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ABSTRACT

Traditionally, dynamically reconfigurable systems either adopt a proces-
sor-controlled networked architecture or a sequencer-controlled data flow architecture. In
the networked architecture, the processor is overloaded with data transfer requests,
whereas in the data flow architecture, the burden is completely shifted from the processor
to the data sequencer. As a tradeoff between these two extremes, this work proposes a
novel module sequencer architecture, which not only allows the processor and the se-
quencer to share the heavy data communication load among computing units, but also
adopts a programming model similar to that of the conventional processor-FPGA archi-
tecture. Further, the architecture is highly flexible because it can be tuned to fit a particu-
lar application. Application examples show how the proposed architecture is not only
superior to the networked architecture in terms of lower communication load and to the
data flow architecture in terms of reduced system complexity, but also performs better
than a similar OPB-Dock based architecture.

Key words: reconfigurable module sequencer (RMS), dynamically partially reconfigur-

able system (DPRS), processor-controlled networked architecture (PNA),
data sequencer-controlled networked architecture (SDA), memory mapping.

l. INTRODUCTION

The term “reconfigurable computing” was first
proposed by Estrin [7] in 1960 and popularized by the
FPGA technology in the mid-1980s. As a tradeoff be-
tween general-purpose computing and application-spe-
cific integrated circuit (ASIC) computing, reconfigurable
computing has combined the advantages of the two ex-
treme characteristics [18], [19]. The performance of re-
configurable systems is better than general-purpose sys-
tems and the cost is smaller than that of ASICs. The
main advantage of a reconfigurable system is its high
flexibility and the design effort is between that of gen-
eral-purpose processor and ASICs.

Unlike von-Neumann based architectures, there are
currently no standard memory hierarchy and communi-
cation schemes for dynamically partially reconfigurable
system (DPRS) [6], [8], [11], [12], [13], [16], [20].
However, two communication architectures are com-
monly adopted, namely processor-controlled network
architecture (PNA) and sequencer-controlled data flow
architecture (SDA). In PNA, the processor is responsi-

ble for all data transfers between hardware and software
or between two hardware modules. As an application is
divided into a large number of small reconfigurable
hardware blocks, the overhead for the processor in han-
dling communication between these small hardware
blocks increases rapidly. In SDA, data communication is
completely handled by a devoted data sequencer, which
requires the manual or automatic generation of very low
level data movement instructions. There is no processor
in SDA.

Both the PNA and the SDA architectures pose limi-
tations for a system design to achieve high communica-
tion performance. In PNA, the processor is easily over-
loaded with too many communication requests, as a re-
sult of which, the overall system performance is de-
graded. In SDA, the main problem is that the high com-
plexity in generating low-level data flow instructions
makes optimization difficult and thus it is not easy to
achieve high communication performance.

As a tradeoff between the low communication per-
formance of network architectures such as PNA and the
high complexity of data flow architectures such as SDA,
a novel Module Sequencer Architecture (MSA) is pro-
posed in this work, which solves all the above four is-
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sues. The concept of such a sequencer has been proposed
in the cryptography processor [10] using “microcode” as
the instruction sequence.

The contributions of this work are as follows.

* Reduced communication overhead: In contrast to
PNA, in MSA the module sequencer shares a signifi-
cant portion of data communication workload, thus
easing the burden of the processor, the DMA, and the
OS. The module sequencer controls function blocks
to directly communicate with each other.

* Simplified programming model: In contrast to SDA, a
much simpler programming model is adopted in
MSA, which is coherent with the conventional proc-
essor/FPGA architecture.

* Simplified bus architecture: Instead of a complex full
function bus, a simple read-write control signal
driven bus architecture is proposed for interconnect-
ing the swappable hardware function blocks.

* Virtual function mapping: Hardware function blocks
can be dynamically relocated into different positions
in the reconfigurable logic with a mapping between
logical task ID and physical slot ID, while maintain-
ing all communications.

This article is organized as follows. Section II dis-
cusses related research work and compares them with
our architecture. The proposed module sequencer archi-
tecture is described in Section III. The illustration exam-
ples are given in Section IV. Finally, conclusions are
given in Section V along with future work.

Il. RELATED WORK

Several architectures [1], [2], [3], [5]. [8], [16], [17],
[20] have been designed for realizing a DPRS, however
different architectures cause varying degrees of impact
on the communication overhead for a processor. In this
section, we focus on two typical PNA and two SDA for
DPRS.

A DPRS architecture with OS frames [17], [20] is
proposed to alleviate the communication problems with
a bus. Hardware tasks communicate with each other by
the unified interface that is the bus. In this architecture,
two OS frames which bridge the static and dynamic
modules are located at the left and right edges of the
FPGA. OS frames are bus arbiters which control the bus
and allocate its usage to requesting tasks. The static and
dynamic zones are separated by this approach. The OS
frame left contains the Bus Arbiter Left (BARL) that
controls the left bus which sends data from right to left.
The OS frame right contains the Bus Arbiter Right
(BARR) that has the same capability in the opposite data
transfer direction. A reconfigurable hardware task in-
cludes a bus access controller (BAC) to connect to the
bus. A BAC has a task control interface (TCIF) and m
data exchange interfaces (DxIF). The TCIF handles the
bus protocol and the DxIF controls the sent and received
data. When a system is under reconfiguration, the arbi-
ters freeze the bus because reconfiguration in Xilinx

Virtex-1I is column-wise which breaks the bus. Beside
the arbiters, an operating system for reconfigurable sys-
tems (OS4RS) [4] is needed to enforce correct commu-
nication between the underlying reconfigurable hard-
wares and therefore the processor takes a lot of time for
communication.

Ferreira proposed an OPB DOCK [8], [16] to inte-
grate the original bus architecture of a system, for exam-
ple IBM CoreConnect, and a dynamically partially re-
configurable subsystem using the Xilinx bus macro. This
approach also uses a bus as the communicating medium.
The processor communicates with other hardware com-
ponents via the CoreConnect bus, which is composed of
the Processor Local Bus (PLB), the On-chip Peripheral
Bus (OPB), and the OPB DOCK architecture. The
PowerPC accesses the BRAM via the PLB, the UART
via the OPB, and the reconfigurable area via the OPB
DOCK. Such a system has the advantages of a common
bus architecture and also works perfectly with DPRS.
This approach takes a lot of processor cycles to control
and synchronize the communication between recon-
figurable hardware function blocks because the OPB
DOCK is like an arbiter or bridge between the OPB bus
and the reconfigurable area without any advanced com-
munication control. Our work will be based on a similar
architecture.

Transport Triggered Architecture (TTA) [1], [2], a
move machine, was proposed for customizing applica-
tion-specific instruction-set processor (ASIP) designs.
The TTA contains a set of buses with sockets that can be
used to connect small hardware circuits such as adders,
subtractors, registers, and so on. Instruction execution is
triggered by data movements between different hardware
circuits, and the real execution of the hardware is trig-
gered by the side effect of the data movement when this
movement target is a trigger register. The TTA is a static
hardware with simple design that moves the application
complexity from hardware to software or the compiler
design.

Reconfigurable pipelined datapaths (RaPiD) [3], [5]
is a domain-specific coarse-grained reconfigurable ar-
chitecture with a stream manager, an instruction genera-
tor, a configurable instruction decoder, a configurable
interconnect, and application-specific function units such
as ALU, multiplexer, RAM, and registers. Data 1/O is
performed by the stream manager and dynamic configu-
rations of function units and routing are performed by
instructions that are executed by cycle-by-cycle se-
quencing. RaPiD is a typical data flow architecture with
a data sequencer.

Both the TTA and RaPiD architectures work as su-
perscalar processors to speedup specific applications.
However, since the architectures deviate significantly
from the conventional processor/FPGA architecture,
their programming models are very complex. Our pro-
posed module sequencer architecture is not only com-
patible with the conventional architecture, but also al-
lows a simpler programming model.
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lll. MODULE SEQUENCER ARCHITECTURE

Similar to other DPRS architectures, the target
module sequencer architecture has a statically config-
ured part and a dynamically reconfigurable part. As il-
lustrated in Figure 1, the static part consists of a micro-
processor, RAM, static hardware accelerators, a con-
figuration device, and the proposed reconfigurable mod-
ule sequencer (RMS). Unlike other architectures, the
dynamic part is controlled by the RMS and consists of a
data bus, a set of read-write control signals, and a recon-
figurable area that can be configured with hardware
function blocks along the area width.

The proposed MSA is an efficient blending of the
conventional PNA and SDA architectures, because the
microprocessor and the RMS share the data communica-
tion and control workload in a running application. The
microprocessor is responsible only for coarse-grained
communication and control, while the module sequencer
is responsible for fine-grained communication and con-
trol. The RMS in MSA can be regarded as a reconfigur-
able instruction co-processor, with a much coarser in-
struction granularity (e.g., DCT, Quantization) than that
of traditional instructions (e.g., add, sub, jump). Thus,
MSA achieves reduced communication load for the
processor and also adopts a programming model that is
coherent with the conventional processor-FPGA model
and is simpler than that in SDA.

The RMS communicates with the static hardware
part through a static memory mapping and executes
commands sent from the processor by controlling hard-
ware function blocks that are configured into the recon-
figurable area. Each kind of reconfigurable hardware
function block is associated with a unique logical ID,
which is mapped to a physical slot ID by the RMS dy-
namically. The ID mapping is illustrated in Figure 1.
The same logical ID function can be mapped to different
physical ID slots. When an application requests a func-
tion with a specific logical ID, the RMS maps this re-
quest to the physical ID of an idle slot configured with
that function. For example, a quantization function re-
quest can be mapped by RMS to either slot 1 or slot 4,
also shown in Figure 1.

Data pipelining between hardware function blocks,
used for executing a command, is completely controlled
by the RMS through the data and control bus in the re-
configurable area. For example, in a JPEG encoder [21],
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Fig. 1 Module Sequencer System Architecture.

the data is pipelined from a DCT block to a Q block and
then from the Quantization (Q) block to an Entropy En-
coding (EE) block by the RMS, where the processor
command is a function sequence called a chain and is
denoted by <SW, DCT, O, EE, SW>, where SW repre-
sents corresponding software.

A. Communication Flow

A basic principle of MSA is that all communication
links are dynamically configured. The source and desti-
nation blocks in a data transfer do not know in which
slot the other block is located physically. For example in
the JPEG encoder sequence, the link between DCT and
EF is configured only after the DCT data are computed.
DCT also does not know to which EE block are the
computed data sent. This scheme allows the RMS to
concurrently and efficiently run several applications
within the reconfigurable area. In MSA, an application is
defined by a set of partially ordered command sequences
called chains. Each chain <f, f,---, f,, f,.1 > con-
sists of a sequence of » + 2 functions, where f,, f, .,
are software functions and f|,---, f,, are hardware func-
tions. A data transfer request is defined by a pair of ad-
jacent functions < f;_,, f;>. The processor and the RMS
share the communication workload as follows.

1. The software application running on the processor
sends a chain command to the RMS through a system
call interface.

2. The RMS driver in the OS sends the input data for
that chain to the RMS.

3. The RMS manages the communication for each data
transfer request in the chain.

4. When the RMS finishes the chain execution, it inter-
rupts the processor to notify it to retrieve the chain’s
output data buffered in the RMS.

B. Reconfigurable Module Sequencer Design

As illustrated in Figure 2, the RMS has nine com-
ponents, including three internal storages, four control-
lers, a bus state monitor, and an input decoder. The
storages include a command pool (CP) that stores the
chain commands, a data FIFO (DF) that caches the input
data, and a slot table (ST) that records the state informa-
tion for each slot. The state of a slot includes the logical
ID to physical ID mapping, the usage status (reset or
configured), and the execution status (idle or running) if
it is configured.

To manage the three internal storages, RMS has a
command pool controller (CPC) that accesses the CP,
stores chains into it, and selects an enabled data transfer
request to be executed from some chain. RMS also has a
memory controller (MC) that loads input data from the
DF to the configurable data bus and a slot controller (SC)
that accesses ST and controls the reconfigurable bus by
asserting and deasserting the control signals. For output
data management, RMS has an output controller (OC)
that sends output data to the processor through the sys-
tem bus. The bus state monitor (BSM) checks the state
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of the reconfigurable bus, and dispatches signals to dif-
ferent controllers. The input decoder decodes command
type and sends data or commands to the different con-
trollers.

C. RMS Bus Interface Design

Each slot has a dedicated read, write, and request
signal, whereas the busy signal is shared by all slots.
This unified interface is illustrated in Figure 3. It must
be noted here that we do not make any assumptions on
the size of the slot or their relative physical location in
the reconfigurable area, which means that the OS can
decide to configure any portion of the reconfigurable
area as any slot as long as the slot configuration connects
to the dedicated and shared control signals. Reconfigur-
able function blocks are dynamically relocated by the
placer in the OS4RS to achieve this location independ-
ence

D. RMS Controllers Design

The RMS input is classified into three types, which
are the mapping between logical ID and physical ID,
chain commands, and chain data, which are handled by
different controllers. As we mentioned above, the RMS
has four controllers, one decoder, and one monitor to
manage these data.

The command pool controller (CPC) is responsible
for storing chain commands, for maintaining the state of
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chain functions as running, waiting, transferring, or idle,
and for deleting a chain. The CPC is the controller of a
chain, which dispatches commands, notifies other con-
trollers, and selects a data transfer request. The CPC will
check a data transfer function pair <f;, f.,;> in a chain
function by function. For the first request pair, the CPC
notifies the MC to check if the input data for this chain is
available. For the last request pair, the CPC notifies the
OC to latch the data on the reconfigurable bus and the
OC will interrupt the processor to retrieve the output
data. Then the CPC will check the responses from the
MC and the SC. If the responses are positive, the CPC
initiates the data transfer, otherwise the CPC will check
another data transfer request. We use the chain priority
to select the data transfer function, which causes some
issues such as priority inversion and starvation. Never-
theless, the handling of these issues is left to the operat-
ing system so that the RMS is small, compact, and plat-
form independent.

Because hardware functions can be swapped in and
out from the reconfigurable area, the static placement of
reconfigurable hardware function blocks will pose se-
vere limitations on system flexibility. To deal with this
issue, logical IDs are used to request specific functions,
and the RMS translates the logical ID to a physical ID
dynamically. The logical ID and physical ID mappings
are stored in the Slot Table (ST). The SC modifies slot
states, controls the bus signals for communication, and
makes sure the quiescent state is reached before the re-
configuring process. When the CPC checks if the data
transfer between a pair of functions is possible, the SC
searches for a slot configured with the function block
having the same logical ID as that of the destination
function. If such a function exists, the SC returns the
slots with functions that could be assigned. If no such
function exists, the SC sends a hardware page fault sig-
nal to the OS4RS. Hardware page faults can be used as
an indicator for temporal locality by the placer and the
scheduler. The placer and the scheduler can either
swap-in the requested hardware module immediately or
suspend the chain by delaying the swap-in. When the
CPC makes sure all resources are available, it drives the
permit signal to the SC which starts the data transfer
between the pair of enabled functions.

The MC caches the chain data sent by the OS4RS
and sends the data to the data bus as needed. This con-
troller is active only when performing the first data
transfer in a chain. When the chain data is sent into the
RMS by the OS4RS, the MC caches the data in DF if
there is enough free space. If the DF is full, MC returns
with a failed data transfer status. The DF is designed as a
circular array, thus the MC has to modify the start and
the ending indices that represent the available data range
of the circular array. The MC is much simpler than the
CPC and the SC, but the MC has different design trade-
off choices on space, performance, and implementation.
These issues have been discussed in a lot of research on
memory controllers [15].

The input decoder and output controller are used to



K. J. Shib, C. C. Hung and P. A. Hsiung: Reconfigurable Hardware Module Sequencer for 91
Dynamically Partially Reconfigurable Systems

handle the input from the OS4RS to the RMS and the
output from the RMS to the processor, respectively. The
input decoder checks the input command types, such as
chain command, chain data, and slot mapping messages,
and dispatches these commands and data to the CPC, SC,
or MC. The input decoder verifies the input type as ei-
ther logical and physical ID mapping message, chain
commands, or chain data and then asserts the corre-
sponding controller to act accordingly.

The OC is active when a chain finishes execution. It
latches the RMS bus data, interrupts the processor to
notify the chain is finished and prepares the output data.

The Bus State Monitor (BSM) handles the control
signal interface between the RMS and reconfigurable
area bus. The BSM monitors the bus states, controls the
bus signals such as busy or request signal, and relays the
bus information to the SC and the CPC. When the busy
signal is asserted by a reconfigurable hardware function,
the BSM notifies the SC to modify this function state as
running and notifies the CPC to continue selecting an-
other function to execute. Then the BSM deasserts the
busy signal for the next data transfer. The BSM monitors
the reconfigurable area bus states and notifies the con-
trollers about the bus states. The design of a dedicated
bus state monitor can reduce the complexity of the RMS.
If all the bus state signals are connected to controllers
directly, the signals such as busy signal deassert is con-
trolled by the controller itself. If more than one control-
ler connects to the same signal, the complexity of signal
control and synchronization will increase exponentially.

E. RMS Control Flow

We will now describe the interaction between the
RMS and the processor. We use the chain <fy, fi, £, f5,
/f+> as an example, where f;, f; are software, and f,, /5, f;,
are reconfigurable hardware modules. The processor
sends three types of commands to the RMS in sequential
order that include logical to physical slot ID mappings,
chain commands, and input data for each chain. The ID
mappings are stored in the ST by the SC, the chain com-
mands are stored in the CP by the CPC, and the input
data are stored in the DF by the MC. The CPC checks
for data transfer requests in the CP and selects a request
belonging to the chain with the highest priority. To exe-
cute a data transfer request, the CPC queries the SC to
check if the hardware of the requested function is con-
figured in some slot and queries the MC to check if its
input data are available in the DF if it is the first data
transfer request, < fo, fi>. If the responses from the SC
and MC are both positive, then the CPC notifies the SC
to assert the read and write control signals of the corre-
sponding functions and the MC to transfer data. Other-
wise, execution is postponed if the requested hardware
function or the data of the selected chain are unavailable.
In this case, the CPC selects another request tp execute.

When the SC receives a function query signal from
the CPC, it refers to the ST to check if the corresponding
functions are configured (have a logical to physical ID

mapping). If configured and unused, the SC acknowl-
edges that the requested function is ready. When the SC
receives a function execution signal, it asserts the write
signal of the sender and the read signal of the receiver.
For example, for DCT to send data to quantization, the
SC asserts the DCT write signal and the quantization
read signal, then the DCT puts data on the reconfigur-
able data bus and the quantization receives the data. If
the sender is a SW, the SC enables the tri-state buffer as
illustrated in Figure 2, so that the data of the chain sent
by the MC can be transferred on the bus. If it is not con-
figured or all physical instances are busy, then the SC
issues a hardware page fault to the microprocessor and
acknowledges that the requested function is unavailable.
In this case, the operating system invokes the placer and
the scheduler to configure a corresponding hardware
function into the reconfigurable area using the configu-
ration device.

When a data transfer is finished, the corresponding
functions assert the busy signal indicating that the data
bus is free for another transaction. The CPC initiates the
execution of another data transfer request.

After a hardware function completes computation, it
asserts the request signal to request a data transfer such
that the successor function is enabled after the data
transfer . The bus state monitor helps accomplish the
data transfer.

F. Programming Model

Any new architecture should have an associated
programming model. The programming model for MSA
tries to follow a conventional one so that a user need not
learn a new programming method. As illustrated in Fig-
ure 4, given a user program, for example a C program,
and corresponding task profile information, the chain
generator determines the hardware-software partition,
that is, which computation-intensive loops must be im-
plemented as reconfigurable hardware chains, and the
rest of the program as software. The hardware-software
task constructor reorganizes the user program by replac-
ing selected loops with RMS driver system call invoca-
tions and synchronization and buffering constructs. The
result is a modified program called the chained program.

To support the execution of chained programs in
MSA, a Chained Program Operating System (CPOS) is
designed. Besides being an OS4RS, the CPOS has a

—Z7 =
Task Profile
User Program Chain Generator TTs——]
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Program .
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Fig. 4 Programming Model and Chained Program Operating
System.
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system call that allows chained programs to send a re-
quest for executing a chain through the RMS driver. The
CPOS also has a hardware-software task scheduler, a
hardware function block placer, a driver for the configu-
ration controller, and other I/O device drivers. It must be
noted here that the allocation, management, placement,
and scheduling of reconfigurable hardware function
blocks are all performed by the CPOS, which means the
RMS is only responsible for executing a chain request
by coordinating the data transfers between blocks and
between the processes and the blocks. Details on how
RMS knows which blocks are already configured
(placed) and how to request a new block configuration
were discussed earlier in section II1.D. The development
of CPOS is still an on-going work and requires further
design and implementation.

G. Performance Model

To evaluate the effectiveness of our proposed RMS
architecture, we will compare RMS with the proces-
sor-controlled network architecture. Since we are im-
proving the communication load for processors, one
might wonder if existing schemes such as DMA would
suffice. However, we will show that, as expected, DMA
is effective only when the data size is very large and not
if there are lots of communications. For evaluating the
performance in executing a task consisting of k iterations
of chain < fy, f;,---, £, f,+;>» Where f; is the i" func-
tion, fyand f, , are software, f, to f, are hard-
ware, and » is the total number of hardware functions,
we first define the following notations.

* t;: Data transfer time from f; to f,,, in cycles,

* Tpusa: DMA setup time in cycles,

« SZprDFS: RMS Data FIFO size in bytes, and

+ SZy: Total input data size of the chain in bytes.

We assume the context switch time to be negligible
in the following evaluation. We compare four different
architectures depending on the use of RMS and DMA.
The number of cycles a processor must expend in han-
dling data communication for the task is as follows.

+ No RMS, No DMA: The processor controls the com-
plete data transfer by itself, thus the total time, in cy-
cle counts, is the sum of the time for each data trans-
fer request multiplied by the total number of itera-
tions £, as given in Equation (1).

kx> t, (H

+ No RMS, With DMA: The processor sets the DMA
to transfer data, thus the total time, in cycle counts, is
kx(n+1)times the DMA setup time, as given in
Equation (2).

Ty Xk x(n+1) ‘ 2)

« With RMS, No DMA: The processor sends the chain
command and the input data for the chain to RMS,

and then the RMS controls the data transfers between
the functions, without the processor. The commands
take (n+2 ) cycles, and the total time for data trans-
fer is (#, +t,)xk cycles. Totally, the cycle counts
are as given in Equation (3).

(ty+1,)xk+(n+2) 3)

+ With both RMS and DMA: The processor sets the
DMA to transfer data to RMS. The chain command
transfer takes (n + 2) cycles, and the number of times
DMA must be setup is SZ / DFS . Totally, the
cycle counts are as given in Equation (4).

Topa X SZ iy | SZ i [X 2+ (n+2) (4)

Since the OPB-Dock based Architecture (ODA)
proposed by Ferreira and Silva [8], [16] is similar to our
architecture, we model the performance of their archi-
tecture as Equation (5) and perform the simulation in
Section IV for this performance model.

(ty+1,) %k + Tpg(n-1) (5)

In the ODA architecture, the processor sends the
input data to reconfigurable hardware through OPB-dock.
Suppose the processor synchronization between two
functions takes TPS cycles, thus totally it takes 7pg
(n—1) cycles for the n hardware functions. The total
time for data transfer between the OS4RS and the first
and last hardware functions is (7, +7,)xk cycles.

H. Preemption Issue

In the RMS system, a chain contains one or more
functions and can be preempted only between two adja-
cent functions. Since a function is implemented with
hardware IP, which basically means that reconfigurable
hardware components are non-preemptive. If a low pri-
ority chain has a large function that executes for long
time durations and if there is an urgent high priority
chain to be executed, we observe the convoy effect. Due
to the lack of reconfigurable resources, the high priority
chain will have to wait for the low priority large function
to finish execution.

To alleviate this problem, a wrapper has been pro-
posed and designed for hardware task preemption [9].
The integration of RMS and this hardware task wrapper
will be performed in the CPOS in the future and is out of
scope here.

IV. EXPERIMENTS

The target module sequencer architecture was mod-
eled, designed, and implemented. However, for per-
formance evaluation we developed a System C-based
simulation framework for the proposed architecture,
which consisted of a processor, RAM, an optional DMA,
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a reconfigurable area with RMS, a system bus, and a
reconfigurable bus. Both busses are 32 bits wide, the
RMS cache size is 4096 byte, and the DMA setup time is
15 cycles. For the OPB-Dock based Architecture, we
assume the processor synchronization time between two
tasks 7ps is 6 cycles. We first experiment with three ap-
plications that have a single chain each. Then, we ex-
periment with multiple chains. The first example was

used for checking feasibility of the proposed architecture.

It has three reconfigurable hardware functions
1> f>5 /3. The total input data size is 2048 bytes. Each
data transfer size between two successive hardware
functions and between the processor and the first/last
function is 64 bytes, which take 16 bus cycles to com-
municate. The total number of iterations for the chain is
32. The chain command is < f;, £}, f5, f3, f4 >, where
Jfos f4 are software functions.

The second example is a subsequence of the Joint
Photographic Experts Group (JPEG) encoder. As illus-
trated in Figure 5, a JPEG encoding task is composed of
six functions, namely hue transformation, sampling, dis-
crete cosine transform (DCT), quantization, entropy en-
coding, and header combination. The hue transformation
function transforms an R-G-B image to a Y-Cb-Cr im-
age. The sampling function processes the hue-trans-
formed image block by block and transforms each block
from 16 x 16 pixels to 8 x 8 pixels. Users can choose the
411 method or the 211 method according to the image
quality required. The DCT function is the discrete cosine
transform, that transforms an image from the spatial
domain to the frequency domain. The quantization func-
tion uses a quantization table for a DCT transformed
image and results in less entropy for compression. The
entropy encoding function processes the result data from
the quantization function by performing DC entropy
encoding and AC entropy encoding. The header combi-
nation integrates the results from the entropy encoding
with the information of image size, sampling method,
and quantization table. Since the function sequence from
DCT to Entropy Encoding is a computation-intensive
loop and can thus be partitioned into a chain of recon-
figurable hardware. The other functions including hue
transformation, sampling, and header combination will
be executed as software on the microprocessor. The
JPEG encoder functions can be formed as <SW, DCT, Q,
EE, SW>. We assume the example input is an 800 x 600
pixels gray-level image, thus the total input data size is
480,000 bytes. The sampling function is neglected in our
example so that the input data to DCT function are
480,000 pixels and the number of iterations from DCT
function to Entropy Encoding is 7,500.

The third example is a Data Encryption Standard
(DES) [14] block that takes 64-bit data as information
and 64-bit data as key. The total data for this example is
1024 bytes for data and 1024 bytes for key. We assume a
single execution takes 18 cycles to encrypt 64-bit data.
The chain to be executed is <SW, DES, SW>.

As given in Table 1, we compare the total number
of cycles expended by the processor for handling com-

munication in four different architectures for each ap-
plication example. From Table 1, we can observe that
the performance improvement (6%) is limited when we
use only DMA, whereas the RMS alone brings very
good performance improvements (70%), especially
when the chain is time-consuming such as the JPEG
encoder. RMS does not work well for small chains such
as the DES because our architecture tries to reduce the
communication between the reconfigurable hardware
modules of a chain. The DES example has only one
function with no chance of load reduction while still
requiring additional RMS setup time. The combination
of DMA and RMS results in the best performance im-
provements (96%~99%) in all cases.

The reason that the RMS/DMA combination pro-
vides very large processor load reduction is because
without RMS, a single DMA setup can transfer only a
limited amount of data, equivalent to that consumed by
one iteration of a chain, whereas with the help of the
data FIFO buffer in RMS, a single DMA setup can
transfer as much as the data FIFO can accommodate,
which if large enough could accommodate all the data
required by all the k iterations of a chain. This perform-
ance improvement is approximately equivalent to that
provided by SDA, which also almost totally relieves the
processor of all communication loads.

Comparing the performance of ODA and MSA us-
ing Equations (3) and (5), we can see that although both
of them result in a decrease in communication load for
the processor, MSA still outperforms ODA. In MSA, the
RMS takes care of all synchronizations between recon-
figurable function blocks and thus alleviates the proces-
sor of almost all synchronizations among hardware
blocks. In ODA, the processor still needs to handle the
synchronizations between two functions in reconfigure-

Transfor-}—{Sampling Quantiza)

mation, tion

RGB eader JPEG
Image Combi- Stream
ation,

Fig. 5 JPEG Encoder Flow.

Table 1 Processor Cycles for Handling Communication.

Pef{zzg;nce RMS [DMA| Toy | JPEG | DES
Eq. (1) No | No | 2,048 [510,000] 1,024
Ba@ | Moo |ves| OO || a5
Ba.®) | Yes | No | e | U0 om| s029m
Eq. (4) Tes | Wes —983;9% —;’;;‘15% —963;8%
Bq.(5) [OPBDock| No |y |00l Lo
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able hardware, hence that the OPB dock in the ODA
relieves the processor of only a small portion of commu-
nication synchronizations. If a chain has only one func-
tion configured into reconfigurable hardware, the ODA
gives a better result than the proposed MSA architecture
because of the overhead caused by RMS in MSA, while
the OPB dock does not cause that much overhead. Hence,
MSA needs more than one function in a chain to amor-
tize the RMS overheads. This is also quite acceptable
because no one would like to only accelerate a single
hardware function with RMS.

In Table 2, we compare the total system execution
time for 5 configurations: (1) a single JPEG chain, (2) a
single DES chain, (3) a JPEG with DES chained sequen-
tially, (4) a low priority JPEG chain running in parallel
with a high priority DES chain, and (5) a high priority
JPEG chain running in parallel with a low priority DES
chain. Data size for JPEG and DES are both 1,024 bytes.
Comparing configurations (3), (4), (5), we observe that
configuration (3) has the worst performance because the
functions are executed sequentially, in a single chain.
Compared to configuration (5) and all other configura-
tions, configuration (4) gives the best performance. This
is because the most time consuming chain such as DES
here is given the highest priority in RMS.

The single experiment described above might not
provide enough basis for consolidating our claim on
improving performance in RMS by assigning a higher
priority to the time-consuming chain. Hence, we per-
formed 18 different experiments, in two groups of 9 each,
as illustrated in Table 3. The application consisted of
two chains C, =< fy, fi, fa» f3. fa > and C, =< f;,
11+ fo» f3>. Keeping the total input data size (SZc2)
fixed at 2048 bytes for C,, we varied the total input data
size (SZ¢y) of C, from 256 bytes to 2304 bytes, in in-
crements of 256 bytes, for each of the 9 experiments in
each group. For the first group S, C, was assigned a

higher priority than C, (denoted by 7., > 7, ), while
for the second group S’, C, had a higher priority than C,
(denoted by 7 <7, ). The variation in total input
data size for C; was performed so that we could observe
the cases where C; was less time- consuming, that is, T,
< T¢ (as in experiments (1) to (7)) and also the cases
where C; was more time-consuming, that is, Ty > Teo,
(as in experiments (8) and (9)) when compared to C,.
We can observe from Table 3 that by assigning a higher
priority to the more time-consuming chain C, in the first
7 experiments, the total time for executing the two
chains concurrently is less than that under an inverse
priority assignment. For experiments (8) and (9), be-
cause the total input data of C; has increased resulting in
its total execution time exceeding that of C,, which is
T = 4563 cycles. Now, it turns out that assigning the
more time-consuming chain C, a higher priority results
in a shorter system execution time (marked in bold in
Table 3).

From the above experiments, we can conclude that
in general assigning the time-consuming chain a higher
priority results in a shorter system execution time. This
policy of priority assignment is implemented into the

Table 2 Execution Time of JPEG and DES with Different

Priorities.
¢ | rec | oes | L | e | Time
1 Yes No 462 N/A 462
2 No Yes N/A 526 526
3 Yes Yes 462 526 988
4 Low High 558 702 702
S High Low 525 953 953

Low and High are priorities of JPEG and DES

Table 3 Performance Comparisons under Different Priority Assignments.

4 SZ ¢ Te T = T2 el < ez

(bytes) (cycles) T Rs R% Ty Rs. Rs%
1 256 606 4781 388 7.5% 4659 510 9.9%
2 512 1198 5005 756 13.1% 4755 1006 17.5%
3 768 1790 5229 1124 17.7% 4851 1502 23.6%
4 1024 2382 5453 1492 21.5% 4947 1998 28.8%
5 1280 2797 5677 1826 24.7% 5043 2494 33.1%
6 1536 3566 5901 2228 27.4% 5459 2670 32.9%
7 1792 4158 6125 2596 29.8% 6051 2670 30.6%
8 2048 4750 6349 2964 31.8% 6643 2670 28.7%
9 2304 5342 6941 2964 29.9% 7235 2670 27.0%

SZ = 2048 bytes, T, = 4563 cycles
Tte; - Priority of C; (larger value means higher priority)
32 bytes are consumed per iteration for both chains

the number of iterations k¢; = SZ¢; /32
Rs=Tc1 + T = T, R% =R/ (Ter + Tz ), Re = Ter + Tea — T

Re% =Rs (Ter + Tz )
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Fig. 6 Priority Assignment Policies.

RMS driver design for performance enhancement in
RMS-controlled MSA systems. Figure 6 illustrates the
relationship between the total input data size SZC1 and
the reduction proportions Rg and Rg: when T, > 7,
and 7. <7, , respectively. The RMS driver can use
the data size as a reference for deciding which chain to
assign a higher priority because the chain execution time
T¢; generally increases with data size SZ;.

As far as comparison with SDA is concerned, it is
difficult to measure the design complexity of SDA. As
an empirical analysis, we can compare the performance
model of MSA with that of SDA. Since SDA has no
operating system, users need to implement their applica-
tions from a behaviour level rightdown to regis-
ter-transfer level (RTL) by hand. Users who want to use
SDA need to know the data sequencer behaviour and
adopt it for their application, which is quite difficult for
a normal user. Further if the application problems that
users want to solve are too complex, the SDA also re-
sults in poor scalability. Further, the verification for
SDA architecture is difficult because the behaviour is
hard to model.

V. CONCLUSION

We proposed a novel module sequencer architecture
as a tradeoff between networked and data flow architec-
tures. Experiments show that the proposed architecture
reduces the heavy communication load for processors by
as much as 99% and also reduces the high programming
complexity found in data flow architectures. A simple
programming model was also proposed, which is coher-
ent with the conventional processor-FPGA system ar-
chitecture. Experiments were presented to validate the
feasibility and benefits of this architecture. A prior-
ity-based scheme that resulted in shorter schedules was
also presented with experiments. Future work will con-
sist of support for preemptive hardware functions and
the integration of RMS with the scheduler and placer in
the CPOS.
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