
Optimizing Spin Locks for Multi-
core Processors

中正大學資訊工程研究所

指導教授：羅習五副教授

學生：林靖紳

1

Outline

● Introduction

● Related Work

● Implementation

● Evaluation

● Conclusion

2

Introduction

3

Introduction - Spinlocks Overview in Multi-Core CPUs

● Rise of Multi-core Processors

○ The advent of multi-core processors has revolutionized the computing field, offering

unprecedented performance capabilities.

○ This architecture allows parallel processing but also introduces the challenge of ensuring

synchronization mechanisms for concurrent access to shared resources.

● Why focus on spinlocks:

○ Spinlocks can be used independently, crucial for high-performance applications.

○ Other locks like mutexes and semaphores are implemented using spinlocks; for example, a mutex is

a spinlock combined with a context switch. 4

Introduction - System Architecture Impact

● NUMA and ccNUMA Systems

○ Memory access times vary based on processor proximity.

○ Maintaining data coherence (cache coherence protocols) introduces overhead.

○ Spinlocks can increase interconnect traffic, reducing system performance.

● AMD Threadripper PRO 3995WX Case Study

○ Under the Multi-Chip Module (MCM) architecture, the system includes 4 NUMA nodes and multiple

cores.

○ Uses snoop-based and directory-based cache coherence.

○ Serialization costs: Contention cost (next task determination) and Handoff cost (data passing). 5

Introduction - System Architecture Impact

● Core-to-Core Latency

○ Significant latency variations in ccNUMA environments impact performance.

6

Introduction - Optimizing Spinlock Performance

● NUMA-Aware Spinlocks and RON

○ Traditional grouping spinlocks often assume uniform latencies within a numa node.

○ RON reduces handoff costs using a routing table, optimizing data exchange paths.

● Potential Issues with RON:

○ Memory Overhead: Data structure increases linearly with the number of cores, leading to higher

memory usage.

○ Contention Cost: RON handoff locks with the time comlexity of O(N).

7

Introduction - nxtRON ans shRON

● New Algorithms: next-RON (nxtRON) and shared-RON (shRON)

○ Developed to address limitations in RON.

○ Aim to enhance performance and scalability in multi-core systems.

● nxtRON:

○ Focuses on optimizing contention costs.

○ Aims to reduce the time complexity of RON

● shRON:

○ Targets reducing memory overhead and cache contention compared to traditional spinlock approaches.

○ Implements innovative data sharing and synchronization techniques tailored for modern multi-core CPUs.

8

Related Work

9

RON: One-Way Circular Shortest Routing

10

● Problem Description

○ The number of cores on a single CPU is increasing

○ Accessing shared data involves transferring data between different CPU cores

○ Target: Minimize the data transfer between cores

● Problem Solution

○ "How to allow threads on different cores to access shared data" is more like a path planning

problem

○ Pre-establish routing table using "Approximate Shortest Circular Path" to determine the order in

which each core enters the critical section.

RON

11

● int TSP_ID_ARRAY[]

○ Pre-establish routing table

● thread_local TSP_ID

○ The core's order in the routing table

○ Each thread has its own TSP_ID

● atomic_bool InUse

○ Someone gets the lock or not

○ If InUse = false: no thread in CS

● atomic_int WaitArray[]

○ Which core wants the lock (waiting to

enter CS)

RON

12

● Lock procedure

○ Goal: get the lock

○ Register the TSP_ID wants the lock

○ Wait until the previous TSP_ID hand the

lock to TSP_ID

○ Or wait until there is no thread in CS

■ InUse = false

RON

13

● Unlock procedure
○ Goal: find the next and release the lock

○ Find the next core wants to get the lock

from TSP_ID+1

○ If find someone want the lock :

■ Hand the lock

■ Set WaitArray[TSP_ID] to 1

○ else if cannot find someone want the lock

■ set InUse into false

Related Work - Plock (GNU Pthread’s Spinlock)

● Description:

○ Implements test-and-test-and-set (TTAS) mechanism for lock acquisition.

○ Simple and commonly used in POSIX environments like GNU.

○ Prone to fairness issues and scalability limitations under high contention.

● Implementation:

○ Threads repeatedly check and set the lock status using TTAS.

○ Can lead to increased contention and potential thread starvation.

14

Related Work - Ticket Spinlock

● Description:

○ Uses a ticket-based mechanism where threads wait for their ticket number to match the service

number.

○ Ensures fairness by strictly adhering to the order of ticket issuance.

● Implementation:

○ Threads increment their ticket number when waiting to enter the critical section.

○ Waits until their ticket number matches the current service number for entry.

15

Related Work - RONPlock

● Description:

○ Integrates RON algorithm with pthreads spinlock to tackle oversusbscription.

○ Uses optimized locking-unlocking order and routing table to reduce communication costs.

○ Manages thread contention and entry into critical sections efficiently.

● Implementation:

○ Utilizes WaitArray to track waiting threads per core.

○ Employs atomic_fetch_add for managing nWait variables locally.

16

Related Work - RONPlock

● Implementation:

○ Utilizes WaitArray to track waiting

threads per core.

○ Employs atomic_fetch_add for

managing numWait variables locally.

17

Related Work - RONTick

● Description:

○ Oversubscribed version of RON algorithm with ticket spinlock.

○ Enhances scalability under low contention by using ticket numbers for queuing.

○ Ensures fairness in critical section access across cores.

● Implementation:

○ Each core manages grant and ticket variables to control thread entry order.

○ Threads spin on a loop until their ticket matches the grant value for their core.

18

Related Work - MCS Spinlock

● Description:

○ Queue-based spinlock algorithm.

○ Each thread spins on a local flag and waits its turn in a queue structure.

● Implementation:

○ Known for its scalability and efficiency in NUMA architectures.

○ Supports multiple threads waiting for the lock in a FIFO order.

19

Related Work - C-BO-MCS Spinlock

● Description:

○ Grouping based Spinlock

○ Combines MCS locks for NUMA nodes with back-off locking strategy.

○ Prioritizes neighboring cores to reduce handover costs.

○ Uses test-and-test-and-set with back-off for inter-node competition.

● Implementation:

○ Manages two types of locks: local MCS and back-off for cross-node competition.

○ Enhances performance by minimizing cross-socket communication.

20

Related Work - Shuffle Lock (ShflLock)

● Description:

○ Dynamically reorders the queue of waiting threads based on a predefined policy.

○ Improves fairness and reduces contention, though may introduce short delays during reordering.

● Implementation:

○ Ensures efficient thread scheduling without additional data structures on the critical path.

○ Optimizes performance by managing thread order dynamically.

21

Implementation

22

nxtRON

23

Implementation - nxtRON: Design Overview (1)

● RON-Plock Algorithm:

○ lock: Uses an integer array(WaitArray) to spin

○ unlock: Uses the same array to select the next thread by for loop traversing.

● nxtRON Introduction:

○ Structure Separation: nxtRON separates the "auxiliary variable" from the "spinning variable", keeping data

consistent.

○ Bitmap Usage: Uses a bitmap as the auxiliary variable to track threads waiting for the lock.

● Bitmap Mechanism Advantages:

○ Reduces overhead during thread selection.

○ Reduces time complexity from O(#NUM_CORE) to O(1). 24

Implementation - nxtRON: Design Overview (2)

● Thread Request and Lock Release:

○ Thread A Requests the Lock

■ A sets the corresponding bit in the bitmap

○ Thread A Releases the Lock

■ A hands off the lock to Thread B

○ Thread B holds the lock

○ Thread A Searches for the Next Thread

■ A finds the next thread for B to handing

off the lock using the bitmap 25

Implementation - nxtRON: Design Overview (3)

● Observation:

○ Separation of auxiliary variable and spinning variable reduces the cost of cmpxchg.

■ Spinning variable is only changed during wait and wakeup.

● Key Advantages of nxtRON

○ Reduced Time Complexity:

■ Reduces time complexity of selecting the next thread from O(N) to O(1).

○ Cache Coherence:

■ By ensuring that the data within the auxiliary and spinning variable is consistent, the nxtRON

algorithm benefits from improved cache coherence, further enhancing its performance. 26

Implementation - nxtRON: Implementation Details (1)

● Data Structures: ● WaitArray[]: (spinning variable)

○ Array indicating the wait status of each core.

● atomic_bool InUse:

○ if any thread is currently in the critical section.

○ InUse = false: no thread in CS.

● long nxt_ary: (auxiliary variable)

○ Bitmap where each bit corresponds to a core’s

wait status.

● record_next[]:

○ Recording the next core scheduled to enter CS

27

Implementation - nxtRON: Implementation Details (2)

spin_lock():

● Thread Request

○ Sets the corresbonding bit in nxt_ary

● Busy-Wait Loop

○ Busy Waiting until its turn to acquire

the lock

○ Or there is no thread in CS

28

Implementation - nxtRON: Implementation Details (3)

spin_unlock():

● Handoff the lock

○ We use an int record_next array to

record the TSP_ID's next

● If next > -1:

● We had found the value in the last roud

○ TSP_ID hand the lock to next (line 43)

○ TSP_ID put down the hand (line 45)

○ TSP_ID find the next's next (line 46)

● else: set InUse into false (line 48)

29

Implementation - nxtRON: Implementation Details (4)

● find_next()

○ ffs():

■ '__builtin_ctz'

■ Provided by GCC

■ Time complexity: O(1)

30

Implementation - nxtRON: Conclusion

● Efficiency and Scalability:

○ Reduces thread selection overhead.

○ Improves system performance and scalability in multi-core environments.

● Limitations

○ Does not provide optimizations for space complexity.

○ Focuses on improving time complexity and reducing overhead without optimizing memory

footprint.

31

shRON

32

Implementation - shRON: Design Overview (1)

● RON-Plock Algorithm:

○ Uses a per-lock WaitArray[], which size increases linearly with the number of cores.

● ShRON introduction:

○ Per-Process Shared WaitArray[]: Reduces memory contention and overhead.

○ WaitArray[] Bitmap: Uses atomic_long to track cores waiting for the lock.

○ Lock Representation: Two bits represent a lock in WaitArray.

○ Capacity: Each atomic_long can track 32 locks in our system.

33

Implementation - shRON: Design Overview (2)

● Observation

○ Processor-Native Types:

■ Use types like atomic_long for hardware support.

○ Performance Impact:

■ Multiple cores accessing the same atomic_long leads to lower performance.

○ Bitmap Approach:

■ shRON uses a bitmap so that a core waits on multiple locks, minimizing performance issues.

34

Implementation - shRON: Design Overview (3)

● Key Advantages of shRON

○ Improved Cache Utilization:

■ Optimized data access patterns enhance cache memory usage.

○ Scalability:

■ Dynamic bitmap resizing ensures efficient resource use regardless of active locks.

○ Space Complexity Reduction:

■ Reduces space complexity by 2/(sizeof(atomic_long)) times compared to RON-Plock.

35

Implementation - shRON: Implementation Details (1)

● Data Structure:

● WaitArray[]: Array of atomic_long structures indicating each core's wait status.

○ LOCK_BIT: Shows lock status (ACQUIRE (ACQ) or RELEASE (REL)).

○ PEND_BIT: Shows waiting status (PENDING (PEN) or IDLING (IDL)).
36

Implementation - shRON: Implementation Details (2)

● Assume there are 32 locks to create and the #NUM_CORE is "n"

○ We will first malloc the WaitAry size as 1*n

● We zoom into the first core: WaitAry[0][0], which is a atomic_long variable with 64 bits.

...core 1 core n-1core 0WaitAry[0]

#bits 63 62 ... 3 2 1 0

Meaning PEND_BIT LOCK_BIT PEND_BIT LOCK_BIT PEND_BIT LOCK_BIT

Lock Lock 31 ... Lock 1 Lock 0

37

Implementation - shRON: Implementation Details (3)

● Data Structure: ● int InUse:1

○ if any thread is currently in the CS

○ InUse = 0 : no thread in CS

● int WaitID:6
○ Six-bit integer representing the

LOCK_BIT index. (0, 2, 4, 6,.., 62)

○ The third lock will get the WaitID as 4

● int ColID: 25
○ 25-bit integer denoting the column index

in WaitAry[ColID][#CORE].

○ The 34th lock will get the ColID as 1.
38

Implementation - shRON: Implementation Details (4)

● spin_lock()

○ Thread Request

■ Set the PEND_BIT as PEND

○ Busy-Wait Loop

■ Busy Waiting until its turn to acquire

the lock

■ Or there is no thread in CS

○ Get the lock

■ Set PEND_BIT as IDL

■ Set the LOCK_BIT as REL (line 31)
39

Implementation - shRON: Implementation Details (5)

● spin_unlock()

○ Like RON-Plock

■ Using a for-loop traverse

■ Visit the bit value of WaitAry

○ Check the PEND_BIT as the thread want

the lock or not. (line 42)

○ Release the lock by set the next’s

LOCK_BIT as ACQ.

40

Implementation - shRON: Conclusion

● Efficiency and Scalability:

○ Reduces the space complexity of RON-Plock and nxtRON.

○ Improves system performance and scalability in multi-lock environments.

● Limitations

○ Despite these advantages, shRON does incur increased computational overhead due to

the additional bit operations involved in its design.

41

Evaluation

42

Evaluation - Testing Environment

43

● Model name: AMD Ryzen Threadripper PRO 3995WX

● Number of Cores: 64-Core Processor

● Virtual core: 128 (virtual core per core is 2)

● Architecture: x86_64

● Compile Environment: gcc version 10.5.0

● Target: AMD Zen+ and x86 64-linux-gnu

● Thread model: POSIX

● Linux Version: 5.4.0-177-generic

Evaluation - Testing Program - Userspace

● Userspace:

○ We analyze each lock method in a quantitative manner through a controlled

microbenchmark

○ We construct our locking algorithms under a public library: LiTL

■ Library for Transparent Lock interposition

■ LiTL is a library that allows executing a program based on Pthread mutex locks with another

locking algorithm

44
Author : Hugo Guiroux <hugo.guiroux at gmail dot com>

Related Publication: Multicore Locks: the Case is Not Closed Yet, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, USENIX ATC'16.

https://github.com/multicore-locks/litl

Evaluation - Testing Program - Microbenchmarks

45

● nCS:

○ Non-critical section / Remainder section

○ It reflects the contention of the process

○ The random variable is utilized to

simulate varying program loads

Evaluation - Throughput in High Contention

46

3.7

4.2

3.2

2.1

1.2

Evaluation - Normalized Throughput in Low Contention

47

Evaluation - Scalability with RS=10000 ns

48

3.7

4.2
4.0

2.1

1.3

Evaluation - Long-Term Fairness

49

Evaluation - Handover Time per CS (ns)

50

146

348

113

Evaluation - Contention Cost

51

52K

120K

73k

43K

Evaluation - Lock Release Time (ns)

52

298
262

307

Evaluation - Oversubscribed

53

Evaluation - Google - leveldb (ms)

54

Evaluation - Testing Program - Linux Kernel

55

● Linux kernel locking algorithm
○ qspinlock

■ Fast path:
● TTAS In low contention scenarios (few competitors), the lock is directly acquired

through TTAS, like plock
■ Slow path:

● MCS In high contention scenarios (many competitors), the slow path is entered

Evaluation - Testing Program - Linux Kernel

56

● Linux kernel locking algorithm
○ By rewriting these two functions, we implement nxtRON in the Linux kernel.

57

Testing Program - mmap

Linux Kernel - mmap (ms)

58

mmap
(ms)

clone
(ms)

mprotect
(ms)

munmap
(ms) geomean

qspinlock 1883.0 276.6 911.6 87.4 451.4

RON 2050.9 259.3 637.3 37.9 336.6

nxtRON 1961.8 280.7 609.0 37.9 335.7

Linux Kernel - leveldb (MB/sec)

59

Conclusion

60

Conclusion

● nxtRON (next-RON):

○ Uses bitmap to track waiting threads, reducing time complexity of RON.

○ Cuts lock acquisition time by up to 20%, and outperforms in Linux Kernel

● shRON (shared-RON):

○ Implements shared data structures, reducing memory and cache contention.

○ Enhance throughput by about 25% in high contention.

● Performance Evaluations:

○ Outperform existing solutions (RON-Plock, RON-ticket) by 10% to 15%.

○ Enhance system throughput by up to 20% across various operational modes. 61

Conclusion - Future Work

● Combine the two algorithms

● Integrate the combined algorithm into Linux kernel for broader optimization.

● Explore impact on energy efficiency and thermal management.

62

