Formal Equivalence Checking of Folded Architectures

Tay-Jyi Lin and Chein-Wei Jen

VLSI Signal Processing Group
Department of Electronics Engineering
National Chiao Tung University, Taiwan
{tjlin,cwjen}@ee.nctu.edu.tw

CASCADE (Configurable And SCAlable DSP Environment)

- The data-driven accelerators boost the performance of low-cost micro-controllers or simple DSP processors for video signal processing to **lengthen their product life span**.
- Automatic generation of the accelerators with simple software-controlled interfacing dramatically **reduces the development time**.

- This paper describes the **formal verification** on the auto-generated data-driven accelerators.
Equivalence Checking (EC)

- **Simulation-based EC**
 - equivalence is only guaranteed to some extent that the test suite exercises the design

- **Formal EC**
 - verification by formal (mathematical) methods
 1. combinational EC
 - check the identity of the corresponding canonical representations
 - e.g. ROBDD (Reduced Ordered Binary Decision Diagram) and BMD (Binary Moment Diagram), etc
 2. sequential EC
 - state traversal on the product machine

Sequential EC

- **State traversal on the product machine**

 (1) State explosion problem
 - symbolic state traversal with BDD-represented transition functions
 (2) The golden model must have identical synchronous behaviors with DUV
 - SIU encapsulation, but verification on the SIU itself is another problem
 - combinational EC

Apply BFS State Traversal
Sequential EC with Combinational Algorithms

- For the folded architectures with *acyclic DFG*-represented computations, all registers can be removed by *unfolding transforms* with proper *retiming*. More efficient combinational EC algorithms can thus be applied.

![RCA and CSA diagrams]

- For the folded architectures with feedback, *robust register mapping* is required for the loop synchronization delay elements (registers).

Iterative ROBDD Construction

- First, we build the canonical representation (here, ROBDD as an example) for the combinational part in the folded architectures, which performs an identical function for every cycle.

- Our proposed algorithm constructs the ROBDD of the folded architectures with *implicit* unfolding & retiming transforms.

- The identical testing on partially-built ROBDD is possible with our proposed scheme.
Example (1/2) - RCA-based Serial Multiplier

Example (2/2) - CSA-based Serial Multiplier
Conclusion

- Combinational EC algorithms can solve more complex and even unsolved (with distinct I/O sequencing or timing, such as the folded architectures) sequential EC problems by the unfolding transform with proper retiming to completely remove the pipeline registers and robust register mapping for loop synchronization delay elements.
- Our proposed unified algorithm constructs the ROBDD direct from the folded architecture with implicit unfolding and retiming.
- The complex ROBDD construction is only required for the combinational part of the folded architecture, which is much smaller than the flattened unfolded representation. So, the proposed algorithm is computation-effective.
- Identity testing on partial-built ROBDD is possible with our proposed iterative ROBDD construction scheme. Thus, the proposed algorithm is memory-effective.