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Introduction - Spinlocks Overview in Multi-Core CPUs

● Rise of Multi-core Processors

○ The advent of multi-core processors has revolutionized the computing field, offering 

unprecedented performance capabilities.

○ This architecture allows parallel processing but also introduces the challenge of ensuring 

synchronization mechanisms for concurrent access to shared resources.

● Why focus on spinlocks:

○ Spinlocks can be used independently, crucial for high-performance applications.

○ Other locks like mutexes and semaphores are implemented using spinlocks; for example, a mutex is 

a spinlock combined with a context switch. 4



Introduction - System Architecture Impact

● NUMA and ccNUMA Systems

○ Memory access times vary based on processor proximity.

○ Maintaining data coherence (cache coherence protocols) introduces overhead.

○ Spinlocks can increase interconnect traffic, reducing system performance.

● AMD Threadripper PRO 3995WX Case Study

○ Under the Multi-Chip Module (MCM) architecture, the system includes 4 NUMA nodes and multiple 

cores.

○ Uses snoop-based and directory-based cache coherence.

○ Serialization costs: Contention cost (next task determination) and Handoff cost (data passing). 5



Introduction - System Architecture Impact

● Core-to-Core Latency

○ Significant latency variations in ccNUMA environments impact performance.
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Introduction - Optimizing Spinlock Performance

● NUMA-Aware Spinlocks and RON

○ Traditional grouping spinlocks often assume uniform latencies within a numa node.

○ RON reduces handoff costs using a routing table, optimizing data exchange paths.

● Potential Issues with RON:

○ Memory Overhead: Data structure increases linearly with the number of cores, leading to higher 

memory usage. 

○ Contention Cost: RON handoff locks with the time comlexity of O(N).
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Introduction - nxtRON ans shRON

● New Algorithms: next-RON (nxtRON) and shared-RON (shRON)

○ Developed to address limitations in RON.

○ Aim to enhance performance and scalability in multi-core systems.

● nxtRON:

○ Focuses on optimizing contention costs.

○ Aims to reduce the time complexity of RON

● shRON:

○ Targets reducing memory overhead and cache contention compared to traditional spinlock approaches.

○ Implements innovative data sharing and synchronization techniques tailored for modern multi-core CPUs.
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Related Work
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RON: One-Way Circular Shortest Routing
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● Problem Description

○ The number of cores on a single CPU is increasing

○ Accessing shared data involves transferring data between different CPU cores

○ Target: Minimize the data transfer between cores

● Problem Solution

○ "How to allow threads on different cores to access shared data" is more like a path planning 

problem

○ Pre-establish routing table using "Approximate Shortest Circular Path" to determine the order in 

which each core enters the critical section.



RON
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● int TSP_ID_ARRAY[]

○ Pre-establish routing table

● thread_local TSP_ID

○ The core's order in the routing table

○ Each thread has its own TSP_ID

● atomic_bool InUse

○ Someone gets the lock or not

○ If InUse = false: no thread in CS

● atomic_int WaitArray[]

○ Which core wants the lock (waiting to 

enter CS) 



RON
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● Lock procedure

○ Goal: get the lock

○ Register the TSP_ID wants the lock

○ Wait until the previous TSP_ID hand the 

lock to TSP_ID

○ Or wait until there is no thread in CS

■ InUse = false



RON
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● Unlock procedure
○ Goal: find the next and  release the lock

○ Find the next core wants to get the lock 

from TSP_ID+1

○ If find someone want the lock :

■ Hand the lock 

■ Set WaitArray[TSP_ID] to 1

○ else if cannot find someone want the lock

■ set InUse into false



Related Work - Plock (GNU Pthread’s Spinlock) 

● Description:

○ Implements test-and-test-and-set (TTAS) mechanism for lock acquisition.

○ Simple and commonly used in POSIX environments like GNU.

○ Prone to fairness issues and scalability limitations under high contention.

● Implementation:

○ Threads repeatedly check and set the lock status using TTAS.

○ Can lead to increased contention and potential thread starvation.
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Related Work - Ticket Spinlock

● Description:

○ Uses a ticket-based mechanism where threads wait for their ticket number to match the service 

number.

○ Ensures fairness by strictly adhering to the order of ticket issuance.

● Implementation:

○ Threads increment their ticket number when waiting to enter the critical section.

○ Waits until their ticket number matches the current service number for entry.
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Related Work - RONPlock 

● Description:

○ Integrates RON algorithm with pthreads spinlock to tackle oversusbscription.

○ Uses optimized locking-unlocking order and routing table to reduce communication costs.

○ Manages thread contention and entry into critical sections efficiently.

● Implementation:

○ Utilizes WaitArray to track waiting threads per core.

○ Employs atomic_fetch_add for managing nWait variables locally.
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Related Work - RONPlock 

● Implementation:

○ Utilizes WaitArray to track waiting 

threads per core.

○ Employs atomic_fetch_add for 

managing numWait variables locally.
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Related Work - RONTick

● Description:

○ Oversubscribed version of RON algorithm with ticket spinlock.

○ Enhances scalability under low contention by using ticket numbers for queuing.

○ Ensures fairness in critical section access across cores.

● Implementation:

○ Each core manages grant and ticket variables to control thread entry order.

○ Threads spin on a loop until their ticket matches the grant value for their core.
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Related Work - MCS Spinlock

● Description:

○ Queue-based spinlock algorithm.

○ Each thread spins on a local flag and waits its turn in a queue structure.

● Implementation:

○ Known for its scalability and efficiency in NUMA architectures.

○ Supports multiple threads waiting for the lock in a FIFO order.
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Related Work - C-BO-MCS Spinlock

● Description:

○ Grouping based Spinlock

○ Combines MCS locks for NUMA nodes with back-off locking strategy.

○ Prioritizes neighboring cores to reduce handover costs.

○ Uses test-and-test-and-set with back-off for inter-node competition.

● Implementation:

○ Manages two types of locks: local MCS and back-off for cross-node competition.

○ Enhances performance by minimizing cross-socket communication.
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Related Work - Shuffle Lock (ShflLock)

● Description:

○ Dynamically reorders the queue of waiting threads based on a predefined policy.

○ Improves fairness and reduces contention, though may introduce short delays during reordering.

● Implementation:

○ Ensures efficient thread scheduling without additional data structures on the critical path.

○ Optimizes performance by managing thread order dynamically.
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nxtRON
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Implementation - nxtRON: Design Overview (1)

● RON-Plock Algorithm:

○ lock: Uses an integer array(WaitArray) to spin 

○ unlock: Uses the same array to select the next thread by for loop traversing.

● nxtRON Introduction:

○ Structure Separation: nxtRON separates the "auxiliary variable" from the "spinning variable", keeping data 

consistent.

○ Bitmap Usage: Uses a bitmap as the auxiliary variable to track threads waiting for the lock.

● Bitmap Mechanism Advantages:

○ Reduces overhead during thread selection.

○ Reduces time complexity from O(#NUM_CORE) to O(1). 24



Implementation - nxtRON: Design Overview (2)

● Thread Request and Lock Release:

○ Thread A Requests the Lock

■ A sets the corresponding bit in the bitmap 

○ Thread A Releases the Lock

■ A hands off the lock to Thread B

○ Thread B holds the lock

○ Thread A Searches for the Next Thread

■ A finds the next thread for B to handing 

off the lock using the bitmap 25



Implementation - nxtRON: Design Overview (3)

● Observation:

○ Separation of auxiliary variable and spinning variable reduces the cost of cmpxchg.

■ Spinning variable is only changed during wait and wakeup.

● Key Advantages of nxtRON

○ Reduced Time Complexity:

■ Reduces time complexity of selecting the next thread from O(N) to O(1).

○ Cache Coherence: 

■ By ensuring that the data within the auxiliary and spinning variable is consistent, the nxtRON 

algorithm benefits from improved cache coherence, further enhancing its performance. 26



Implementation - nxtRON: Implementation Details (1)

● Data Structures: ● WaitArray[]: (spinning variable)

○ Array indicating the wait status of each core. 

● atomic_bool InUse:

○ if any thread is currently in the critical section.

○ InUse = false: no thread in CS.

● long nxt_ary: (auxiliary variable)

○ Bitmap where each bit corresponds to a core’s 

wait status.

● record_next[]:

○ Recording the next core scheduled to enter CS
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Implementation - nxtRON: Implementation Details (2)

spin_lock():

● Thread Request

○ Sets the corresbonding bit in nxt_ary

● Busy-Wait Loop

○ Busy Waiting until its turn to acquire 

the lock

○ Or there is no thread in CS
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Implementation - nxtRON: Implementation Details (3)

spin_unlock():

● Handoff the lock

○ We use an int record_next array to 

record the TSP_ID's next

● If next > -1: 

● We had found the value in the last roud

○ TSP_ID hand the lock to next (line 43)

○ TSP_ID put down the hand (line 45)

○ TSP_ID find the next's next (line 46)

● else: set InUse into false (line 48)
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Implementation - nxtRON: Implementation Details (4)

● find_next()

○ ffs():

■ '__builtin_ctz' 

■ Provided by GCC

■ Time complexity: O(1)
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Implementation - nxtRON: Conclusion

● Efficiency and Scalability:

○ Reduces thread selection overhead.

○ Improves system performance and scalability in multi-core environments.

● Limitations

○ Does not provide optimizations for space complexity.

○ Focuses on improving time complexity and reducing overhead without optimizing memory 

footprint.
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shRON
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Implementation - shRON: Design Overview (1)

● RON-Plock Algorithm:

○ Uses a per-lock WaitArray[], which size increases linearly with the number of cores.

● ShRON introduction:

○ Per-Process Shared WaitArray[]: Reduces memory contention and overhead.

○ WaitArray[] Bitmap: Uses atomic_long to track cores waiting for the lock.

○ Lock Representation: Two bits represent a lock in WaitArray.

○ Capacity: Each atomic_long can track 32 locks in our system.
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Implementation - shRON: Design Overview (2)

● Observation

○ Processor-Native Types: 

■ Use types like atomic_long for hardware support.

○ Performance Impact: 

■ Multiple cores accessing the same atomic_long leads to lower performance.

○ Bitmap Approach: 

■ shRON uses a bitmap so that a core waits on multiple locks, minimizing performance issues.
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Implementation - shRON: Design Overview (3)

● Key Advantages of shRON

○ Improved Cache Utilization: 

■ Optimized data access patterns enhance cache memory usage.

○ Scalability: 

■ Dynamic bitmap resizing ensures efficient resource use regardless of active locks.

○ Space Complexity Reduction: 

■ Reduces space complexity by 2/(sizeof(atomic_long)) times compared to RON-Plock.
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Implementation - shRON: Implementation Details (1)

● Data Structure:

● WaitArray[]: Array of atomic_long structures indicating each core's wait status.

○ LOCK_BIT: Shows lock status (ACQUIRE (ACQ) or RELEASE (REL)).

○ PEND_BIT: Shows waiting status (PENDING (PEN) or IDLING (IDL)).
36



Implementation - shRON: Implementation Details (2)

● Assume there are 32 locks to create and the #NUM_CORE is "n"

○ We will first malloc the WaitAry size as 1*n

● We zoom into the first core: WaitAry[0][0], which is a atomic_long variable with 64 bits.

...core 1 core n-1core 0WaitAry[0]

#bits 63 62 ... 3 2 1 0

Meaning PEND_BIT LOCK_BIT PEND_BIT LOCK_BIT PEND_BIT LOCK_BIT

Lock Lock 31 ... Lock 1 Lock 0
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Implementation - shRON: Implementation Details (3)

● Data Structure: ● int InUse:1

○ if any thread is currently in the CS

○ InUse = 0 : no thread in CS

● int WaitID:6
○ Six-bit integer representing the 

LOCK_BIT index. (0, 2, 4, 6,.., 62)

○ The third lock will get the WaitID as 4

● int ColID: 25
○ 25-bit integer denoting the column index 

in WaitAry[ColID][#CORE].

○ The 34th lock will get the ColID as 1.
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Implementation - shRON: Implementation Details (4)

● spin_lock()

○ Thread Request

■ Set the PEND_BIT as PEND

○ Busy-Wait Loop

■ Busy Waiting until its turn to acquire 

the lock

■ Or there is no thread in CS

○ Get the lock

■ Set PEND_BIT as IDL

■ Set the LOCK_BIT as REL (line 31)
39



Implementation - shRON: Implementation Details (5)

● spin_unlock()

○ Like RON-Plock

■ Using a for-loop traverse

■ Visit the bit value of WaitAry

○ Check the PEND_BIT as the thread want 

the lock or not. (line 42)

○ Release the lock by set the next’s 

LOCK_BIT as ACQ.
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Implementation - shRON: Conclusion

● Efficiency and Scalability:

○ Reduces the space complexity of RON-Plock and nxtRON.

○ Improves system performance and scalability in multi-lock environments.

● Limitations

○ Despite these advantages, shRON does incur increased computational overhead due to 

the additional bit operations involved in its design. 
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Evaluation
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Evaluation - Testing Environment
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● Model name:  AMD Ryzen Threadripper PRO 3995WX

● Number of Cores: 64-Core Processor

● Virtual core: 128 (virtual core per core is 2)

● Architecture: x86_64

● Compile Environment: gcc version 10.5.0

● Target: AMD Zen+ and x86 64-linux-gnu

● Thread model: POSIX

● Linux Version: 5.4.0-177-generic



Evaluation - Testing Program - Userspace

● Userspace:

○ We analyze each lock method in a quantitative manner through a controlled 

microbenchmark

○ We construct our locking algorithms under a public library: LiTL

■ Library for Transparent Lock interposition

■ LiTL is a library that allows executing a program based on Pthread mutex locks with another 

locking algorithm

44
Author : Hugo Guiroux <hugo.guiroux at gmail dot com>

Related Publication: Multicore Locks: the Case is Not Closed Yet, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, USENIX ATC'16.

https://github.com/multicore-locks/litl


Evaluation - Testing Program - Microbenchmarks
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● nCS:

○ Non-critical section / Remainder section

○ It reflects the contention of the process

○ The random variable is utilized to 

simulate varying program loads



Evaluation - Throughput in High Contention
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Evaluation - Normalized Throughput in Low Contention

47



Evaluation - Scalability with RS=10000 ns
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Evaluation - Long-Term Fairness
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Evaluation - Handover Time per CS (ns)
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Evaluation - Contention Cost
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Evaluation - Lock Release Time (ns)
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Evaluation - Oversubscribed
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Evaluation - Google - leveldb (ms)
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Evaluation - Testing Program - Linux Kernel
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● Linux kernel locking algorithm 
○ qspinlock

■ Fast path: 
● TTAS In low contention scenarios (few competitors), the lock is directly acquired 

through TTAS, like plock
■ Slow path: 

● MCS In high contention scenarios (many competitors), the slow path is entered



Evaluation - Testing Program - Linux Kernel
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● Linux kernel locking algorithm 
○ By rewriting these two functions, we implement nxtRON in the Linux kernel.



57

Testing Program - mmap



Linux Kernel - mmap (ms)
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mmap 
(ms)

clone 
(ms)

mprotect 
(ms)

munmap
(ms) geomean

qspinlock 1883.0 276.6 911.6 87.4 451.4

RON 2050.9 259.3 637.3 37.9 336.6

nxtRON 1961.8 280.7 609.0 37.9 335.7



Linux Kernel - leveldb (MB/sec)
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Conclusion
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Conclusion

● nxtRON (next-RON):

○ Uses bitmap to track waiting threads, reducing time complexity of RON.

○ Cuts lock acquisition time by up to 20%, and outperforms in Linux Kernel

● shRON (shared-RON):

○ Implements shared data structures, reducing memory and cache contention.

○ Enhance throughput by about 25% in high contention.

● Performance Evaluations:

○ Outperform existing solutions (RON-Plock, RON-ticket) by 10% to 15%.

○ Enhance system throughput by up to 20% across various operational modes. 61



Conclusion - Future Work

● Combine the two algorithms

● Integrate the combined algorithm into Linux kernel for broader optimization.

● Explore impact on energy efficiency and thermal management.
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