
A Case Study in Hardware-Software Codesign of
Distributed Systems — Vehicle Parking

Management System=

Trong-Yen Lee, *Pao-Ann Hsiung, and Sao-Jie Chen

Department of Electrical Engineering, National Taiwan University, Taipei, TAIWAN, R.O.C.
*Institute of Information Science, Academia Sinica, Taipei, TAIWAN, R.O.C.

= This work was supported by the National Science

Council, R.O.C., under grant NSC 88-2215-E-002-037

Abstract

Hardware-software codesign of distributed
systems is a more challenging task than that of
centralized embedded systems. Each phase of codesign,
such as copartitioning, cosynthesis, cosimulation, and
coverification, must take into account physical
restrictions imposed by the distributed nature of such
systems. Although codesign of distributed systems is
more complex, yet many common parts of the systems
can be reused for codesign. For the above two reasons,
we have adopted an object-oriented (OO) codesign
approach, which allows a natural structural restriction
and object design reuse. A parallel approach to
hardware-software partitioning is also presented. We
illustrate our techniques through a case study on a
Vehicle Parking Management System (VPMS). The
study shows the benefits of OO codesign and parallel
partitioning. Validation is accomplished through
prototyping and emulation.

Keywords: object-oriented codesign, parallel
copartitioning, emulation, distributed embedded
systems, case-study.

1. Introduction

Distributed systems, such as remote teaching
facilities, vehicle parking systems, auditorium
air-conditioning, coal-mine signal systems, and

others abound in our everyday life and are almost
all computerized, that is, they all contain some
sort of integrated chips or processors running
some software. These systems are difficult to
design due to their physical restrictions and
varied behavior, which is a result of inherent
concurrencies. But, at the same time, we also
observe that there are some sorts of
symmetricities, however small they may be,
among distributed systems. For example, remote
teaching facilities may have several similar
tracking systems that work concurrently to sense
and capture classroom activities for remote
displaying. Such existing similarities are one
aspect of distributed systems that we can take
advantage of for codesign.

We define a distributed system as follows.
When a system consists of more than one part
that must be located at or embedded in different
physical locations, it is called a distributed system.
The design of distributed systems has always
been a challenging task. Codesign of distributed
systems must solve not only hardware-software
communication issues within a single embedded
unit, but also the communication issues between
different parts of a distributed system (which may
consists of either hardware, or software, or both).
Hardware-software copartitioning must take into

consideration the physical restrictions of a
distributed system. Besides timing and cost
constraints, part modularity and physical
restrictions are also important factors that must be
taken into account in the codesign of distributed
systems. Interface must be synthesized not only
for the hardware and the software within a system
part, but also for the different parts of a
distributed system.

Previous work related to hardware-software
codesign [1] have assumed that physical
restrictions or interconnections are arbitrary, but
such assumptions are not realistic and most
systems do have a definite physical distribution.
Further, previous work have also not considered
how design parts may be reused in a distributed
system. There have been some related work on
distributed embedded systems in the literature.

Prakash and Parker [2] formulated
heterogeneous multiprocessor system synthesis as
a mixed integer linear program in SOS, a formal
synthesis approach developed at University of
Southern California. Further, based on Prakash
and Parker’s formulation, Wolf [3], [4] developed
a heuristic algorithm for architectural
co-synthesis of distributed embedded computing
systems.

Object-oriented techniques have been applied
to system-level synthesis such as in PSM [5] and
ICOS [6]. Wolf applied OO techniques to
co-synthesis [7], but it was limited to analysis of
the methods contained in each object class.

2. Object-Oriented Codesign and
Parallel Par titioning

For ease of structural constraint satisfaction
and design reuse, we have adopted an
object-oriented codesign approach. A distributed
system is modeled using Object Modeling
Technique (OMT) [8] which includes three
models, namely, Object Model, Dynamic Model,
and Functional Model. A distributed system
specified using these three models is then
partitioned into hardware and software using a
parallel partitioning technique.

The parallel partitioning technique starts
from two initial partitionings, namely, the two

extreme design alternatives: all hardware and all
software. Next, along each iteration the
partitioning algorithm moves one step forward
starting from the two initial solutions in parallel.
Moving a step forward means shifting some part
of an all-hardware solution into software and
shifting some part of an all-software solution into
hardware. The partitioning algorithm stops when
a partition is reached that satisfies all time and
cost constraints and has a minimum cost.
Although both threads of moving forward are
greedy, but this parallel algorithm achieves better
results than one single greedy method.

3. Case Study Descr iption

The case study presented in this article is a
project for designing a vehicle parking system,
we call this system Vehicle Parking Management
System (VPMS). VPMS consists of three parts: an
entry, an exit, and a display. Entry and exit are
similar in most respects. Both of them allow
vehicles to pass through them one by one.
Display shows the current number of free parking
space available in a parking lot or garage.

An entry (or an exit) gate consists of three
parts: a ticket facility, a gate controlled by a
gate-motor, and a pair of sensors. The ticket
facility at the entry stamps the current date and
time and gives a new ticket to an in-coming
vehicle. The ticket facility at the exit checks
whether the ticket (parking) fees have been paid
and the current time is within 15 minutes of the
ticket fee payment. After a positive response is
received from the ticket facility, a gate controller
opens the entry (exit) gate to allow a vehicle to
drive in (out). A pair of sensors are located after
the gate (in the direction of the vehicle, that is,
further in for the entry and further out for the
exit). The sensors then send a signal to the gate
controller to close the gate after a vehicle has
passed by. At the same time, the sensors also send
a signal to the display for updating the displayed
number of parking vacancies.

Constraints for the VPMS system include: a
maximum cost of $1,300 and a minimum entry
(exit) gate response time of 1 µs. The minimum
gate response time implies that the gate should
not be closing or opening too slowly. A slow gate
open would make the VPMS user unhappy, while

a slow gate close would allow more than one
vehicle to pass through the gate for each
entry/exit transaction and would make the VPMS
boss unhappy. Hence, gate response time is
specified for correct execution of the system.

The above description clearly shows that
VPMS is a distributed system having some
common parts. We can thus model VPMS using
OO techniques and then codesign it.

4. Codesign of the Vehicle Parking
Management System

In this section, through the above VPMS, we
will show how to apply Object Modeling
Technique (OMT) [8] to hardware-software
codesign and illustrate parallel partitioning.
There are two reasons for choosing OO design
techniques in the codesign of distributed systems:
(1) object-oriented model allows explicit
modularity in correspondence to structural
restrictions in physically distributed systems, and
(2) distributed systems often have parts that are

common in many respects, thus object design
reuse becomes a useful technique.

The object model of VPMS is shown in Fig.
1. VPMS includes three parts: ENTRY
management system, EXIT management system,
and DISPLAY system. The ENTRY management
system includes time-stamp, gate controller, and
a pair of sensors (send and receive devices). The
EXIT management system is similar to the
ENTRY management system, which includes
ticket checker, gate controller, and a pair of
sensors. The gate controller and sensor object
models in ENTRY and EXIT management
systems have many parts in common, therefore,
their OMT models can be reused. The display
system consists of control system (counter and
display interface) and display device such as
7-segment display, LCD, or dot matrix LED
display. The counter value (count) indicates the
number of available parking vacancies.

The dynamic model of VPMS describes
those aspects of a system concerned with time
and the sequencing of operations. The dynamic

Vehicle Parking
Management System

ENTRY Management
System

Display System

Gate
Controller Ticket CheckerMotor

Control
Unit

ENTRY Gate EXIT Gate

isa isa

Sensor Send/Receive
Device

Control
Unit

ENTRY Sensor EXIT Sensor

isa isa

Display Device Control System

Counter Display
Interface

7-Segment LCD Dot Matrix

Time
Stamp

EXIT Management
System

Fig. 1 Object Model of VPMS

model of VPMS is represented graphically with a
state diagram as shown in Fig. 2. The system is
idle when there is no car entry or exit. There are
two sequences to process car entry and exit.

The functional model of VPMS describes
those aspects of VPMS such as: transformations
of value-function, mappings, constraints, and
functional dependencies. The functional model
captures what VPMS system does, without regard
for how or when it is done. The functional
model is represented with data flow diagrams.
Functions are invoked as actions in the dynamic
model and are shown as operations on objects in
the object model. The functional models of
VPMS are shown in Figs. 3 and 4. In the ENTRY
management system, if the number of available
space (count) is positive, then an open signal is
sent to the ENTRY gate for allowing car entry.
The gate is closed when the ENTRY sensor
senses car entry or the timer indicates time out.
The functional model of EXIT management

system as shown in Fig. 4 is similar to the
ENTRY management system.

Given the three OMT models for VPMS
(Figures 1, 2, 3, and 4) along with cost and
performance constraints, we start designing
VPMS. We observe that there are three parts that
could be designed as software or hardware,
namely, the counter of display, the driver in the
control unit of motor, and the driver in the control
unit of sensor. Thus, there are eight different
kinds of possible partitions into hardware and
software.

In the following, we describe how
partitioning and emulation results in the final
VPMS design. This final result has the lowest
cost while satisfying the given performance
constraint on the gate response time.

Partitioning: We use parallel partitioning
technique (as discussed in Section 2) for VPMS

Count >0 ?

Open
ENTRY gate

Time
Stamp

Push
bottom

Count

Yes

Process time
stampClock

Signal

Start timerTimer

ENTRY

sensor

Sense Wait for
car in

Close
ENTRY

gate

Time out

or car in
signal

ENTRY
gate

Open
signal
Status

Close
signal Status

No

Fig. 3 Functional Model of ENTRY
Management System

Table 1. Codesign Alternatives in VPMS

A B C D E F G H
HC, HS, HM SC, HS, HM HC, SS, HM HC, HS, SM SC, SS, HM SC, HS, SM HC, SS, SM SC, SS, SM

Idle
Open

ENTRY
Gate

Check
Space

Process
Time
Stamp

Car In

Decrement
Display Counter

Close
ENTRY

Gate

Check
Ticket

Car Out

Increment
Display Counter

Close
EXIT Gate

Warning

Push time
stamp
button

Counter = 0

Counter > 0

Time out

Take
ticket

ENTRY
sensor

 on

Ticket
insert

Ok

EXIT sensor
on

Time out

Ticket
error

Open
EXIT Gate

Fig. 2 Dynamic Model of VPMS

codesign. We start from the two extreme design
alternatives: all-hardware and all-software. For
the all-hardware alternative, based on
performance constraint satisfaction we try to
reduce the cost. For the all-software alternative,
based on cost constraint satisfaction, we try to
increase performance. There are eight design
alternatives as shown in Table 1, where HC is a
counter designed by hardware, SC is a count
function designed by software, HS is a driving
circuit of sensor designed by hardware, SS is a
driving function of sensor designed by software,
HM is a driving circuit of step motor designed by
hardware, and SM is a software driving function
of step motor

Starting from all-hardware alternative A and

all-software alternative H, using the above
method, we move from A to D and from H to F,
in parallel. These two parallel steps have the
following meanings:
l A→D: D has a smaller cost than A while

satisfying the 1 µs gate response time
constraint,

l H→F: F satisfies the 1 µs gate response
time constraint, while H did not.

Partitioning stops after just one parallel step
because F is a locally optimal solution that
satisfies the gate response time as well as its cost
cannot be reduced further. Parallelism has thus
saved some efforts in partitioning because for the
all-hardware initial solution approach, we would
require two steps to reach F from A (A → D →
F).

Codesign: According to the three OMT models
(as shown in Figs 1, 2, 3 and 4), we designed the
hardware and software components of VPMS.
The object model helped us to map physical
hardware components and software modules to
the objects in VPMS. The dynamic model helped
us to organize the behavior of each mapped
component. The functional model helped us to
actually interconnect the hardware and software
modules through interface construction.

Emulation: We chose a single chip integrated
circuit 8051 [9] for software design which has 4K
bytes of on-chip programmable memory for
software programming, four input/output ports
for data or control interface, two 16-bit
timer/counters for time calculation or counting,
and one series port for data transmission. Based
on the object, dynamic, and functional models,

Pay
machine

Check
ticket

Ticket
date Error

Open
EXIT
gate

Start
timerTimer

EXIT
gate

Status
Open
signal

EXIT
sensor

Wait for
car out

Sense Close
EXIT
gate

Time out

or car out

Close
signal Status

OK!

Fig. 4 Functional Model of EXIT
Management System

Table 2 Comparison of eight design alternatives of VPMS

A B C D E F* G H
Cost ($)
 (%)

1448.25
100.00

1415.25
97.72

1420.25
98.07

1278.25
88.26

1297.25
89.57

1155.25
79.77

1160.25
80.11

1028.50
71.02

Area (mm2)
 (%)

58,425
100.00

52,838
90.44

59,129
101.21

61,330
104.97

48,787
83.50

50,988
87.27

57,279
98.04

42,182
72.22

Power
Consumption (W) 3.15 2.90 3.22 3.26 2.67 2.70 3.03 2.47

Response time(µs)
(sensor to display)

 180 13,000 180 180 13,000 13,000 180 13,000

Response time(µs)
(sensor to gate)

0.22 0.22 1.06 0.22 1.06 0.22 1.06 1.06

we designed the emulator for each part of
hardware and coded the software in VPMS. The
constraints for VPMS include: a maximum cost
of $1,300 and a minimum gate response time of 1
µs. On applying parallel partitioning technique,
we found that design alternatives D and F (see
Tables 1 and 2), satisfied the given constraints.
Therefore, we emulated only design alternatives
D and F. The cost and performance analysis
results are shown in Table 2. From the emulation
results, we conclude that the design alternative F
is the best in terms of having the lowest cost
($1155.25) while satisfying the performance
constraints.

5. Conclusion

The codesign of distributed systems was
demonstrated through a case study on Vehicle
Parking Management System (VPMS). We have
shown how OMT can be used to model and help
in identifying which parts can be implemented as
hardware and which as software. We have also
proposed a parallel partitioning technique that can
reach locally optimal solution much faster. Future
work will consist of applying this technique to
other industrial examples and extending it to
CMAPS [10].

References

[1] T.-Y. Yen and W. Wolf, Hardware-software
co-synthesis of distributed embedded
systems, 1996, Kluwer Academic
Publishers, The Netherlands.

[2] S. Prakash and A. C. Parker, “SOS:
Synthesis of application-specific
heterogenous multiprocessor systems,”
Journal of Parallel and Distrbuted
Computing, Vol. 16, No. 4, pp. 338-351,
December 1992.

[3] W. Wolf, “Guest editor’s introduction:
hardware-software codesign,” IEEE
Design & Test of Computers, Vol. 10, No.
3, pp. 5, September 1993.

[4] W. Wolf, “Hardware-software codesign of
embedded systems,” Proceedings of the
IEEE, Vol. 82, No. 7, pp. 967-989, July
1994.

[5] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and
S.-C. Wang, “PSM: An object-oriented
synthesis approach to multiprocessor
system design,” IEEE Transactions on
VLSI Systems, Vol. 4, No. 1, pp. 83-97,
March 1996.

[6] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and
S.-J. Chen, “ICOS: An intelligent
concurrent object-oriented synthesis
methodology for multiprocessor systems,”
ACM Transactions On Design Automation
of Electronic Systems, Vol. 3, No. 2, pp.
109-135, April 1998.

[7] W. Wolf, “Object-oriented cosynthesis of
distributed embedded systems,” ACM
Transactions On Design Automation of
Electronic Systems, Vol. 1, No. 3, pp.
301-314, July 1996.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F.
Eddy, and W. Lorensen, Object-oriented
modeling and design, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1991.

[9] Intel, Embedded microcontrollers and
processors, Vol. 1, Intel Corporation, 1993.

[10] P.-A. Hsiung, “CMAPS: A cosynthesis
methodology for application-oriented
parallel systems,” ACM Transactions On
Design Automation of Electronic Systems,
Vol. 5, No. 1, Jan. 2000 (to appear).

	page1
	page2
	page3
	page4
	page5
	page6

