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Abstract

Hardware-software codesign of distributed 
systems is a more challenging task than that of 
centralized embedded systems. Each phase of codesign, 
such as copartitioning, cosynthesis, cosimulation, and 
coverification, must take into account physical 
restrictions imposed by the distributed nature of such 
systems. Although codesign of distributed systems is 
more complex, yet many common parts of the systems 
can be reused for codesign. For the above two reasons, 
we have adopted an object-oriented (OO) codesign 
approach, which allows a natural structural restriction 
and object design reuse. A parallel approach to 
hardware-software partitioning is also presented. We 
illustrate our techniques through a case study on a 
Vehicle Parking Management System (VPMS). The 
study shows the benefits of OO codesign and parallel 
partitioning. Validation is accomplished through 
prototyping and emulation.

Keywords: object-oriented codesign, parallel 
copartitioning, emulation, distributed embedded 
systems, case-study.

1. Introduction

Distributed systems, such as remote teaching 
facilities, vehicle parking systems, auditorium 
air-conditioning, coal-mine signal systems, and 

others abound in our everyday life and are almost 
all computerized, that is, they all contain some 
sort of integrated chips or processors running 
some software. These systems are difficult to 
design due to their physical restrictions and 
varied behavior, which is a result of inherent 
concurrencies. But, at the same time, we also 
observe that there are some sorts of 
symmetricities, however small they may be, 
among distributed systems. For example, remote 
teaching facilities may have several similar
tracking systems that work concurrently to sense 
and capture classroom activities for remote 
displaying. Such existing similarities are one 
aspect of distributed systems that we can take 
advantage of for codesign.

We define a distributed system as follows. 
When a system consists of more than one part 
that must be located at or embedded in different 
physical locations, it is called a distributed system. 
The design of distributed systems has always 
been a challenging task. Codesign of distributed 
systems must solve not only hardware-software 
communication issues within a single embedded 
unit, but also the communication issues between 
different parts of a distributed system (which may 
consists of either hardware, or software, or both). 
Hardware-software copartitioning must take into 



consideration the physical restrictions of a 
distributed system. Besides timing and cost 
constraints, part modularity and physical 
restrictions are also important factors that must be 
taken into account in the codesign of distributed 
systems. Interface must be synthesized not only 
for the hardware and the software within a system 
part, but also for the different parts of a 
distributed system.

Previous work related to hardware-software 
codesign [1] have assumed that physical 
restrictions or interconnections are arbitrary, but 
such assumptions are not realistic and most 
systems do have a definite physical distribution. 
Further, previous work have also not considered 
how design parts may be reused in a distributed 
system. There have been some related work on 
distributed embedded systems in the literature.

Prakash and Parker [2] formulated 
heterogeneous multiprocessor system synthesis as 
a mixed integer linear program in SOS, a formal 
synthesis approach developed at University of 
Southern California. Further, based on Prakash 
and Parker’s formulation, Wolf [3], [4] developed 
a heuristic algorithm for architectural 
co-synthesis of distributed embedded computing 
systems.

Object-oriented techniques have been applied 
to system-level synthesis such as in PSM [5] and 
ICOS [6]. Wolf applied OO techniques to 
co-synthesis [7], but it was limited to analysis of 
the methods contained in each object class.

2. Object-Oriented Codesign and 
Parallel Par titioning

For ease of structural constraint satisfaction 
and design reuse, we have adopted an 
object-oriented codesign approach. A distributed 
system is modeled using Object Modeling 
Technique (OMT) [8] which includes three 
models, namely, Object Model, Dynamic Model, 
and Functional Model. A distributed system 
specified using these three models is then 
partitioned into hardware and software using a 
parallel partitioning technique.

The parallel partitioning technique starts 
from two initial partitionings, namely, the two 

extreme design alternatives: all hardware and all 
software. Next, along each iteration the 
partitioning algorithm moves one step forward 
starting from the two initial solutions in parallel. 
Moving a step forward means shifting some part 
of an all-hardware solution into software and 
shifting some part of an all-software solution into 
hardware. The partitioning algorithm stops when 
a partition is reached that satisfies all time and 
cost constraints and has a minimum cost. 
Although both threads of moving forward are 
greedy, but this parallel algorithm achieves better 
results than one single greedy method.

3. Case Study Descr iption

The case study presented in this article is a 
project for designing a vehicle parking system, 
we call this system Vehicle Parking Management 
System (VPMS). VPMS consists of three parts: an 
entry, an exit, and a display. Entry and exit are 
similar in most respects. Both of them allow 
vehicles to pass through them one by one. 
Display shows the current number of free parking 
space available in a parking lot or garage.

An entry (or an exit) gate consists of three 
parts: a ticket facility, a gate controlled by a 
gate-motor, and a pair of sensors. The ticket 
facility at the entry stamps the current date and 
time and gives a new ticket to an in-coming 
vehicle. The ticket facility at the exit checks 
whether the ticket (parking) fees have been paid 
and the current time is within 15 minutes of the 
ticket fee payment. After a positive response is 
received from the ticket facility, a gate controller 
opens the entry (exit) gate to allow a vehicle to 
drive in (out). A pair of sensors are located after 
the gate (in the direction of the vehicle, that is, 
further in for the entry and further out for the 
exit). The sensors then send a signal to the gate 
controller to close the gate after a vehicle has 
passed by. At the same time, the sensors also send 
a signal to the display for updating the displayed 
number of parking vacancies.

Constraints for the VPMS system include: a 
maximum cost of $1,300 and a minimum entry 
(exit) gate response time of 1 µs. The minimum 
gate response time implies that the gate should 
not be closing or opening too slowly. A slow gate 
open would make the VPMS user unhappy, while 



a slow gate close would allow more than one 
vehicle to pass through the gate for each 
entry/exit transaction and would make the VPMS 
boss unhappy. Hence, gate response time is 
specified for correct execution of the system.

The above description clearly shows that 
VPMS is a distributed system having some 
common parts. We can thus model VPMS using 
OO techniques and then codesign it.

4. Codesign of the Vehicle Parking 
Management System

In this section, through the above VPMS, we 
will show how to apply Object Modeling 
Technique (OMT) [8] to hardware-software 
codesign and illustrate parallel partitioning. 
There are two reasons for choosing OO design 
techniques in the codesign of distributed systems: 
(1) object-oriented model allows explicit 
modularity in correspondence to structural 
restrictions in physically distributed systems, and 
(2) distributed systems often have parts that are 

common in many respects, thus object design 
reuse becomes a useful technique.

The object model of VPMS is shown in Fig. 
1. VPMS includes three parts: ENTRY 
management system, EXIT management system, 
and DISPLAY system. The ENTRY management 
system includes time-stamp, gate controller, and 
a pair of sensors (send and receive devices). The 
EXIT management system is similar to the 
ENTRY management system, which includes 
ticket checker, gate controller, and a pair of 
sensors. The gate controller and sensor object 
models in ENTRY and EXIT management 
systems have many parts in common, therefore, 
their OMT models can be reused. The display 
system consists of control system (counter and 
display interface) and display device such as 
7-segment display, LCD, or dot matrix LED 
display. The counter value (count) indicates the 
number of available parking vacancies.

The dynamic model of VPMS describes 
those aspects of a system concerned with time 
and the sequencing of operations. The dynamic 
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model of VPMS is represented graphically with a 
state diagram as shown in Fig. 2. The system is 
idle when there is no car entry or exit. There are 
two sequences to process car entry and exit.

The functional model of VPMS describes 
those aspects of VPMS such as: transformations 
of value-function, mappings, constraints, and 
functional dependencies.  The functional model 
captures what VPMS system does, without regard 
for how or when it is done.  The functional 
model is represented with data flow diagrams. 
Functions are invoked as actions in the dynamic 
model and are shown as operations on objects in 
the object model. The functional models of 
VPMS are shown in Figs. 3 and 4. In the ENTRY 
management system, if the number of available 
space (count) is positive, then an open signal is 
sent to the ENTRY gate for allowing car entry. 
The gate is closed when the ENTRY sensor 
senses car entry or the timer indicates time out. 
The functional model of EXIT management 

system as shown in Fig. 4 is similar to the 
ENTRY management system.

Given the three OMT models for VPMS 
(Figures 1, 2, 3, and 4) along with cost and 
performance constraints, we start designing 
VPMS. We observe that there are three parts that 
could be designed as software or hardware, 
namely, the counter of display, the driver in the 
control unit of motor, and the driver in the control 
unit of sensor. Thus, there are eight different 
kinds of possible partitions into hardware and 
software.

In the following, we describe how 
partitioning and emulation results in the final 
VPMS design. This final result has the lowest 
cost while satisfying the given performance 
constraint on the gate response time.

Partitioning: We use parallel partitioning 
technique (as discussed in Section 2) for VPMS 
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Table 1. Codesign Alternatives in VPMS
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codesign. We start from the two extreme design 
alternatives: all-hardware and all-software. For 
the all-hardware alternative, based on 
performance constraint satisfaction we try to 
reduce the cost. For the all-software alternative, 
based on cost constraint satisfaction, we try to 
increase performance. There are eight design 
alternatives as shown in Table 1, where HC is a 
counter designed by hardware, SC is a count 
function designed by software, HS is a driving 
circuit of sensor designed by hardware, SS is a 
driving function of sensor designed by software, 
HM is a driving circuit of step motor designed by 
hardware, and SM is a software driving function 
of step motor

Starting from all-hardware alternative A and 

all-software alternative H, using the above 
method, we move from A to D and from H to F, 
in parallel. These two parallel steps have the 
following meanings:
l A→D: D has a smaller cost than A while 

satisfying the 1 µs gate response time 
constraint,

l H→F: F satisfies the 1 µs gate response 
time constraint, while H did not.

Partitioning stops after just one parallel step 
because F is a locally optimal solution that 
satisfies the gate response time as well as its cost 
cannot be reduced further. Parallelism has thus 
saved some efforts in partitioning because for the 
all-hardware initial solution approach, we would 
require two steps to reach F from A (A → D →
F).

Codesign: According to the three OMT models 
(as shown in Figs 1, 2, 3 and 4), we designed the 
hardware and software components of VPMS. 
The object model helped us to map physical 
hardware components and software modules to 
the objects in VPMS. The dynamic model helped 
us to organize the behavior of each mapped 
component. The functional model helped us to 
actually interconnect the hardware and software 
modules through interface construction.

Emulation: We chose a single chip integrated 
circuit 8051 [9] for software design which has 4K 
bytes of on-chip programmable memory for 
software programming, four input/output ports 
for data or control interface, two 16-bit 
timer/counters for time calculation or counting, 
and one series port for data transmission. Based 
on the object, dynamic, and functional models, 
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Table 2  Comparison of eight design alternatives of VPMS

A B C D E F* G H
Cost ($)
   (%)

1448.25
100.00

1415.25
97.72

1420.25
98.07

1278.25
88.26

1297.25
89.57

1155.25
79.77

1160.25
80.11

1028.50
71.02

Area (mm2)
   (%)

58,425
100.00

52,838
90.44

59,129
101.21

61,330
104.97

48,787
83.50

50,988
87.27

57,279
98.04

42,182
72.22

Power 
Consumption (W)    3.15    2.90    3.22    3.26    2.67    2.70    3.03    2.47

Response time(µs)
(sensor to display)

   180 13,000   180   180 13,000 13,000    180 13,000

Response time(µs)
(sensor to gate)

0.22 0.22 1.06 0.22 1.06 0.22 1.06 1.06



we designed the emulator for each part of 
hardware and coded the software in VPMS. The 
constraints for VPMS include: a maximum cost 
of $1,300 and a minimum gate response time of 1 
µs. On applying parallel partitioning technique, 
we found that design alternatives D and F (see 
Tables 1 and 2), satisfied the given constraints. 
Therefore, we emulated only design alternatives 
D and F. The cost and performance analysis 
results are shown in Table 2. From the emulation 
results, we conclude that the design alternative F
is the best in terms of having the lowest cost 
($1155.25) while satisfying the performance 
constraints.

5. Conclusion

The codesign of distributed systems was 
demonstrated through a case study on Vehicle 
Parking Management System (VPMS). We have 
shown how OMT can be used to model and help 
in identifying which parts can be implemented as 
hardware and which as software. We have also 
proposed a parallel partitioning technique that can 
reach locally optimal solution much faster. Future 
work will consist of applying this technique to 
other industrial examples and extending it to 
CMAPS [10].
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