
A Compact DSP Core with Static Floating-Point Unit & 
Its Microcode Generation*

Tay-Jyi Lin, Hung-Yueh Lin, Chie-Min Chao, Chih-Wei Liu, and Chein-Wei Jen 
Department of Electronics Engineering 
National Chiao Tung University, Taiwan 

E-Mail: {tjlin, hylin, cmchao, cwliu, cwjen}@twins.ee.nctu.edu.tw 

 
ABSTRACT 
The multimedia SoC usually integrates programmable digital 
signal processors (DSP) to accelerate data-intensive computations.  
But the DSP and the host processor (e.g. ARM) are both designed 
for standalone uses, and they must have overlapped functionalities 
and thus some redundant components.  In this paper, we propose a 
compact DSP core for dual-core multimedia SoC and its complete 
software development tools.  The DSP core contains a dataflow 
engine that is composed of off-the-shelf memory modules with 
limited ports, and we have investigated software techniques 
extensively to reduce the hardware complexity as the principles of 
VLIW processors.  Moreover, the DSP is equipped with novel 
static floating-point units to emulate expensive floating-point DSP 
operations at low cost.  In our experiments, this core has about 
thrice the performance (estimated in execution cycles) of Analog 
Devices ADSP-218x with similar computing resources.  Our first 
prototype in the 0.35µm CMOS technology operates at 100MHz 
and consumes 122mW power.  The core size is 2.8mm2 including 
an embedded DMA controller and the AMBA AHB interface. 
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Design 
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1. INTRODUCTION 
A single general-purpose microprocessor (µP) cannot satisfy the 
computation requirements of today’s multimedia/communication 
systems at acceptable cost or power consumption [1].  The most 
popular solution is to accompany the µP core with a digital signal 
processor (DSP) [2][3].  The DSP core executes the data-intensive 
tasks efficiently with its dataflow engine in the dual-core (or dual- 
processor) multimedia systems, while the µP handles the control- 
oriented and interactive tasks by maintaining a huge finite state 
machine.  But both the two processors are designed originally for 

standalone uses and they must have overlapped functionalities 
and thus redundant components.  Recently, the µP cores have 
been enhanced for digital signal processing by incorporating some 
single-cycle multiply-accumulators (MAC), SIMD (MMX-like) 
datapaths, or some other specific functional units [4].  But their 
performance is still far behind that of a DSP core with similar 
computing resources [5], because the DSP tasks are distinct from 
general-purpose computations.  By the way, it is very difficult to 
optimize the memory subsystem for the two different types of 
tasks simultaneously in the single-core multimedia SoC [6]. 
In this paper, we have focused on the compaction of the DSP core, 
and leave the µP unchanged for software compatibility.  DSP-lite 
is our first implementation with a pure dataflow engine, which is 
composed of off-the-shelf memory modules with limited access 
ports.  Moreover, we have investigated software techniques to 
reduce the hardware complexity as the principles of VLIW 
processors [7].  To shrink the DSP core further, we also propose 
the static floating-point arithmetic to emulate expensive floating-
point (FP) operations, where data are recorded as normalized 
fractional, similar to the mantissa part of the FP representations.  
The normalization factors are kept in our analysis software only, 
in contrast to the exponent part attached to each FP number.  The 
DSP-lite core has similar computing resources to the 16-bit fixed-
point Analog Devices ADSP-218x DSP [8], including an adder, a 
fractional multiplier, and a barrel shifter.  Besides, it contains a 
DMA controller and the standard AMBA AHB interface to reduce 
the integration efforts.  In our experiments, DSP-lite has about 
thrice the performance of ADSP-218x in the execution cycles, 
and the 16-bit static FP arithmetic has 38.1165dB signal to round-
off noise ratio over IEEE single-precision FP units.  The silicon 
implementation in the 0.35µm 1P4M CMOS technology achieves 
100MHz clock rate with 122mW average power dissipation. 
The rest of this paper is organized as follows.  Section 2 describes 
the proposed static FP arithmetic.  Section 3 and 4 elaborate the 
DSP-lite core and its software tool respectively.  The simulation 
results and our silicon implementation are available in Section 5.  
Finally, Section 6 concludes this work and outlines our future 
research. 

2. STATIC FLOATING-POINT ARITHMETIC 
Digital signal processing demands high precision for quality and 
enough dynamic ranges to prevent overflow.  Floating-point (FP) 
arithmetic [9] provides the full precision of mantissa and a huge 
dynamic range with exponent, and is very suitable for developing 
and simulating algorithms.  However, the cost of FP arithmetic is 
prohibitively high in terms of power consumption, speed, and 
silicon area.  Besides, the signal ranges in most well-designed 
algorithms are modest and do not vary much.  Therefore, most 
embedded DSP systems use integer arithmetic instead and rely on 
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the designers to manually scale the variables to prevent overflow.  
But the conversion of FP into integer arithmetic is ad-hoc, which 
requires extensive and time-consuming simulations and usually 
results in sub-optimal designs.  In this paper, we propose the static 
FP (SFP) arithmetic to make a good compromise between the FP 
and integer arithmetic, where the exponent is tracked statically 
and kept in the analysis software only.  Fig. 1(a) shows the base-
line SFP configuration linear operations.  Compared to the FP 
units, the pre-scalers and normalizers of adders and multipliers are 
shrunk to 1-bit shifters only.  Besides, a barrel shifter with sign 
extension is integrated to perform scaling or normalization over 
multiple (>1) bits.  The hardware cost of SFP units is similar to 
that of integer units.  But SFP performs fractional multiplications 
just as FP arithmetic, where the insignificant product bits are 
rounded off autonomously [10], while integer arithmetic needs to 
explicitly round the double-wordlength products.  Fig. 1(b) shows 
the example of 8-bit fractional multiplication. 
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Fig.1 (a) SFPU for linear transforms, and (b) fractional multiply 

Assume the DSP kernels have been described in the synchronous 
dataflow graphs (SDFG) [11][12], and we associate each vertex 
(including inputs, FP operations, and outputs) a peak estimation 
vector (PEV) [M r] to simulate the FP computations.  M denotes 
the maximum magnitude that may occur on the output of the 
vertex and r is used to track the radix point (i.e. the exponent).  M 
should be kept between 0.5 and 1 for the fractional arithmetic 
(with data range between -1 and 1) to maximize the precision 
while preventing overflow.  Assume the inputs are normalized as 
fractional numbers (i.e. PEV = [1 0]), and the PEV of the remnant 
variables can be calculated by three rules: 

 Keep M between 0.5 and 1 by carrying out “M divided 
(multiplied) by 2” and “r minus (plus) 1” simultaneously 

 r (radix point) should be identical before summation or 
subtraction 

 [M1 r1]×[M2 r2]= [M1×M2 r1+ r2] 

Fig. 2(a) shows two PEV calculation examples.  After the PEV 
analysis, shifts are inserted to normalize the intermediate results.  
Note that the scaling and normalization of the two examples can 
be carried out in the embedded 1-bit shifters without invoking the 
barrel shifter.  This simple PEV analysis over-estimates the data 
ranges because it neglects the correlations among variables, such 
as the example in Fig. 2(b).  Our analysis software improves the 
range estimation by recording the intermediate variables in the 
affine form [13]: 

∑ ⋅ ii xα  

where αi denotes the contribution of each independent variable xi 
(i.e. an input node or the output of a non-linear operation).  The 
magnitude M of a vertex is calculated with αi instead of its input 
M directly.  Fig. 2(c) illustrates the PEV analysis based on the 
affine arithmetic.  For non-linear operations such as multiplication 
of two variables, our analysis software creates new variables to 
simplify the range estimation. 
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Fig. 2  Examples: (a) PEV analysis; (b) range over-estimation; 
and (c) affine PEV analysis 

3. DSP-LITE CORE 
DSP-lite is the first implementation of our proposed compact DSP 
core, which is composed of off-the-shelf memory modules at the 
inputs of each functional unit.  The memory conflicts are resolved 
in software via optimal ILP-based operation scheduling described 
in Section 4.  DSP-lite is equipped with the 16-bit baseline static 
floating-point units, including (a) a 17-bit adder/subtractor with 
two input scalers and an output normalizer, (b) a 16-bit fractional 
multiplier with an output normalizer, and (c) a 16-bit barrel shifter 
with sign-extension.  Besides, it contains a DMA controller with 
ping-pong buffering for efficient data exchanges with the µP core 
and external I/O devices.  The standard AMBA AHB interface is 
also integrated to reduce the integration efforts.  DSP-lite has a 
micro-instruction memory, which keeps the control data, such as 
the enable signals for the 1-bit aligners and normalizers, and the 
addresses needed to access the memory modules.  The loading of 
the microcode during the core initialization is also carried out by 
the DMA controller.  The memory modules all support address 
remapping to simplify control, which automatically translates the 
virtual addresses in the microinstructions into different physical 
addresses for different iterations.  An address remapper contains 
an iteration counter and a stride register, and the virtual addresses 
are decremented once with the stride number for each iteration.  
Fig. 3 shows an illustrating example, where the virtual address 
“3” is mapped to “3”, “2”, and “1” physical addresses in the first, 



the second, and the third iteration respectively, if the address 
remapper is enabled with the stride number set “1”.  The 
decremented addresses are modulo of the size of each physical 
memory, and thus the physical addresses are rotating.  Fig. 3 
shows a data dependency across two iterations.  The source writes 
an item to the virtual address “3” and the destination can retrieve 
the same item from the virtual address “5” after two iterations 
continuously.  Note that additional memory locations should be 
reserved to prevent overwriting live variables (e.g. the virtual 
address “4” in this example). 
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Fig. 3  Examples: memory remapping 

Fig. 4 illustrates DSP-lite performs 2-D discrete cosine transform 
(DCT) [14].  While the dataflow DSP engine performs DCT on 
the second 8-by-8 image block, the embedded DMA controller is 
busy storing back the DCT coefficients for the first image block 
to the main memory and transferring the third image block to the 
I/O buffer for the next iteration DCT operations. 
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Fig. 4  DSP-lite core and 2-D DCT example 

4. MICROCODE GENERATION 
We have developed an automation tool to compile the algorithmic 
descriptions in the synchronous dataflow graphs (SDFG) with 
floating-point (FP) operations into the DSP-lite microcode with 
static FP (SFP) arithmetic.  The designers first design and verify 
their DSP algorithms with our SDFG simulator.  Note that the 
SDFG can also be derived from the C/C++ descriptions via the 
SUIF compiler [15].  After the simulation of the DSP algorithm, 
the FP operations are emulated with the SFP units by applying the 
PEV analysis in Section 2 with affine arithmetic.  Additional shift 
operations are inserted in the SDFG for operand alignment and 

normalization.  Then, the operations in the modified SDFG are 
scheduled with integer linear programming (ILP).  ILP is a formal 
and comprehensive approach to describe and solve the scheduling 
problems.  Here, we use periodic scheduling for simplicity, where 
only the intra-iteration data dependency is considered and the 
weighted edges (i.e. inter-iteration dependency) are first removed 
from SDFG.  The scheduling ranges for each operation are first 
determined using the as-soon-as-possible (ASAP) and as-late-as-
possible (ALAP) algorithms [16].  The following illustrates the 
construction of the ILP model using the example shown in Fig 5. 
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Fig. 5  (a) ASAP; (b) ALAP; (c) scheduling ranges 

A Boolean variable xi.j indicates whether a vertex i is scheduled 
into the time step j, and the following three constraints must first 
be satisfied [12][16]. 

Resource constraints (# operations cannot exceed # resources) 
x0.0+ x1.0 ≤ 1;  x0.1+ x1.1 ≤ 1;  x0.2+ x1.2 ≤ 1  (for input) … 

Allocation constraints (each operation executes once) 
x0.0+ x0.1+ x0.2 = 1 … 

Dependency constraints 
x0.0 + 2 x0.1 + 3 x0.2 - 2 x2.1 - 3 x2.2 - 4 x2.3 - 5 x2.4 ≤ -1 … 

When multiple functional units simultaneously write their results 
into the same memory module, the memory accesses will conflict.  
In our tool, the operations with an identical destination memory 
module will be scheduled into distinct time slots by incorporating 
the following port constraints to prevent these conflicts. 

Port constraints 
x0.0+ x1.0 ≤ 1;  x0.1+ x1.1 ≤ 1;  x0.2+ x1.2 ≤ 1;  (for adder) 
x2.2+ x4.2 ≤ 1;  x2.3+ x4.3 ≤ 1;  x2.4+ x4.4 ≤ 1;  (for output) 

The objective of the ILP-based scheduler is to minimize execution 
cycles, and we solve the ILP model using a commercial ILP 
solver [17].  Lifetime analysis of the variables is performed after 
scheduling to allocate memory locations with address remapping.  
Once the memory happens to be exhausted, additional load/store 
operations should be inserted to spill variables with long lifetimes.  
At last, microinstructions are synthesized based on the memory 
addresses and the control signals for the DSP algorithm. 

5. EXPERIMENTAL RESULTS 
We have several DCT implementations to evaluate the effective-
ness of our static floating-point (SFP) arithmetic in Table 1.  The 
first three rows summarize the results of the floating-point (FP), 
16-bit and 32-bit integer (i.e. jfdctflt.c, jfdctfst.c, and 



jfdctint.c) C codes for 2-D DCT from the independent JPEG 
group (IJG) [18].  The last two rows are for the 16-bit and 24-bit 
SFP respectively, both of which are derived directly from the FP 
jfdctflt.c.  The second column compares the round-off error 
using as metric the PSNR over single-precision FP arithmetic, and 
the results are obtained from simulations on natural images.  The 
16-bit SFP even outperforms the hand-optimized 32-bit integer 
code, while the 24-bit SFP 62.1439dB PSNR, which has the same 
maximum precision as single-precision FP (with 23-bit mantissa).  
The third column summarizes the performance in cycles, and the 
four 1-bit shifters for alignment or normalization significantly 
reduce the cycles from 1,120 to 720.  By the way, the functional 
units in the comparison are all single-cycle with registered I/O (i.e. 
with 2-cycle latency).  This implies that the FP units have much 
longer cycle time than the integer and SFP units.   

Table 1  Comparison of arithmetic units for 2D-DCT 
 PSNR (dB) Cycle count

Single-precision FP unit - 672 
16-bit integer unit 33.2220 848 
32-bit integer unit 36.0981 672 

16-bit SFP unit 38.1165 
24-bit SFP unit 62.1439 720 

Table 2 depicts the performance evaluation with some popular 
DSP kernels on DSP-lite and Analog Devices ADSP-218x, which 
has similar computing resources (i.e. a set of ALU, MAC, and 
barrel shifter).  The results for ADSP-218x are excerpted from its 
application notes [8].  DSP-lite has better performance in most 
cases because ADSP-218x is constrained by the conventional 
programming model and limited parallel instructions.  DSP-lite 
needs more cycles for the biquad filter case because its functional 
units and memory have 2-cycle and 1-cycle latency respectively, 
instead of zero in ADSP-218x.  Note that DSP-lite is still faster in 
the absolute time.  By the way, some transforms (e.g. lookahead 
[10]) can reduce the iteration bound and thus effectively improve 
the efficiency of DSP-lite to perform the iterative kernels with 
feedback loops. 

Table 2  Performance evaluation of DSP-lite core (# cycle) 
 ADSP-218x 

(80MHz) 
DSP-lite 

(100MHz)
3rd-order lattice filter 32 13 

2nd-order biquad filter 13 14 
16-point complex FFT 874 268 

8-point 1-D DCT 154 47 
8×8 2-D DCT 2,452 720 

We have synthesized the DSP-lite core using Synopsys with the 
0.35µm cell library and have placed and routed the netlists using 
Apollo for the 1P4M CMOS technology.  The core size is 2.8mm2 
including an embedded DMA controller and the standard AMBA 
AHB interface.  The chip can operate at 100MHz and consumes 
122mW average power. 

6. CONCLUSION 
This paper presents a compact DSP core for dual-core multimedia 
SoC.  Software techniques are extensively investigated to reduce 
the hardware complexity for the dataflow engine as the principles 
of VLIW processors.  The DSP prevents unnecessary constraints 
posed by conventional programming models to achieve dataflow-
rate computations.  The paper also describes our proposed static 

floating-point arithmetic to emulate expensive floating-point DSP 
operations, which also helps to further shrink the DSP core.  The 
paper also illustrates a software development tool to automatically 
generate the microcode from high-level floating-point algorithmic 
descriptions.  In our experiments, the DSP core has about thrice 
the performance of the Analog Devices ADSP-218x DSP family 
with similar computing resources.  Moreover, the proposed static 
floating-point arithmetic has 62.1439dB PSNR over the IEEE 754 
single-precision floating-point arithmetic with the same maximum 
precision (i.e. 24 bits versus the 23-bit mantissa). 

We are now developing a list-based scheduler to avoid memory 
conflicts with significantly reduced complexity than the ILP-
based one in this paper.  We are also improving the round-off 
error of the static floating-point arithmetic by incorporating the 
saturated arithmetic [19].  Moreover, we are going to investigate 
the distributed microinstruction memory to reduce the global 
routing with the JTAG-like configuration interfaces [20], and 
study some coding or compression techniques to reduce the 
configuration bandwidth and the context-switch overheads in the 
near future. 
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