit control to
reduce the context for dynamic port mapping. The shared sub-
blocks are all identical and each has eight 32-bit elements
(r8~r15). The private sub-blocks (i.e. local registers) of the
control/LS FU have eight 32-bit elements for general-purpose
uses and memory addresses, while those of ALU/MAC have
eight 40-bit accumulators. The port mapping is controlled by
the 2-bit ring offset attached to each instruction packet without
any state, which is completely transparent to the FU.

3.2. SIMD functional units

The ALU/MAC unit can perform two 16-bit ALU operations
simultaneously. Moreover, it supports two concurrent 16-bit
MAC operations with 40-bit accumulators with the instruction

MAC_V ri, rm, rn,

which executes ri ri+rm.Hi×rn.Hi, and ri+1 ri+1+rm.Lo
×rn.Lo in parallel. It needs four concurrent accesses to the RF
(two reads and two writes respectively). The index i must be
even, with i+1 implicitly specified. Besides, the DSP also
supports powerful double load (store) instructions of the form

LW_D rm, rn, (ri)+j,

which performs two parallel memory accesses (rm Mem[ri],
rn Mem[ri+1]) with concurrent address updates (ri ri+j,
and ri+1 ri+1+j). These instructions require six concurrent
RF accesses (including two reads and four writes for loads, or
four reads and two writes for stores). The accesses do not
conflict because ri and ri+1 are local address registers while rm
and rn are ring registers that deliver data to ALU/MAC. They
locate in independent register sub-blocks.

Finally, the ALU/enhanced MAC unit supports single-cycle
16-bit complex MAC/MUL or single-cycle 32-bit MAC/MUL.
These instructions exhaust all multiplication resources (i.e. our
DSP totally has four 16-bit multipliers) and prevent the other
ALU/MAC unit from any operation involving multiplication.

3.3. Programming model
The assembly syntax for our VLIW DSP starts with the ring

offset, followed by the four RISC-like instruction words to form
an instruction packet as

ring offset; i0; i1; i2; i3;.

The summary of our instruction set is available in Appendix.
Fig 3 is an illustrating example of a 64-tap finite-impulse

response (FIR) filter that produces 1,024 outputs. The memory
subsystem uses half-word addressing and the input and output
data are 16-bit fractional and 32-bit fixed-point numbers
respectively. The RPT instruction (the repeat instruction for
zero-overhead looping; see line 4 and line 6) is carried out in the
instruction dispatcher and consumes no execution cycle of the
datapath. Note that only two-level loop nesting is allowed in
our current implementation.

The inner loop (line 7-8) loads four 16-bit inputs and four
16-bit coefficients into two 32-bit r8 and two 32-bit r9 with the
two SIMD LS units respectively, while the address registers
(two r0 and two r1) are updated simultaneously. In the
meanwhile, the two ALU/MAC units perform 16-bit SIMD
MAC operations of the form
MAC_V r0, r8, r9

for four taps (i.e. r0 r0+r8.Hi×r9.Hi, and r1 r1+r8.Lo×
r9.Lo for each ALU/MAC). After summing up the 32 32-bit
products with 40-bit accumulators, r0 are r1 are added together
and rounded to the 32-bit r8 in the ring registers. Finally, two
32-bit outputs are stored in the memory subsystem by the two
LS units via r8. In this FIR example, the outer loop (line 5 and
line 7-12) can produce two filter outputs in 35 cycles. In other
words, the proposed DSP can compute 3.66 taps every cycle.

The conditional branches in our DSP processor evaluate the
conditions through the register ports of control/LS FU, which
execute in parallel with the succeeding instruction packet.
Therefore, NOP must be inserted if the access port conflicts.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

1 0; MOV r0,COEF; MOV r0,COEF; MOV r0,0; MOV r0,0;
2 0; MOV r1,X; MOV r1,X+1; NOP; NOP;
3 0; MOV r2,Y; MOV r2,Y+2; NOP; NOP;
4 RPT 512,8;
5 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MOV r1,0; MOV r1,0;
6 RPT 15,2;
7 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
8 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
9 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;

10 0; MOV r0,COEF; MOV r0,COEF; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
11 0; ADDI r1,r1,-60; ADDI r1,r1,-60; ADD r8,r0,r1; ADD r8,r0,r1;
12 2; SW (r2)+4,r8; SW (r2)+4,r8; MOV r0,0; MOV r0,0;

Fig 3 Example: 64-tap FIR Filter

3.4. ISA performance with exposed ring-structure RF
This section evaluates the performance degradation due to

the access restrictions of the ring-structure RF, where the port
mapping is under the direct control of the programmers. We
have constructed an instruction-set simulator for the proposed 4-
way VLIW DSP processor using the assembly syntax described
in Section 3.3.

Table 1 Performance comparison

TI
C’55x [5]

TI
C’64x [2]

NEC
SPXK5[6]

Intel/ADI
MSA [7]

Proposed

FIR NT/2 NT/4 NT/2 NT/2 NT/4

FFT 4,768 2,403 2,944 3,176 2,340

Viterbi 1 (0.4) N.A. 1 (1) 1 (N.A.) 1 (0.84)

ME N.A. 2 2 4 2

Table 1 summarizes the performance comparisons between
the state-of-the-art high-performance DSP processors and the
proposed ISA with the exposed ring-structure RF. The second
row shows the number of cycles required for N-sample T-tap
FIR filtering, which indicates the on-chip MAC resources. The
third row lists the performance of the radix-2 256-point fast
Fourier transform (FFT), which is measured in the number of
execution cycles. The maximum ACS (add-select-compare)
operations per cycle are given in the fourth row, which is the
kernel of the Viterbi algorithm. The numbers in parentheses
show the results that consider the load/store overheads when the
depth is 16. The performance of TI C’64s is not included
because it has a specific Viterbi coprocessor. Finally, the last
row compares the performance of the motion estimation under
the MAE (mean absolute error) criteria, which is measured in
pixels per cycle. The simulation shows that the performance of
our proposed DSP processor is comparable with the state-of-the-
art DSP for various benchmarks if the dataflow can be
appropriately arranged through the ring-structure RF.

4. Hierarchical VLIW Encoding

The poor code density of the VLIW processors comes from
the redundancy inside (1) the fixed-length RISC-like instruction
words because most operations do not actually need all control
bits, and (2) the position-coded instruction packet, where NOP
must be inserted in the corresponding fields of idle functional
units (FU). HAT [8] is an efficient variable-length instruction
format to solve the first problem with simple control flow. We
solve the second one with an explicitly specified ‘valid’ bit-field
of the instruction packets to remove all NOP codes. Each FU
has a correspondent bit in ‘valid’ to indicate whether it is idle.
The variable-word instruction packets with the variable-length
RISC-like instruction words are then packed into a large fixed-

length bundle for easy instruction accesses. The instruction
encoding is described in Section 4.1 with complete instruction
formats in Appendix, of which the layout is for simple decoding
illustrated in Section 4.2.

4.1. Instruction format
A variable-length RISC-like instruction word is divided into

a fixed-length ‘head’ and a variable-length ‘tail’ as HAT [8] to
deliver the control information on demand for the instruction
and execution pipelines arranged as Fig 4(c). Fig 7(a) and (b) in
Appendix show the instruction formats for the load/store, and
ALU/MAC units in our DSP. The effective instruction words in
an execution cycle (i.e. without NOP codes) are packed into an
instruction packet with a fixed-length control ‘cap’. The fixed-
length caps and the variable-length packets are then placed from
the beginning and the end of the 1024-bit instruction bundle
respectively as depicted in Fig 4 (a). For each instruction packet,
the fixed-length heads are placed in order ahead of the variable-
length tails.

Cap
Cap

Cap H0H2T0T2

instruction packet

1,024-bit instruction bundle

Valid Tail Length Ring

12-bit

2-bit 4-bit 4-bit 2-bit

00: VLIW instruction

10: RPT (repeat) instruction

01: other control instructions

11: end of bundle

instruction
pipelineHeads

Heads
Tails

Tails

Read
Read EXE/

MEM

EXE/
MEM Write

Write
execution
pipeline

00

(a)

(b) (c)

Fig 4 Instruction bundle

 In our 4-way VLIW DSP, the cap is a 12-bit control word
including the aforementioned 4-bit ‘valid’ and the 2-bit ring
offset. Because an instruction bundle contains various numbers
of instruction packets, the leading two bits are used to detect the
bundle end. Moreover, they help to recognize the zero-overhead
flow controls before the detailed packet decoding. Finally, the
total length of the tails is attached, to easily locate the next
instruction packet for the pipelined instruction dispatcher. Fig
4(b) shows the packet cap format.

The instruction dispatcher handles the control instructions,
which have fixed-length caps and variable-length tails, but
without heads as depicted in Fig 7(a). Branch instructions re-
direct the instruction flow to a new instruction bundle with the
packet index. To easily locate the target instruction packet, the
pointer for the first instruction head is also available in the
instruction encoding. Our first DSP implementation has 128
instruction memory pages, each of which contains 256 bundles

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

(32 Kbytes). In other words, the maximum instruction memory
is 4 Mbytes.

4.2. Decoder with incremental/logarithmic shifters
To extract from the instruction bundle the appropriate bit

fields for decoding is complex, especially for the variable-length
instruction packets. Instead of large multiplexers, we utilize
incremental and logarithmic shifters shown in Fig 5, where the
decoder operates only on the fixed positions. In the simulations,
a bundle contains 16~17 packets in average and thus we limit
the number of packets in a bundle to 32 in our implementation.
Thus, the cap decoder only needs to examine the leading 14 bits
of the 386-bit shifter, which shifts out one 12-bit cap constantly
every cycle. The four multiplexers at the right-hand-side Fig 5
shift out the fixed-length heads depending on the ‘valid’ bits of
the cap. The logarithmic tail shifter follows to shift out all tails
of the instruction packet. In brief, the head/tail shifter is aligned
to the next instruction packet at succeeding clock cycle as the
12-bit cap shifter. Finally, for branch instructions, two coarse
logarithmic shifters are used to align the new instruction bundle
with the index and the packet pointer respectively. Note that the
cap and head/tail shifters contain overlapped bits because of the
non-deterministic boundary between caps and packets.

32KByte On-chip Instruction Memory
(including 256 instruction bundles)

Cap shifter (12-bit)

Cap buffer (384-bit)

Cap decoder

12+2

384

H0 shifter (16-bit)

H1 shifter (16-bit)

H2 shifter (12-bit)

H3 shifter (12-bit)

Tail & fine branch shifter (0~60-bit)

HT buffer (928-bit)

Tail
decoder

928

16

16

12

12

Coarse
branch shifter

(0~896-bit)

928

60

Head
decoder

2nd/3rd pipeline
stages

2nd/3rd pipeline
stages

Cap decoding
Cap/HT buffer alignment

Head dispatching

Cap decoding
Cap/HT buffer alignment

Head dispatching

928384

Coarse
branch shifter

(0~360-bit)

Fig 5 Instruction dispatcher

4.3. Code compression
Actually, the HAT format has already been extended for

VLIW processors [9]. The major distinction between our
proposed hierarchical VLIW encoding and VLIW-HAT is that
we use the explicit ‘valid’ bits in the cap to maintain the
position-coded VLIW that enables distributed decoding, instead
of individual dispatch codes with a complex centralized decoder.
For an N-way VLIW processor, our approach uses N ‘valid’ bits
for each packet to dispatch its instruction words. By contrast,
VLIW-HAT requires log2(N+1) bits for each packet to indicate
the number of active FU and additional log2N bits of each
effective instruction word for FU mapping. Assume the average
number of instruction words in a packet is P (0 P N), and the
number of bits for instruction dispatch in VLIW-HAT is
log2(N+1)+P log2N. Thus, VLIW-HAT has better compression
ratio only for codes with extremely low parallelism. Moreover,
we use the 2-bit control in the cap to indicate the bundle end
instead of specifying the number of packets for each bundle as
VLIW-HAT, which reduces some bits further.

Table 2 summarizes the code sizes for the benchmarks in
Table 1 with different coding schemes. The original codes
contain 24-bit fixed-length RISC-like instruction words, and an

instruction packet has 98 bits including the 2-bit ring offset.
VLIW-HAT has a 6-bit packet number in each bundle and a 3-
bit instruction number in each packet, and the instruction
formats are very similar to those in Appendix. Our proposed
scheme has better compression ratio for all cases. Moreover, it
has better layout to simplify the decoding than VLIW-HAT.

Table 2 Code size comparison

 Original VLIW-HAT [9] Proposed

FIR 2,450 1,452 (59%) 1,354 (55%)

FFT 39,298 23,726 (60%) 22,214 (56%)

Viterbi 4,998 3,610 (72%) 3,414 (68%)

ME 2,156 1,194 (55%) 1,086 (50%)

5. Silicon Implementation

We have implemented in Verilog RTL the ring-structure RF
for the proposed 4-way VLIW DSP and the centralized one with
the same number of registers. The designs are synthesized using
Synopsys with 0.35µm cell library and automatically placed and
routed in 1P4M CMOS technology using Apollo. The results
are summarized in Table 3. Our approach reduces the delay and
the area by factors of 4.42 and 87.37 respectively. PowerMill is
used to estimate the power dissipation of the ring-structure RF
to perform FFT at 100 MHz. We do not have the power
measure for the centralized RF due to the limited tool capability.

Table 3 Comparison of RF structures

 Centralized RF Ring-Structure RF

Delay 38.46 ns 8.71 ns

Gate Count 591K 48K

Area 17.76mm×17.76mm 1.9mm×1.9mm

Power N.A. 356mW @3.3V 100MHz

Fig 6 shows the layout of our trial implementation of the
proposed 4-way VLIW DSP processor with 32-Kbyte data and
32-Kbyte instruction memories. The processor is pipelined into
five stages (3-stage instruction pipeline and 3-stage execution
pipeline with one overlapping stage) and operates at 133 MHz.
The estimated gate count is 552,492 (133,992 for core only)
with 7.5mm×7.5mm chip area.

6. Conclusions

This paper presents an efficient VLIW DSP architecture for
baseband processing, where the two major weaknesses of VLIW
processors are effectively improved. We propose a novel ring-
structure register file (RF), which saves 91.88% silicon area of a
centralized one, and reduces its access time by 77.35%. The
simulation shows that the ISA with the exposed ring-structure
RF has comparable performance for various DSP kernels with
the state-of-the-art DSP processors. The preliminary results of
our trial implementation are very promising. We are currently
working on the custom designs of the register sub-blocks, the 4-
by-4 switch network, and critical components of the datapath.
Extensive clock gating will be applied to reduce the power.

Besides efficient datapath designs, we also improve the poor
code density with the proposed hierarchical VLIW encoding,
which reduces redundant bits with variable-length instruction
words and NOP removal. Our simulation shows the proposed

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

encoding scheme reduces 32%~50% code sizes. Finally, there
still exists redundancy between instruction packets due to loop
unrolling and software pipelining techniques [1], which improve
the instruction-level parallelism. The integration of differential
encoding scheme [10] will be studied to remove the repetitive
codes for the unrolled loops to further improve the compression
ratio.

32Kbyte Instruction Memory
(256 1024-bit bundles)

32Kbyte Data Memory
(4 banks)

Instruction
Dispatcher

Instruction
Decoder

ALU/eMACALU/MACL/SL/S

Local Registers

4-by-4 Switch Network

Ring Registers

Fig 6 Layout of the proposed VLIW DSP

7. References

[1] J. L Hennessy, and D. A. Patterson, Computer Architecture – A
Quantitative Approach, 3rd Edition, Morgan Kaufmann, 2002

[2] TMS320C64x DSP Library Programmer's Reference, Texas
Instruments Inc., Apr 2002

[3] G. G. Pechanek and S. Vassiliadis, "The ManArray embedded
processor architecture," Euromicro Conference, vol.1, pp.348-355,
September, 2000

[4] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and
J. D. Owens, “Register organization for media processing,”
International Symposium on High Performance Computer
Architecture (HPCA), pp.375-386, 2000

[5] TMS320C55x DSP Programmer’s Guide, Texas Instruments Inc.,
July 2000

[6] T. Kumura, M. Ikekawa, M. Yoshida, and I. Kuroda, “VLIW DSP
for mobile applications,” IEEE Signal Processing Magazine,
pp.10-21, July 2002

[7] R. K. Kolagotla, et al, “A 333-MHz dual-MAC DSP architecture
for next-generation wireless applications,” IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP
2001), vol. 2, pp.1013-1016, May 2001

[8] H. Pan and K. Asanovic, “Heads and tails: a variable-length
instruction format supporting parallel fetch and decode,”
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES 2001), Nov 2001

[9] H. Pan, High-Performance, Variable-Length Instruction
Encodings, Master Thesis, MIT, 2002

[10] G. Fettweis, M. Bolle, J. Kneip, and M. Weiss, “OnDSP: a new
architecture for wireless LAN applications,” Embedded Processor
Forum, May 2002

[11] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals – Architectures and Features, IEEE Press, 1996

[12] Y. H. Hu, Programmable Digital Signal Processors –
Architecture, Programming, and Applications, Marcel Dekker Inc.,
2002

Appendix

Table 5 Instruction set summary

Mnemonic Action

INSTRUCTION DISPATCHER

RPT Repeat the following m packets n times
J Jump; unconditional branch

JAL Jump and link
JR Jump register

BNEZ Branch on not equal zero
TRAP Trap; system call

COMMON TO ALL FIELDS

NOP No operation
ADDI Add immediate
XOR Exclusive OR

MOV32 Move 32-bit immediate

FIELD 0/1

LH / SH Load/store half word
LW / SW Load/store word

LH_D / SH_D Double load/store halfword
LW_D / SW_D Double load word

LH_V / SH_V (SIMD) load/store halfword vector

FIELD 2/3

MUL 16-bit Hi/Lo multiply
MAC 16-bit Hi/Lo multiply & accumulate
ADD Add
SUB Subtract
AND AND

OR OR
SLL Shift left logical
SRL Shift right logical
SRA Shift right arithmetic
BF2 Radix-2 butterfly

MUL_V (SIMD) 16-bit multiply with 32-bit result
MUL_16V (SIMD) 16-bit multiply with 16-bit result

MAC_V (SIMD) 16-bit multiply with 40-bit accumulate
ADD_V (SIMD) 16-bit add
SUB_V (SIMD) 16-bit subtract
ABS_V (SIMD) absolute value
SRA_V (SIMD) shift right arithmetic
MIN_V (Subword) select the small element

MAX_V (Subword) select the large element
PACK Merge low 16-bit of two registers

SPECIFIC TO FIELD 3

CMUL 16-bit complex multiply with 32-bit result
CMUL_16V 16-bit complex multiply with 16-bit result

CMAC 16-bit complex multiply with 40-bit accumulate
MUL32 32-bit multiply
MAC32 32-bit multiply & accumulate

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

10 repeat # instr #RPT

00 000000 syscall #TRAP 0001

01 bundle #00 page #J index head pointer

01 bundle #01 page #JAL index head pointer

01 Rs10JR unused

01 bundle offset11 RsBNEZ index head pointerRing

Cap (12-bit) Tail (4~20-bit)

unused

VLIW format

(a)

00 Rsaddr_offset func: 00(LH), 01(LW), 10(SH), 11(SW)Rdfunc

01 Rd_0 addr_offsetRd_1func func: 00(LH_D), 01(LW_D), 10(SH_D), 11(SW_D)Rs

100 Rs_1 Rdf func: 0(LH_V), 1(SH_V)Rs_0 ad_offset_0 ad_offset_1

1101 Imm.RsADDI Rd

111 Imm.uMOV32 24-bit Imm.

1100 Rs_1XOR RdRs_0

Tail (0~24-bit)Head (16-bit)

L/S

vector L/S

double L/S

Rd

Imm.

u

(b)

00 Rs_0Rs_1 func: 00(ADD),01(SUB),10(ADD_V),11(SUB_V)Rdfunc

unuse

Tail (0~28-bit)Head (12-bit)

add/sub

0100 Rs_0Rs_1 Rdlogical func

0110 funcshamtshift Rs

0111 RdADDI Rs Imm.

shamt func: 00(SLL),01(SRL),10(SRA),11(SRA_V)

111 Imm.MOV32 24-bit Imm.Rd

110 Rd Rs fu func: 0(MAC), 1(MUL)10multiply

110 Rd Rs funcu 0min/max func: 00(MIN_V), 01(MAX_V), 10(ABS_V)

10 Rdmac Rs_0 func: 0(MAC_V), 1(CMAC)

func: 00(AND), 01(OR), 10(XOR)

0101 Rs_0Rs_1 Rdmultiply func func: 00(MUL_V), 01(MUL16_V)
10(CMUL), 11(CMUL16)

Rs_1

Rs_1 Rdother ALU func func: 00(PACK), 01(BF2)Rs_0

f

0101 u

u0

1

u

u

u

(c)

Fig 7 Instruction format for (a) instruction dispatcher, (b)load/store, and (c) ALU/MAC functional units

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

