
A Compact DSP Core with Static Floating-Point Unit &
Its Microcode Generation*

Tay-Jyi Lin, Hung-Yueh Lin, Chie-Min Chao, Chih-Wei Liu, and Chein-Wei Jen
Department of Electronics Engineering
National Chiao Tung University, Taiwan

E-Mail: {tjlin, hylin, cmchao, cwliu, cwjen}@twins.ee.nctu.edu.tw

ABSTRACT
The multimedia SoC usually integrates programmable digital
signal processors (DSP) to accelerate data-intensive computations.
But the DSP and the host processor (e.g. ARM) are both designed
for standalone uses, and they must have overlapped functionalities
and thus some redundant components. In this paper, we propose a
compact DSP core for dual-core multimedia SoC and its complete
software development tools. The DSP core contains a dataflow
engine that is composed of off-the-shelf memory modules with
limited ports, and we have investigated software techniques
extensively to reduce the hardware complexity as the principles of
VLIW processors. Moreover, the DSP is equipped with novel
static floating-point units to emulate expensive floating-point DSP
operations at low cost. In our experiments, this core has about
thrice the performance (estimated in execution cycles) of Analog
Devices ADSP-218x with similar computing resources. Our first
prototype in the 0.35µm CMOS technology operates at 100MHz
and consumes 122mW power. The core size is 2.8mm2 including
an embedded DMA controller and the AMBA AHB interface.

Categories and Subject Descriptors
B.2 Arithmetic and Logic Structures, C.1 Processor Architectures,
C.5 Computer System Implementation

General Terms
Design

Keywords
Digital signal processor, DSP core, Floating-point units

1. INTRODUCTION
A single general-purpose microprocessor (µP) cannot satisfy the
computation requirements of today’s multimedia/communication
systems at acceptable cost or power consumption [1]. The most
popular solution is to accompany the µP core with a digital signal
processor (DSP) [2][3]. The DSP core executes the data-intensive
tasks efficiently with its dataflow engine in the dual-core (or dual-
processor) multimedia systems, while the µP handles the control-
oriented and interactive tasks by maintaining a huge finite state
machine. But both the two processors are designed originally for

standalone uses and they must have overlapped functionalities
and thus redundant components. Recently, the µP cores have
been enhanced for digital signal processing by incorporating some
single-cycle multiply-accumulators (MAC), SIMD (MMX-like)
datapaths, or some other specific functional units [4]. But their
performance is still far behind that of a DSP core with similar
computing resources [5], because the DSP tasks are distinct from
general-purpose computations. By the way, it is very difficult to
optimize the memory subsystem for the two different types of
tasks simultaneously in the single-core multimedia SoC [6].
In this paper, we have focused on the compaction of the DSP core,
and leave the µP unchanged for software compatibility. DSP-lite
is our first implementation with a pure dataflow engine, which is
composed of off-the-shelf memory modules with limited access
ports. Moreover, we have investigated software techniques to
reduce the hardware complexity as the principles of VLIW
processors [7]. To shrink the DSP core further, we also propose
the static floating-point arithmetic to emulate expensive floating-
point (FP) operations, where data are recorded as normalized
fractional, similar to the mantissa part of the FP representations.
The normalization factors are kept in our analysis software only,
in contrast to the exponent part attached to each FP number. The
DSP-lite core has similar computing resources to the 16-bit fixed-
point Analog Devices ADSP-218x DSP [8], including an adder, a
fractional multiplier, and a barrel shifter. Besides, it contains a
DMA controller and the standard AMBA AHB interface to reduce
the integration efforts. In our experiments, DSP-lite has about
thrice the performance of ADSP-218x in the execution cycles,
and the 16-bit static FP arithmetic has 38.1165dB signal to round-
off noise ratio over IEEE single-precision FP units. The silicon
implementation in the 0.35µm 1P4M CMOS technology achieves
100MHz clock rate with 122mW average power dissipation.
The rest of this paper is organized as follows. Section 2 describes
the proposed static FP arithmetic. Section 3 and 4 elaborate the
DSP-lite core and its software tool respectively. The simulation
results and our silicon implementation are available in Section 5.
Finally, Section 6 concludes this work and outlines our future
research.

2. STATIC FLOATING-POINT ARITHMETIC
Digital signal processing demands high precision for quality and
enough dynamic ranges to prevent overflow. Floating-point (FP)
arithmetic [9] provides the full precision of mantissa and a huge
dynamic range with exponent, and is very suitable for developing
and simulating algorithms. However, the cost of FP arithmetic is
prohibitively high in terms of power consumption, speed, and
silicon area. Besides, the signal ranges in most well-designed
algorithms are modest and do not vary much. Therefore, most
embedded DSP systems use integer arithmetic instead and rely on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’04, April 26-28, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-853-9/04/0004…$5.00.

* This work was supported by the National Science Council, Taiwan
under Grant NSC92-2220-E-009-027

the designers to manually scale the variables to prevent overflow.
But the conversion of FP into integer arithmetic is ad-hoc, which
requires extensive and time-consuming simulations and usually
results in sub-optimal designs. In this paper, we propose the static
FP (SFP) arithmetic to make a good compromise between the FP
and integer arithmetic, where the exponent is tracked statically
and kept in the analysis software only. Fig. 1(a) shows the base-
line SFP configuration linear operations. Compared to the FP
units, the pre-scalers and normalizers of adders and multipliers are
shrunk to 1-bit shifters only. Besides, a barrel shifter with sign
extension is integrated to perform scaling or normalization over
multiple (>1) bits. The hardware cost of SFP units is similar to
that of integer units. But SFP performs fractional multiplications
just as FP arithmetic, where the insignificant product bits are
rounded off autonomously [10], while integer arithmetic needs to
explicitly round the double-wordlength products. Fig. 1(b) shows
the example of 8-bit fractional multiplication.

radix point

sign bit

fraction

>>1

>>1

>>1

<<1

>> N

(N+1)-bit

N-bit
fractional

(a) (b)

Fig.1 (a) SFPU for linear transforms, and (b) fractional multiply

Assume the DSP kernels have been described in the synchronous
dataflow graphs (SDFG) [11][12], and we associate each vertex
(including inputs, FP operations, and outputs) a peak estimation
vector (PEV) [M r] to simulate the FP computations. M denotes
the maximum magnitude that may occur on the output of the
vertex and r is used to track the radix point (i.e. the exponent). M
should be kept between 0.5 and 1 for the fractional arithmetic
(with data range between -1 and 1) to maximize the precision
while preventing overflow. Assume the inputs are normalized as
fractional numbers (i.e. PEV = [1 0]), and the PEV of the remnant
variables can be calculated by three rules:

 Keep M between 0.5 and 1 by carrying out “M divided
(multiplied) by 2” and “r minus (plus) 1” simultaneously

 r (radix point) should be identical before summation or
subtraction

 [M1 r1]×[M2 r2]= [M1×M2 r1+ r2]

Fig. 2(a) shows two PEV calculation examples. After the PEV
analysis, shifts are inserted to normalize the intermediate results.
Note that the scaling and normalization of the two examples can
be carried out in the embedded 1-bit shifters without invoking the
barrel shifter. This simple PEV analysis over-estimates the data
ranges because it neglects the correlations among variables, such
as the example in Fig. 2(b). Our analysis software improves the
range estimation by recording the intermediate variables in the
affine form [13]:

∑ ⋅ ii xα

where αi denotes the contribution of each independent variable xi
(i.e. an input node or the output of a non-linear operation). The
magnitude M of a vertex is calculated with αi instead of its input
M directly. Fig. 2(c) illustrates the PEV analysis based on the
affine arithmetic. For non-linear operations such as multiplication
of two variables, our analysis software creates new variables to
simplify the range estimation.

[0.5 -1][1 0]

[1 -1]
[1.5 -1] [0.75 -2]

[0.8 0]

[0.6 -1]
[0.48 -1] [0.96 0]

(a)

min: -2
max: 2

min: -2
max: 2

min: -1
max: 1

min: -1
max: 1

min: -1
max: 1

x

y

z

x - y

y + z

min: -4
max: 4

x + z
over-estimated

min: -2
max: 2

(b)

[1 0 0]

[0 1 0]

[0 0 1]

[1 -1 0]

[0 1 1]

[1 0 1]

[1 0]

[1 0]

[1 0]

affine form [x y z]

[1 -1]

[1 -1]

[1 -1]

PEV [M r]

(c)
Fig. 2 Examples: (a) PEV analysis; (b) range over-estimation;
and (c) affine PEV analysis

3. DSP-LITE CORE
DSP-lite is the first implementation of our proposed compact DSP
core, which is composed of off-the-shelf memory modules at the
inputs of each functional unit. The memory conflicts are resolved
in software via optimal ILP-based operation scheduling described
in Section 4. DSP-lite is equipped with the 16-bit baseline static
floating-point units, including (a) a 17-bit adder/subtractor with
two input scalers and an output normalizer, (b) a 16-bit fractional
multiplier with an output normalizer, and (c) a 16-bit barrel shifter
with sign-extension. Besides, it contains a DMA controller with
ping-pong buffering for efficient data exchanges with the µP core
and external I/O devices. The standard AMBA AHB interface is
also integrated to reduce the integration efforts. DSP-lite has a
micro-instruction memory, which keeps the control data, such as
the enable signals for the 1-bit aligners and normalizers, and the
addresses needed to access the memory modules. The loading of
the microcode during the core initialization is also carried out by
the DMA controller. The memory modules all support address
remapping to simplify control, which automatically translates the
virtual addresses in the microinstructions into different physical
addresses for different iterations. An address remapper contains
an iteration counter and a stride register, and the virtual addresses
are decremented once with the stride number for each iteration.
Fig. 3 shows an illustrating example, where the virtual address
“3” is mapped to “3”, “2”, and “1” physical addresses in the first,

the second, and the third iteration respectively, if the address
remapper is enabled with the stride number set “1”. The
decremented addresses are modulo of the size of each physical
memory, and thus the physical addresses are rotating. Fig. 3
shows a data dependency across two iterations. The source writes
an item to the virtual address “3” and the destination can retrieve
the same item from the virtual address “5” after two iterations
continuously. Note that additional memory locations should be
reserved to prevent overwriting live variables (e.g. the virtual
address “4” in this example).

0
1
2
3
4
5
6
7

1
2
3
4
5
6
7

0

Physical

1
2

6
7
0 1

2

6
7
0 1

2

6
7
0

3
3
4
5

3
3
4
5

3
4
5

3

1
2

6
7
0

4
5

33

Iteration #
0 1 2 3 4

Virtual Addresses

Fig. 3 Examples: memory remapping

Fig. 4 illustrates DSP-lite performs 2-D discrete cosine transform
(DCT) [14]. While the dataflow DSP engine performs DCT on
the second 8-by-8 image block, the embedded DMA controller is
busy storing back the DCT coefficients for the first image block
to the main memory and transferring the third image block to the
I/O buffer for the next iteration DCT operations.

11 2 3

11

image
block # 3

source image

DCT coef.

DCT coef
block # 1

image
block # 2

DCT coef
block # 2

2R/1W
memory

1R/1W
memory

coefficient
memory

1R/1W
memory >

I

O

ping pong

I/O Buffer

Main Memory

SIU-based DSP Datapath

4-by-4
switch

AMBA
AHB

Embedded DMA
Controller

Microinstruction
Memory

DSP-lite Core

Fig. 4 DSP-lite core and 2-D DCT example

4. MICROCODE GENERATION
We have developed an automation tool to compile the algorithmic
descriptions in the synchronous dataflow graphs (SDFG) with
floating-point (FP) operations into the DSP-lite microcode with
static FP (SFP) arithmetic. The designers first design and verify
their DSP algorithms with our SDFG simulator. Note that the
SDFG can also be derived from the C/C++ descriptions via the
SUIF compiler [15]. After the simulation of the DSP algorithm,
the FP operations are emulated with the SFP units by applying the
PEV analysis in Section 2 with affine arithmetic. Additional shift
operations are inserted in the SDFG for operand alignment and

normalization. Then, the operations in the modified SDFG are
scheduled with integer linear programming (ILP). ILP is a formal
and comprehensive approach to describe and solve the scheduling
problems. Here, we use periodic scheduling for simplicity, where
only the intra-iteration data dependency is considered and the
weighted edges (i.e. inter-iteration dependency) are first removed
from SDFG. The scheduling ranges for each operation are first
determined using the as-soon-as-possible (ASAP) and as-late-as-
possible (ALAP) algorithms [16]. The following illustrates the
construction of the ILP model using the example shown in Fig 5.

I0 I1

O0

A1

O1

A0

M0 I0 I1

O0

A1

O1

A0 M0

I0 I1

A0

A1

M0

O0

O1

(a) (b) (c)

0

time

1

2

3

4

5

x0 x1 x2 x3 x4 x5 x6

Fig. 5 (a) ASAP; (b) ALAP; (c) scheduling ranges

A Boolean variable xi.j indicates whether a vertex i is scheduled
into the time step j, and the following three constraints must first
be satisfied [12][16].

Resource constraints (# operations cannot exceed # resources)
x0.0+ x1.0 ≤ 1; x0.1+ x1.1 ≤ 1; x0.2+ x1.2 ≤ 1 (for input) …

Allocation constraints (each operation executes once)
x0.0+ x0.1+ x0.2 = 1 …

Dependency constraints
x0.0 + 2 x0.1 + 3 x0.2 - 2 x2.1 - 3 x2.2 - 4 x2.3 - 5 x2.4 ≤ -1 …

When multiple functional units simultaneously write their results
into the same memory module, the memory accesses will conflict.
In our tool, the operations with an identical destination memory
module will be scheduled into distinct time slots by incorporating
the following port constraints to prevent these conflicts.

Port constraints
x0.0+ x1.0 ≤ 1; x0.1+ x1.1 ≤ 1; x0.2+ x1.2 ≤ 1; (for adder)
x2.2+ x4.2 ≤ 1; x2.3+ x4.3 ≤ 1; x2.4+ x4.4 ≤ 1; (for output)

The objective of the ILP-based scheduler is to minimize execution
cycles, and we solve the ILP model using a commercial ILP
solver [17]. Lifetime analysis of the variables is performed after
scheduling to allocate memory locations with address remapping.
Once the memory happens to be exhausted, additional load/store
operations should be inserted to spill variables with long lifetimes.
At last, microinstructions are synthesized based on the memory
addresses and the control signals for the DSP algorithm.

5. EXPERIMENTAL RESULTS
We have several DCT implementations to evaluate the effective-
ness of our static floating-point (SFP) arithmetic in Table 1. The
first three rows summarize the results of the floating-point (FP),
16-bit and 32-bit integer (i.e. jfdctflt.c, jfdctfst.c, and

jfdctint.c) C codes for 2-D DCT from the independent JPEG
group (IJG) [18]. The last two rows are for the 16-bit and 24-bit
SFP respectively, both of which are derived directly from the FP
jfdctflt.c. The second column compares the round-off error
using as metric the PSNR over single-precision FP arithmetic, and
the results are obtained from simulations on natural images. The
16-bit SFP even outperforms the hand-optimized 32-bit integer
code, while the 24-bit SFP 62.1439dB PSNR, which has the same
maximum precision as single-precision FP (with 23-bit mantissa).
The third column summarizes the performance in cycles, and the
four 1-bit shifters for alignment or normalization significantly
reduce the cycles from 1,120 to 720. By the way, the functional
units in the comparison are all single-cycle with registered I/O (i.e.
with 2-cycle latency). This implies that the FP units have much
longer cycle time than the integer and SFP units.

Table 1 Comparison of arithmetic units for 2D-DCT
 PSNR (dB) Cycle count

Single-precision FP unit - 672
16-bit integer unit 33.2220 848
32-bit integer unit 36.0981 672

16-bit SFP unit 38.1165
24-bit SFP unit 62.1439 720

Table 2 depicts the performance evaluation with some popular
DSP kernels on DSP-lite and Analog Devices ADSP-218x, which
has similar computing resources (i.e. a set of ALU, MAC, and
barrel shifter). The results for ADSP-218x are excerpted from its
application notes [8]. DSP-lite has better performance in most
cases because ADSP-218x is constrained by the conventional
programming model and limited parallel instructions. DSP-lite
needs more cycles for the biquad filter case because its functional
units and memory have 2-cycle and 1-cycle latency respectively,
instead of zero in ADSP-218x. Note that DSP-lite is still faster in
the absolute time. By the way, some transforms (e.g. lookahead
[10]) can reduce the iteration bound and thus effectively improve
the efficiency of DSP-lite to perform the iterative kernels with
feedback loops.

Table 2 Performance evaluation of DSP-lite core (# cycle)
 ADSP-218x

(80MHz)
DSP-lite

(100MHz)
3rd-order lattice filter 32 13

2nd-order biquad filter 13 14
16-point complex FFT 874 268

8-point 1-D DCT 154 47
8×8 2-D DCT 2,452 720

We have synthesized the DSP-lite core using Synopsys with the
0.35µm cell library and have placed and routed the netlists using
Apollo for the 1P4M CMOS technology. The core size is 2.8mm2
including an embedded DMA controller and the standard AMBA
AHB interface. The chip can operate at 100MHz and consumes
122mW average power.

6. CONCLUSION
This paper presents a compact DSP core for dual-core multimedia
SoC. Software techniques are extensively investigated to reduce
the hardware complexity for the dataflow engine as the principles
of VLIW processors. The DSP prevents unnecessary constraints
posed by conventional programming models to achieve dataflow-
rate computations. The paper also describes our proposed static

floating-point arithmetic to emulate expensive floating-point DSP
operations, which also helps to further shrink the DSP core. The
paper also illustrates a software development tool to automatically
generate the microcode from high-level floating-point algorithmic
descriptions. In our experiments, the DSP core has about thrice
the performance of the Analog Devices ADSP-218x DSP family
with similar computing resources. Moreover, the proposed static
floating-point arithmetic has 62.1439dB PSNR over the IEEE 754
single-precision floating-point arithmetic with the same maximum
precision (i.e. 24 bits versus the 23-bit mantissa).

We are now developing a list-based scheduler to avoid memory
conflicts with significantly reduced complexity than the ILP-
based one in this paper. We are also improving the round-off
error of the static floating-point arithmetic by incorporating the
saturated arithmetic [19]. Moreover, we are going to investigate
the distributed microinstruction memory to reduce the global
routing with the JTAG-like configuration interfaces [20], and
study some coding or compression techniques to reduce the
configuration bandwidth and the context-switch overheads in the
near future.

7. REFERENCES
[1] A. Gatherer, et al, “DSP-based architectures for mobile

communications: past, present and future,” IEEE Communications,
Jan. 2000

[2] Intel PXA800F Cellular Processor – Development Manual, Intel
Corp., Feb. 2003

[3] OMAP5910 Dual Core Processor – Technical Reference Manual,
Texas Instruments, Jan. 2003

[4] M. Levy, “ARM picks up performance,” Microprocessor Report,
4/7/03-01

[5] R. A. Quinnell, “Logical combination? Convergence products need
both RISC and DSP processors, but merging them may not be the
answer,” EDN, 1/23/2003

[6] TriCore 2-32-bit Unified Processor Core v.2.0 Architecture –
Architecture Manual, Infineon Technology, June 2003

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture – A
Quantitative Approach, 3rd Edition, Morgan Kaufmann, 2002

[8] Digital Signal Processing – Using the ADSP-2100 Family, Analog
Device Inc., 1990

[9] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Standard
754, 1985

[10] P. Lapsley, J. Bier, and E. A. Lee, DSP Processor Fundamentals –
Architectures and Features, IEEE Press, 1996

[11] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,” IEEE
Trans. Comput., Jan. 1987

[12] K. K. Parhi, VLSI Digital Signal Processing Systems – Design and
Implementation, John Wiley & Sons, 1999

[13] F. Fang, R. Rutenbar, M. Puschel, and T. Chen, “Toward efficient
static analysis of finite-precision effects in DSP applications via
affine arithmetic modeling,” in Proc. DAC, 2003

[14] W. B. Pennebaker, and J. L. Mitchell, JPEG – Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993

[15] The SUIF Compiler Infrastructure, http://suif.stanford.edu/
[16] D. D. Gajski, et al, High Level Synthesis – Introduction to Chip and

System Design, Kluwer Academic Publisher, 1992
[17] LINDO API User’s Manual, LINDO System Inc., 2002
[18] Independent JPEG Group, http://www.ijg.org
[19] G. A. Constantinides, P. Y. K. Cheung, W. Luk, “Synthesis of

saturation arithmetic architectures ,” ACM Trans. Design Automation
of Electronic Systems, July 2003

[20] IEEE Standard for In-System Configuration of Programmable
Devices, IEEE Standard 1532, 2002

