Formal Equivalence Checking of Folded Architectures™

Tay-Jyi Lin, Chein-Wei Jen
Department of Electronics Engineering
National Chiao Tung University
1001 Ta-Hsueh Road, Hsinchu
Taiwan, R.O.C.

{tjlin, cwjen} @ee.nctu.edu.tw

Abstract: - A high-level synthesis system can time-multiplex operations onto different number of processing
elements to meet various requirements by folding transformation with optimal scheduling and allocation. The
resultant folded architectures usually have divergent I/O sequencing or timing and complicate the equivalence
checking on them. One possible solution is with resort to the powerful combinational verification methods by
unfolding transformation with proper retiming to completely remove the registers. In this paper, we propose a
novel iterative construction algorithm of decision diagrams that implicitly transforms the folded architectures
under verification to significantly reduce computation and memory usage. Experimental results show that our
method has great improvement on memory usage represented in BDD nodes.

Key Words: - Formal Verification, Equivalence Checking, and High Level Synthesis

1 Introduction

Current practiced design validation methods are still
techniques of simulation and testing. Although very
effective in the early debugging stages, they require
alarmingly increasing amount of time to uncover
more subtle bugs. Equivalence checking (EC)
verifies that two circuits, one of which is usually
regarded as the “golden” model, are functionally
equivalent at the I/O boundaries, at the internal state
bits or on a cycle-by-cycle basis. Formal verification
provides complete EC as opposed to simulation and
testing, which checks the equivalence only to some
extent that the test suite exercises the design. Binary
decision diagram (BDD)-based [1] canonical
representations play a major role in formal EC of
combinational circuits, where circuits with the same
functionality should have an identical form. Reduced,
ordered BDD (ROBDD) is the basic canonical
representation of Boolean functions with various
extensions, such as word-level representations that
efficiently represent arithmetic functions [2]. EC of
two sequential circuits is much more complex, which
involves state-traversal on their product machine and
proves that no product state is reachable that gives
different outputs [3][4]. FSMs of interest may have
10" (~34 flops) to 10" (~333 flops) or even a greater
number of states that make it impractical to represent
the states as individual entities. Symbolic state-
traversal [5], as an alternative, uses BDD-represented
state-transition functions to store billions of states

* This work was supported by the National Science Council, Taiwan,
under Grant NSC89-2218-E009-078.

with just thousands of BDD nodes. Exploration of
the structural similarity between the circuits under
verification is a frequently used technique to reduce
the verification efforts both in combinational and
sequential EC (e.g. circuit partitioning, register
mapping, etc) [6][7][8].

Folding transformation [9] in a high-level synthesis
system [10] time-multiplexes multiple algorithm-
level operations to processing elements. Various
optimal folded architectures can be automatically
generated through different scheduling, allocation or
even different number of processing elements for a
single algorithm to meet divergent requirements. The
resultant architectures usually have distinct timing
and I/O sequencing, which are very problematic in
sequential EC. One alternative is to encapsulate
these folded architectures into stream interface units
(SIU), which transforms the distinct I/O sequencing
to an identical external interface [11], but the
verification on the SIU itself is another unsolved
problem. The powerful methods of combinational
EC can be applied instead of the more complicated
sequential EC methods [12], as another alternative,
via unfolding transformation with proper retiming to
completely remove the pipelining registers. The
exploration of the structural regularity [13] in the
unfolded representation (i.e. due to the temporal
identity of folded architectures) significantly reduces
the complexity in verification.

In this paper, we propose a novel approach to
construct the BDD-based canonical representation
for combinational EC on sequential circuits. The
unified algorithm implicitly performs the required



unfolding transformation and retiming to reduce the
computation and memory usage while exploring the
structural regularity simultaneously. The proposed
algorithm is detailed in section 2 with simple
illustrating examples in section 3. Section 4 shows
our experimental results and section 5 concludes this
work.

2 Proposed Method

Sequential EC can be reduced to a combinational one
by unfolding the circuit and retiming acyclic paths
with robust register mapping on feedback [8][12].
For simplicity, we only discuss the terminating (i.e.
with finite execution steps) folded architectures in
this paper and demonstrate the verification of bit-
level circuits with widely used ROBDD for clarity.
The proposed iterative algorithm to incrementally
build the canonical representation can be easily
modified for the word-level extension [2]. Fig 1
depicts the 4-stage algorithm.
DFG

v

Delay Removal

Fundemental BDD
Construction

v v

Recursive Substution of
Secondary Input Node

¥ |
Canonization

v

ROBDD
Figure 1 Incremental ROBDD Construction

Step 1: Delay removal

The folded architectures to be verified are first
represented in synchronous dataflow graphs (DFG)
[9] with the corresponding I/O sequencing. P, and P,
denote the primary input and the primary output ports
respectively. Remove all delay elements (registers)
and label the secondary input and the secondary
output ports with S/ and S,”, where n is the number
of removed delay units. The resultant acyclic DFG is
referred as the fundamental DFG.

Step 2: Fundamental BDD construction

Construct the ROBDD of the fundamental DFG.
Except at the I/O boundary, the resultant ROBDD,
which we call fundamental BDD, is identical to the
BDD-represented transition functions in symbolic
state-traversal and model checking [3][4][5].

Step 3: Recursive substitution of secondary input
nodes

Incrementally construct the complete ROBDD of the
folded architecture backward from the final
execution step. First, we begin with the fundamental
BDD and associate each primary input node with its
corresponding variable (according to the I/O
sequencing) at the final time-slice. Recursively
substitute the secondary input nodes superscripted by
a matching » at the succeeding time-slices with the
corresponding BDD sub-tree rooted by the same
secondary output variable in the fundamental BDD.
Increment the superscript n by the time index in the
substituting sub-tree and associate all primary input
nodes with the corresponding variables (according to
the I/O sequencing, again) at each time-slice.
Continue the substitution process until no secondary
leaf node exists. If the BDD sub-tree has a node
corresponding to a primary input variable appearing
in its ancestor nodes, remove the conflicting path.

Step 4: Canonization

Redundant node removal and variable reordering [14]
for different I/O sequencing are required to maintain
the ROBDD canonization.

The proposed algorithm requires the computation-
intensive BDD construction only for the folded DFG,
which is usually much smaller than the flattened
unfolded representations. The incremental ROBDD
construction via recursive substitution enables DFS
node traversal, which significantly reduces the
memory usage during EC when the two architectures
under verification have similar input sequencing (i.e.
only requires limited-range variable reordering).
Optimal variable ordering can be conducted along
each path individually to further reduce the ROBDD
size. The spatial structural similarity (cf. the
regularity in the unfolded representation due to
temporal identity) can be explored early in the folded
architectures to reduce the verification efforts.

3 Examples

Multiplication generally consists of two portions:
partial-product generation and reduction. Various
bit-level multiplication architectures with different
sizes, operating frequencies and power consumption
differentiate themselves mainly in the partial-product
reduction architectures. We assume the partial-
product generators of the multipliers are identical
(this is always the case) and ignore them for
simplicity. Fig 2 and Fig 3 show two simplified
reduction architectures (of a 2-bit multiplier) to



reduce the partial products pO~p3 from their primary
inputs. Note that the left adder in Fig 3(a) is
redundant and remains only to show the scalability
for a longer wordlength.

Pil Pi0 — Sum
--=====% Carry
Po0

Cycle 1 Cycle 2
Pi0 pO p2
Pil pl p3
Si0 0 pl
Po0 po* p0+pl
Sil 0 Clphy**
So0 pl p3+C(p0+pl)
Sol C(pl) | C[p3+C(p0+p1)]

* Bolded font denotes the multiplier output
** C( ) denotes the “carry of “

(b)

Figure 2 (a) Ripple Carry Adder (RCA) Partial-
Product Reduction Architecture (b)

Timing Table
Pil Pi0 — Sum
) R e
Sol Sil Po0
F e
Si2 D So2 Si0 D So0
(a)
Cycle 0| Cycle 2 Cycle 2 Cycle 3
Pi0 PO p2 0 0
Pil Pl p3 0 0
Si0 0 0 C(pl+p2) C[p3+C(pl+p2)]
Sil 0 pl p3 0
Po0 PO pl+p2 p3+C(p1+p2) [C[p3+C(pl1+p2)]
So0 |C(p0)=0| C(p1+p2) | C[p3+C(pl+p2)] 0
Sol Pl p3 0 0

(b)

Figure 3 (a) Carry Save Adder (CSA) (b) Timing
Table.

Conventionally, detailed timing tables, as shown in
Fig 2(b) and Fig 3(b), are constructed to manually
verify the correctness of a folded architecture. The
tedious symbolic manipulation on variables with
poor interface to HDL-based design environments
makes the verification very time-consuming and
error-prone. Traditional sequential EC based on
state-traversal on the product machine does not work
because the two architectures do not have an identical
synchronous behavior — neither the timing nor the I/O
sequencing is the same. Combinational verification

techniques can verify the equivalence of the two
folded architectures by unfolding transformation
with proper retiming to completely remove all
registers as shown in Fig 4. The proposed folding
verifier implicitly performs the register removal via
iterative ROBDD construction based on the
fundamental BDD shown in Fig 5. Because of the
limited pages, we only demonstrate the construction
process of the partial ROBDD rooted by the most
significant bit of the multiplication result. Fig 6 and
Fig 7 show the incremental ROBDD construction of
RCA and CSA architectures respectively.

pl p0
9 b
~Ore
By
—> Sum pl  p0 ..} _2:‘ |
------ PG A N
| AW
;p3 p2 g?
N ,,
(@) (b)

Figure 4 Unfolded Representation of (a) RCA (b)
CSA Product Reduction Architecture

Sol

(a)

Figure 5 Fundamental BDD of (a) RCA (b) CSA
Product Reduction Architecture

Cycle 2 Cycle 1 Canonization

Figure 6 Incremental ROBDD Construction for
RCA Architecture



Cycle 4 Cycle 3 Cycle 2 Cycle 1 Canonization

1
Figure 7 Incremental ROBDD Construction for

CSA Architecture

4 Experimental Results

We have implemented all described algorithms in C
based on the CUDD package [15]. Table 1 depicts
the comparison between our equivalence checker for
the folded multipliers and a conventional ROBDD-
based EC with explicit unfolding and retiming to
completely remove the pipelining registers but with
no structural heuristics. The first two columns show
the required pipelining registers and execution cycles
for the two folded (bit-serial) multipliers with distinct
timing and I/O sequencing. The simulation keeps
track of the maximum number of active BDD nodes
constructed during the verification process to
represent the maximum memory usage.

Table 1. Performance Comparison’

Bits Registers Cycles BDD Nodes (MAX)
RCA |CSA |[RCA|CSA| Combi.”™ | Proposed
8 8 151 8 | 16 4,959 1,021
16 16 31 16 | 32 | 26,843,238 262,141
24 | 24 | 47 | 24 | 48 N.A. 67,108,861

* No result is available for sequential EC because the partial product
reduction architectures do not have identical synchronous behaviors.

** An ROBDD-based combinational EC is built for simulation, with
explicit unfolding & retiming but no structural heuristic.

Our folding verifier explores the structural similarity
in DFG at the very early stage to prune the matching
blocks (not used in this comparison). The proposed
algorithm requires the BDD construction only for the
fundamental DFG that is usually much smaller than
the completely unfolded representation used in the
traditional formal combinational EC. The recursive
substitution process is much simpler than the saved
BDD construction efforts and the fundamental BDD
functions as a specific computation cache used in

general BDD packages. It also simplifies the depth-
first BDD construction and node traversal in EC that
reduces the memory usage dramatically in our
experiment. The extra overhead is the canonization
process with redundant node removal and variable
reordering. No explicit unfolding or retiming is
needed. Conventional sequential EC based on state-
traversal on the product machine is not included in
this comparison because the synchronous behaviors
of these two multipliers under verification are
different. As the word-length of the multipliers under
verification increases, the growth of memory usage
represented in the maximum number of active BDD
nodes during verification is much slower with our
proposed method than that with a conventional EC.

5 Conclusion

This paper presents an efficient methodology to
verify the functional equivalence of two folded
architectures with distinct timing and I/O sequencing,
which are very problematic in the conventional
sequential EC. Experimental results show that the
proposed method requires much less memory and
computation than the combinational EC with explicit
unfolding and retiming transformations. Our future
research is to simplify the automatic isolation process
of the feedback paths in non-terminating folded
architectures (e.g. IIR filters) with finite unfolding
factors to recover the distinct scheduling and
allocation and novel robust register mapping.

References:

[1] R.E. Bryant, “Graph-based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on
Computers, August 1986

[2] R.E.Bryant, Y. A. Chen, “Verification of Arithmetic
Circuits with Binary Moment Diagrams,” Design
Automation Conference (DAC), June 1995

[3] A. Ghosh, S. Devadas, A. R. Newton, Sequential Logic
Testing and Verification, Kluwer Academic Publisher,
1992

[4] G.D. Hachtel, F. Somenzi, “FSM Equivalence Checking,”
Logic Synthesis and Verification Algorithms, Kluwer
Academic Publisher, 1996

[5] K. L.McMillan, Symbolic Model Checking, Kluwer
Academic Publisher, 1994

[6] G.P.Bischoff, K. S. Brace, S. Jain, R. Razdan, “Formal
Implementation Verification of the Bus Interface Unit for
the Alpha 21264 Micro- processor,” International
Conference on Computer Design (ICCD), 1997

[7] C.A.J. van Eijk, “Sequential Equivalence Checking
without State Space Traversal,” Design, Automation and
Test in Europe (DATE), March 1998

[8] J.R.Burch, V. Singhal, “Robust Latch Mapping for
Combinational Equivalence Checking,” International
Conference on Computer-Aided Design (ICCAD),
November 1998



(9]
[10]

[11]

[14]

[15]

K. K. Parhi, VLSI Digital Signal Processing Systems —
Design and Implementation, John Wiley & Sons, 1999

D. D. Gajski, N. D. Dutt, C. H. Wu, Y. L. Lin, High Level
Synthesis — Introduction to Chip and System Design,
Kluwer Academic Publisher, 1992

T.J. Lin, C. W. Jen, “Data Stream Generation for
Concurrent Computation in VLSI Signal Processors,”
International Conference on Signal Processing (ICSP),
August 2000

R. K. Ranjan, V. Singhal, F. Somenzi, R. K. Brayton,
“Using Combinational Verification for Sequential
Circuits,” Design Automation and Test in Europe (DATE),
March 1999

P. F. Williams, et al, “Equivalence Checking of
Hierarchical Combinational Circuits,” IEEE International
Conference on Electronics, Circuits and Systems (ICECS),
1999

R. Rudell, “Dynamic Variable Ordering for Ordered
Binary Decision Diagrams,” International Conference on
Computer-Aided Design (ICCAD), 1993

CUDD Package, |http://vlsi.colorado.eduf



http://vlsi.colorado.edu/

