
VERTAF: An Application Framework
for the Design and Verification of
Embedded Real-Time Software
Pao-Ann Hsiung, Member, IEEE, Shang-Wei Lin, Chih-Hao Tseng,

Trong-Yen Lee, Jih-Ming Fu, and Win-Bin See, Member, IEEE

Abstract—The growing complexity of embedded real-time software requirements calls for the design of reusable software

components, the synthesis and generation of software code, and the automatic guarantee of nonfunctional properties such as

performance, time constraints, reliability, and security. Available application frameworks targeted at the automatic design of embedded

real-time software are poor in integrating functional and nonfunctional requirements. To bridge this gap, we reveal the design flow and

the internal architecture of a newly proposed framework called Verifiable Embedded Real-Time Application Framework (VERTAF),

which integrates software component-based reuse, formal synthesis, and formal verification. A formal UML-based embedded real-time

object model is proposed for component reuse. Formal synthesis employs quasi-static and quasi-dynamic scheduling with automatic

generation of multilayer portable efficient code. Formal verification integrates a model checker kernel from SGM, by adapting it for

embedded software. The proposed architecture for VERTAF is component-based and allows plug-and-play for the scheduler and the

verifier. Using VERTAF to develop application examples significantly reduced design effort and illustrated how high-level reuse of

software components combined with automatic synthesis and verification can increase design productivity.

Index Terms—Application framework, code generation, embedded real-time software, formal synthesis, formal verification,

scheduling, software components, UML modeling.

�

1 INTRODUCTION

DRIVEN by the demand for new and complicated
features, embedded systems are becoming more

complex, which makes their correctness very difficult to
verify. Further, embedded systems are also becoming more
pervasive, which makes guaranteeing their correctness all
the more important. Currently, the design of embedded
real-time software is supported partially by modelers, code
generators, analyzers, schedulers, and frameworks [3], [14],
[27], [28], [29], [30], [31], [34], [35], [36], [37], [40], [47], [48],
[49], [50], [51], [52], [53], [58], [59]. Nevertheless, the
technology for a completely integrated design and verifica-
tion environment is still relatively immature. Furthermore,
the methodologies for design and for verification are also
poorly integrated, relying mainly on the experiences of
embedded software engineers. This work demonstrates

how the integration of software engineering techniques
such as software component reuse, formal software synth-
esis techniques such as scheduling and code generation,
and formal verification techniques such as model checking
can be realized in the form of an integrated design
environment targeted at the acceleration of embedded
real-time software construction.

Several issues are encountered in the development of an

integrated design environment. First and foremost, we need

to decide upon an architecture for the environment. Since
our goal is to integrate reuse, synthesis, and verification, we

need to have greater control on how the final generated
application will be structured; thus, we have chosen to

implement the environment as an object-oriented application

framework [17], which is a “semicomplete” application,
where users fill in application specific objects and function-

alities. A major feature is “inversion of control,” that is the
framework decides on the control flow of the generated

application based on system requirements, rather than the

designer. Other issues encountered in architecting an
application framework for embedded real-time software

are as follows:

1. To allow software component reuse, how do we
define the syntax and semantics of a reusable
component? How must a designer specify system
requirements such that they can be automatically
synthesized and verified? How can the existing
reusable components be integrated with the user-
specified components into a feasible working
system?

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

. P.-A. Hsing, S.-W. Lin, and C.-H. Tseng are with the Department of
Computer Science and Information Engineering, National Chung Cheng
University, 160, San-Hsing, Min-Hsiung, Chiayi, Taiwan-621, ROC.
E-mail: hpa@computer.org, {lsw92, tch92}@cs.ccu.edu.tw.

. T.-Y. Lee is with the Department of Electronic Engineering, National
Taipei University of Technology, 1 Sec. 3, Chung-Hsiao E. Rd. Taipei
10608, Taiwan ROC. E-mail: tylee@ntut.edu.tw.

. J.-M. Fu is with the Department of Electronic Engineering, Cheng Shiu
University, 840, Chengcing Rd., Niaosong, Kaohsiung County 833,
Taiwan, ROC. E-mail: marsfuh@csu.edu.tw.

. W.-B. See is with the Aerospace Industrial Development Corporation, #27-
3 Dahung Street, Taichung, Taiwan, 407, ROC.
E-mail: winbinsee@ms.aidc.com.tw.

Manuscript received 18 Feb. 2003; revised 7 July 2004; accepted 19 July 2004.
Recommended for acceptance by B. Cheng.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 118302.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

2. What is the control-data flow of the automatic
design and verification process? When do we verify
and when do we schedule a system under design?

3. What kinds of model can be used for each design
phase, such as scheduling and verification of a
system under design?

4. What methods are to be used for scheduling and for

verification? How do we automate the process?

What kinds of abstraction are to be employed when

system complexity is beyond the handling capabil-

ities of a machine used for designing the system?
5. How do we generate portable code that not only

crosses real-time operating systems (RTOS) but also
hardware platforms? What is the structure of the
generated code?

Briefly, our solutions to the above issues can be

summarized as follows:

1. Software Component Reuse and Integration: A subset of

the Unified Modeling Language (UML) [45] is used

with minimal restrictions for automatic design and

analysis. Precise syntax and formal semantics are
associated with each kind of UML diagram. Guide-

lines are provided so that requirement specifications

are more error-free and synthesizable, as described

in Section 3.1.4.
2. Control Flow: A specific control flow is embedded

within the framework, where scheduling is first

performed and then verification because the com-

plexity of verification can be greatly reduced after

scheduling [28].
3. System Models: For scheduling, we use variants of

Petri Nets (PN) [30], [31] and for verification, we use

Extended Timed Automata (ETA) [38], both of which
are automatically generated from user-specified

UML models that follow our restrictions and guide-

lines. The generation procedures are detailed in

Sections 3.2 and 3.3.
4. Design Automation: For synthesis, we employ quasi-

static and quasi-dynamic scheduling methods [30],
[31] that generate program schedules for a single
processor. For verification, we employ symbolic
model checking [10], [11], [42] that generates a
counterexample in the original user-specified UML
models whenever verification fails for a system
under design. The whole design process is auto-
mated through the automatic generation of respec-
tive input models, invocation of appropriate
scheduling and verification kernels, and generating
reports or useful diagnostics. For handling com-
plexity, abstraction is inevitable; thus, we apply
model-based, architecture-based, and function-
based abstractions during verification, as described
in Section 3.3.

5. Portable Efficient Multilayered Code: For portability, a
multilayered approach is adopted in code genera-
tion. To compensate for performance degradation
due to multiple layers, system-specific optimization
and flattening are then applied to the portable code.
System dependent and independent parts of the

code are distinctly segregated for this purpose.
Sections 3.4 and 3.5 provide code generation details.

In summary, this work illustrates how an application
framework may integrate all the above proposed design
and verification solutions for satisfying both functional and
nonfunctional requirements. Our implementation has re-
sulted in a Verifiable Embedded Real-Time Application Frame-
work (VERTAF) whose features include formal modeling of
embedded real-time systems through well-defined UML
semantics, formal synthesis that guarantees satisfaction of
temporal as well as spatial constraints, formal verification
that checks if a system satisfies user-given properties or
system-defined generic properties, and code generation that
produces efficient portable code.

The article is organized as follows: Section 2 describes
related work on the construction of application frameworks
for embedded real-time system design. Section 3 describes
the details of the design and verification flow in VERTAF
along with an illustration example. Section 4 describes the
five software components of VERTAF. Section 5 presents
the experimental results of two application examples.
Section 6 gives the final conclusions with some future work.

2 PREVIOUS WORK

Though object-oriented technology has been applied to the
design of real-time systems in several areas, such as
language design [1], [7], [20], [32], verification and analysis
[8], [19], distributed system design [22], [33], [48], [50], [51],
[52], and embedded system design [47], [53], [60], there has
been very little work on the development of application
frameworks for real-time application design. Two known
frameworks are Object-Oriented Real-Time System Framework
(OORTSF) [35], [49] and SESAG [27], which are simple
frameworks that have been applied to avionics software
development. In these frameworks, some design patterns
related to real-time application design were proposed and
code automatically generated. Nevertheless, there are still
some scheduling and real-time synchronization issues not
addressed such as asynchronous event handling and
protocol interfacing. VERTAF is an enhanced version of
SESAG, incorporating software component technology,
synthesis, formal verification, and standards such as UML.

Other related toolsets for the design and verification of
systems include the B-toolkit [4], SCR toolset [24], NIMBUS
[57], and SCADE Suite [16]. The B-toolkit takes abstract
machines as system models and applies theorem proving for
proof-obligation generation and verification. The SCR
toolset uses the SPIN model checker, PVS-based TAME
theorem prover, a property checker, and an invariant
generator for the formal verification of a real-time em-
bedded system specified using the SCR tabular notation. It
supports the generation of test cases through the TVEC
toolset. NIMBUS is a specification-based prototyping
framework for embedded safety-critical systems. It allows
execution of software requirements expressed in RSML
with various models of the environment such as physical
hardware, RSML models or user input scripts. NIMBUS
supports model checking through a variety of model
checkers and a framework based on Tame by SCR, as well

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 657

as theorem proving using PVS. Lustre-based [21] SCADE
Suite from Esterel Technologies uses Safe State Machines
(SSM) for requirement specification and automatically
generates DO-178B Level A [13] compliant and verified
C/Ada code for avionics systems. Nondeterminism is not
allowed by SSM in SCADE.

Worldwide research projects targeting embedded real-
time embedded software design include the MoBIES
project [36], [40], [59] supported by USA DARPA, the
HUGO project [34] by Germany’s Ludwig-Maximilians-
Universität München, the DESS project [37] supported by
Europe’s EUREKA-ITEA, and the TIMES project [3] by the
Uppsala University of Sweden. In the DARPA supported
MoBIES (Model-Based Integration of Embedded Systems)
project, there are several subprojects that cover varied
parts of the embedded software design process. For
example, Kodase et al. [36] and Wang et al. [59] proposed
AIRES (Automatic Integration of Reusable Embedded Soft-
ware), which focuses on automatically generating a
runtime model from a structural model through several
metamodels: software architecture, platform, runtime, and
performance metamodels. AIRES has been effectively
applied to avionics and automotive applications. Further,
de Niz and Rajkumar proposed Time Weaver [40], which is
a software-through-models framework that focuses on
capturing para-functional properties into models of
different semantic dimensions such as event flow, deploy-
ment, timing, fault tolerance, modality, and concurrency.

Knapp et al. have been developing HUGO [34] that
focuses on model checking statecharts against collabora-
tions. Code generation is also possible by HUGO, but
scheduling is not performed and, thus, the generated code
might not satisfy user-specified temporal constraints. The
DESS project by EUREKA-ITEA [37] is another effort at
defining a methodology for the design of real-time and
embedded systems, which provides guidelines for incor-
porating various kinds of tools into the design process and
how formal methods may be exploited. Neither real
implementation of the concepts nor any toolset is provided
by DESS. Lastly, TIMES [3] is a set of tools for the symbolic
schedulability analysis and code synthesis of predictable
real-time systems. No features of embedded systems are
considered in TIMES and the input model is a set of timed
automata and not the engineer-friendly UML model.

VERTAF differs from academic research-oriented project
application frameworks and from commercial code gen-
erating frameworks mainly in the following aspects.

. System Models: In contrast to the use of ad hoc
system models in AIRES, Time Weaver, B-toolkit,
SCR toolset, NIMBUS, and SCADE, VERTAF uses
standard models such as UML with stereotype
extensions for design specification, Petri nets for
synthesis, and extended timed automata for verifi-
cation, which allow compatibility with other tools.

. Formal Synthesis: Synthesis consists of two phases:
scheduling and code generation. Commercial and
academic application frameworks either rely on
manual refinements or automatically generate
embedded software code without guarantee on
satisfaction of temporal or spatial constraints,

whereas VERTAF tries to find a schedule that
satisfies user-defined timing constraints. If no
feasible schedule exists, VERTAF illustrates the
location of constraint violations in the original user-
specified UML diagrams.

. Formal Verification: Commercial tools due to product
marketing strategies and academic application fra-
meworks due to lack of interdiscipline expertise
normally leave the verification of generated em-
bedded code to the user who invokes another tool
for verification. The problem is that there is a gap
between design and verification and this causes
problems when some design errors are detected in
verification, but cannot be easily illustrated in the
original design models. Similar to tools such as
Statemate and Esterell, VERTAF has a built-in model
checker, hence does not have this problem.

Due to the requirement for great precision in the
specification and design of real-time embedded systems,
formal verification is especially desirable and feasible in
proving correctness of such systems. Currently, there is no
known application framework that incorporates automatic
formal verification into its design process. VERTAF takes
this step and, thus, needs to solve several issues such as
methodology flow, automation procedure, and abstraction
methods as described in Section 1. There are several formal
verification methods that can be applied, such as model
checking, process algebra, theorem proving, and other
logic-related techniques. In VERTAF, we use model checking
[10], [11], [42], which automates formal verification and
generates counterexamples on property violation. Given a
real-time system description S and a temporal property
specification �, model checking answers whether S satisfies
�. A counterexample is produced if the property is not
satisfied. A real-time system is modeled by a set of Extended
Timed Automata (ETA) [38], which extends timed automata
[2] with discrete variables and by allowing synchronization
between transitions of different automata through common
labels. A temporal property is specified in Timed Computa-
tion Tree Logic (TCTL) [25].

3 DESIGN AND VERIFICATION FLOW IN VERTAF

Before going into the component-based architecture of
VERTAF, we first introduce the design and verification
flow. As shown in Fig. 1, VERTAF provides solutions to the
various issues introduced in Section 1.

In Fig. 1, the control and data flows of VERTAF are
represented by solid and dotted arrows, respectively.
Software synthesis is defined as a two-phase process: a
machine-independent software construction phase and a
machine-dependent software implementation phase. This
separation helps us to plug-in different target languages,
middleware, real-time operating systems, and hardware
device configurations. We refer to the two phases as front-
end and back-end phases. The front-end phase is further
divided into three subphases, namely, UML modeling
phase, embedded real-time software scheduling phase,
and formal verification phase. There are two subphases in
the back-end phase, namely, component mapping phase

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

and code generation phase. We will now present the details

of each phase in the rest of this section illustrated by a

running example called Entrance Guard System (EGS). EGS is

an embedded system that controls the entrance to a

building by identifying valid users through a voice

recognition IC and control software that runs on a

StrongARM 1100 microprocessor.

3.1 UML Modeling

UML [45] is one of the most popular modeling and design

languages in the industry. It has become the de facto

standard. After scrutiny of all diagrams in UML, we have

chosen three diagrams for a user to input as system

specification models, namely, class diagram, sequence

diagram, and statechart. These diagrams were chosen such

that information redundancy in user specifications is

minimized and at the same time adequate expressiveness
in user specifications is preserved. UML is a generic
language, and specializations of it are always required for
targeting any specific application domain. In VERTAF, the
three UML diagrams are restricted as well as enhanced,
with guidelines for specifying synthesizable and verifiable
system models.

3.1.1 Class Diagrams with Deployment

A designer-specified class diagram represents the core part

of automatically generated software code and architecture.

In VERTAF, we classify classes into two types: software

classes that are either specified by a designer from scratch

or reused from library components and hardware classes

that represent supported hardware components. Besides

the relationships found in a typical class diagram such as

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 659

Fig. 1. Design and Verification Flow of VERTAF.

aggregation, generalization, and association, we introduce a

deployment relationship between a software class and a

hardware class, which can be used to specify a hardware

component on which a software object is deployed. For

example, a control program is deployed on 8051 micro-

controller or display software is deployed on an LCD.

In VERTAF, besides event-triggered methods, another type

called time-triggered methods is used to model real-time

tasks. Keywords such as period and deadline distinguish

time-triggered methods from event-triggered ones. Time-

triggered methods can be one-shot or periodic and are started,

stopped, and restarted by actions in the statechart that

represents the object’s behavior.
For the EGS example, the class diagram with deploy-

ments is shown in Fig. 2, where the dotted boxes represent

hardware classes, the regular ones are software classes, the

dotted lines represent deployments, and the solid lines

represent associations. There are six software classes which

are deployed on six hardware classes.

3.1.2 Timed Statecharts

A UML statechart represents the behavior of an object and
is used for generating the behavioral code architecture of
the object. Besides the original time-out specification in
statecharts, we allow more complex temporal behavior
specifications such as multiple clocks, and clock check and
reset. These enhancements are the same as those found in
timed automata [2].

Another addition to the standard statecharts is the set of
keywords associated with time-triggered methods, namely,

start, stop, and reset, which starts, stops, or restarts a time-

triggered method, respectively. A keyword time-out is

introduced to specify the temporal deadline for an action

in a statechart.
Fig. 3 illustrates a timed statechart for the Controller

Class in EGS example. It has two levels of hierarchy to

model timer interrupts. Five other statecharts, one for each

of the five classes (Fig. 2), are omitted here due to space

constraints.

3.1.3 Extended Sequence Diagrams

Sequence diagrams represent the use-cases of an embedded

software application and contain temporal and other

information related to how a user may use the system. In

VERTAF, sequence diagrams are mainly used for schedul-

ing the different tasks performed by objects. Due to poor

expressiveness in the original UML diagrams, we have

defined control structures in sequence diagrams, including

concurrency, conflict, and composition, which aid in

formalizing the semantics and in mapping to Petri nets.
Another enhancement to the standard sequence dia-

grams is the state-markers that are inserted into the life axis

of an object. A state-marker on the life axis of an object A

has the same label as a state in the statechart CA of the

object A, in which the messages following the state-marker

in the sequence diagram are sent or received by the object.

State-markers explicitly relate a sequence diagram to the

states in a set of statecharts that represent the behavior of

the object instances appearing in that sequence diagram.

They aid in user comprehension of the sequence diagrams

660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

Fig. 2. Class diagram with deployments for entrance guard system.

for further maintenance and also help in the scheduling

process of VERTAF.
Fig. 4 illustrates one of the five sequence diagrams for

EGS, which depicts a normal scenario where a legal user

gains entry into the building after successful voice recogni-

tion. A state-marker Show_msg on the Controller object life

axis indicates that the controller sends the Send_Actuator()

message only when it is in the Show_msg state.

3.1.4 Model Preciseness and Design Guidelines

UML is well-known for its informal and general-purpose

semantics. The enhancements described in the foregoing

sections are an effort at formalizing semantics preciseness

such that there is little ambiguity in user-specified

models that are input to VERTAF. Furthermore, design

guidelines are provided to a user such that the goal of

correct-by-construction can be achieved. Typical guide-

lines are given here.

. Hardware deployments are desirable as they reflect
the system architecture in which the generated
embedded real-time software will execute and, thus,
generated code will adhere to designer intent more
precisely.

. If the behavior of an object cannot be represented by
a simple statechart that has no more than four levels
of hierarchy, then decompose the object.

. To maximize flexibility, a sequence diagram can
represent one or more use-case scenarios. Over-
lapping behavior among scenarios often results in
significant redundancy, hence either control struc-
tures may be used in a sequence diagram or a set of
nonoverlapping sequence diagrams may be inter-
related with precedence constraints.

. Ensure the logical correctness of the relationships
between class diagram and statecharts and between
statecharts and sequence diagrams. The former is
represented by actions and events in statecharts that
correspond to object methods in class diagram. The
latter is represented by state-markers in sequence
diagrams corresponding to Statechart states.

3.1.5 System Model

The set of UML diagrams input by a user, including a class
diagram with deployments, a timed statechart correspond-

ing to each class, and a set of extended sequence diagrams,
constitutes the requirements for the embedded real-time

software to be designed and verified by VERTAF. The
formal definition of a system model is as follows.

Definition 1. Embedded real-time software system model.

Given a class diagram Dclass ¼< C; � > , a statechart

DschartðcÞ ¼< Q; q0; � > for each class c in C, and a set of
sequence diagrams fDseqjDseq ¼< C0;M >;C0 � Cg, where

C is a set of classes, � is the mapping for class relationships
and deployments, Q is a set of states, q0 is an initial state, �

is a transition relation between states, and M is a set of
messages, an embedded real-time software system S is defined

as a set of objects as specified in Dclass, the behavior of
which is represented by the individual statecharts DschartðcÞ,
and which interact with each other by sending/receiving
messages m 2 M as specified in the set of sequence

diagrams fDseqg. A formal behavior model of a system S

is defined as the parallel composition of all statecharts with

behavior represented by sequence diagrams. Notationally,
Dschartðc1Þ � . . .�DschartðcjCjÞ �BðDseq

1; . . . ; Dseq
kÞ denotes

the system behavior semantics, where B is the scheduler
ETA as formalized in Section 3.2.

3.2 Embedded Real-Time Software Scheduling

There are two issues in embedded real-time software

scheduling, namely, how are memory constraints satisfied
and how are temporal specifications such as deadlines

satisfied. Based on whether the system under design has an
RTOS specified or not, two different scheduling algorithms

are applied to solve the above two issues.

. Without RTOS: Quasi-dynamic scheduling (QDS) [30],
[31] is applied, which requires Real-Time Petri Nets
(RTPN) as system specification models. QDS pre-
pares the system to be generated as a single real-time
executive kernel with a scheduler.

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 661

Fig. 3. Timed statechart for the controller class in EGS.

. With RTOS: Extended quasi-static scheduling (EQSS)
[55] with real-time scheduling [39] is applied, which
requires Complex Choice Petri Nets (CCPN) and set of
independent real-time tasks as system specification
models, respectively. EQSS prepares the system to
be generated as a set of multiple threads that can be
scheduled and dispatched by a supported RTOS
such as MicroC/OS II or ARM Linux.

QDS and EQSS are both static scheduling techniques

which will be discussed later in this section after illustrat-

ing how their input Petri nets are automatically generated

from UML models. There have been several work on

formalizing UML semantics by translating UML diagrams

into formal models such as Petri nets [6], [15], [18], [46].

However, the translated models are mostly targeted for

either verification [15], [18], [46] or performance evaluation

[6]. The colored Petri net and stochastic models that are

most popularly used in such formalizations can become

quite complex to handle. Further, the target systems for

most related work are general object-oriented systems that

do not consider deployments. In contrast, VERTAF uses

simple RTPN/CCPN models for scheduling purposes that

include real-time characteristics determined by user-given

hardware deployments in the class diagram. The translated

Petri nets are closer to their final embedded software

implementations.
The RTPN enhances the standard Petri net with code

execution characteristics associated with transitions. Given

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

Fig. 4. A sequence diagram for EGS.

a standard Petri net N ¼< P; T ; � > , where P is a set of
places, T is a set of transitions, and � is a weighted flow
relation between places and transitions, NR ¼< N;�; � > is
an RTPN, where � maps a transition t to its worst-case
execution time �t and deadline �t and � is the period for
NR. Both RTPN and CCPN allow nonfree choices at
transitions [55], but do not allow the computations from a
branch place to synchronize at some later place. For
synthesizability, both RTPN and CCPN only allow a loop
that has at least a single token in some place along the loop.
Here, we briefly describe how RTPN and CCPN models are
generated automatically from user-specified UML sequence
diagrams, through a case-by-case construction.

1. A message in a sequence diagram is mapped to a set
of Petri net nodes, including an incoming arc, a
transition, an outgoing arc, and a place. If it is an
initial message, no incoming arc is generated. If a
message has a guard, the guard is associated to the
incoming arc. Examples are shown in Fig. 5.

2. For each set of concurrent messages in a sequence
diagram, a fork transition is first generated, which is
then connected to a set of places that lead to a set of
message mappings as described in Step 1 above
(Fig. 5b). Fig. 6 illustrates the mapping for two
concurrentmessages, SendActuator() and SetTimer(),
which implement a typical time-out mechanism.

3. If messages are sent in a loop, the Petri nets
corresponding to the messages in the loop are
generated as described in Step 1 (Fig. 5) and
connected in the given sequential order of the
messages. The place in the mapping of the last
message is identified with the place in the mapping
of a message that precedes the loop, if any. This is
called a branch place. The loop iteration guard is
associated with the incoming arc of the first message
in the loop, which is also an outgoing arc of the
branch place. Another outgoing arc of the branch
place points to a transition outside the loop, which
corresponds to the message that succeeds the loop.
Fig. 7 shows a typical example of a 4-byte text entry
loop. A timer interrupt is also modeled by an
intermediate place having an outgoing arc to a
transition TimeOut1 that is fired when a previously
set timer expires.

4. Different sequence diagrams are translated to
different Petri-nets. If a Petri net has an ending
transition which is the same as the initial transition
of another Petri net, they are concatenated by

merging the common transition. The two Petri nets
in Fig. 8a have a common transition T1, which can be
merged as shown in Fig. 8b.

5. Sequence diagrams that are inter-related by pre-
cedence constraints are first translated individually
into independent Petri nets, which are then com-
bined with a connecting place, that may act as a
branch place when several sequence diagrams have
a similar precedent. An example is shown in Fig. 9,
where each independent Petri net is in a frame.
Branch place P2 is used to combine them.

6. An ending transition is appended to each generated
Petri net because otherwise, there will be an infinite
accumulation of nonconsumed tokens, which will
result in infeasible scheduling because tokens
represent memory space.

By applying the above mapping procedure, all user-
specified sequence diagrams are translated and combined
into a compact set of Petri nets. All kinds of temporal
constraints that appear in the sequence diagrams such as
time-out, time interval between two events (sending and
receiving of messages), periods and deadlines associated
with a message, and timing guards on messages are
translated into guard constraints on arcs in the generated
Petri nets. This set of RTPN or CCPN is then input to QDS or
EQSS, respectively, for scheduling. Details on the schedul-
ing procedures can be found in [30], [31], [55]. The basic
strategy is to decompose each Petri net into conflict-free
components that are scheduled individually for satisfaction
of memory constraints. A conflict-free component is a
reduction of a Petri net into one without any branch place.
This is EQSS. QDS applies EQSS first and, then, because the
resulting memory satisfying schedules may have some
sequencing flexibilities, they are taken advantage of for
satisfaction of temporal constraints. Finally, we have a set of
feasible schedules, each of which corresponds to a particular
behavior configuration of the system. A behavior config-
uration of a system is a feasible computation that results
from the concurrent behaviors of the conflict-free compo-
nents of its constituent Petri nets. For example, a system
with two Petri nets, N1 and N2, which have two conflict-free
components each, namely, N11, N12, and N21, N22, can have
in total at most four different behavior configurations:
N11jjN21, N12jjN21, N11jjN22, and N12jjN22.

For systems without RTOS, we need to automatically
generate a scheduler that controls the system according to

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 663

Fig. 5. Mapping a message to a Petri net. (a) PN for initial message.

(b) PN for intermediate message.

Fig. 6. Mapping concurrent messages with a fork transition in the

Petri net.

the set of transition sequences generated by QDS. In
VERTAF, a scheduler is constructed as a separate class that
observes and controls the status of each object in the system.
Temporal constraints are monitored by the scheduler class
using a global clock. Further, for verification purposes, an
extended timed automaton is also generated by following
the set of transition sequences. For uniformity, this
scheduler automaton can be viewed as a timed statechart
for the generated scheduler class and, thus, the scheduler is
just another object in the system. Code generation becomes
a lot easier with this uniformity.

For our running EGS example, as shown in Fig. 10, a
single Petri net is generated from the user-specified set of
statecharts, which is then scheduled using QDS. In this
example, scheduling is required only for the timers
associated with the actuator, the controller, and the input
object. After QDS, we found that EGS is schedulable.

3.3 Formal Verification

Embedded real-time systems often have complex control
schemes and high level of concurrency among various
device controllers, which often results in error conditions
that require very precise timing of inputs (e.g., an input
interrupt arrives at exactly the moment that a certain state
transition is taking place in a firmware). Static analysis,
because all possible execution sequences are considered, is
much more suitable for detecting these error conditions
than testing. Further, model-based design of such systems is
especially suitable for formal verification because the
models can be made into precise semantic representations

for verification. Here, we apply model checking [10], [11],
[42], which is an automatic state-based analysis procedure
that can show if a system satisfies a temporal property or
violates it in some counterexample. It requires a formal
system model and a formal specification of a temporal
property. UML models are mapped to ETA [38] and OCL
properties to TCTL formulas [25].

In VERTAF, as shown in Fig. 11, formal ETA models are
generated automatically from user-specified UML models
by a flattening scheme that transforms each statechart into
a set of one or more ETA. The three types of states in
statecharts are mapped into ETA entities as follows: Each
basic state is mapped to an ETA state. An OR-state is
mapped to the set of ETA states corresponding to the states
within the OR-state and additional ETA transitions are
added to account for statechart transitions that cross
hierarchy levels. An AND-state is mapped to two or more
concurrent ETA corresponding to the parallelism in the
AND-state. Labels are used for synchronizing the con-
current ETA. Details on the hierarchy flattening scheme
can be found in [34], [37]. Clock variables and constraints
appearing in statecharts can be directly copied to ETA. For
a time-out value of TO on a transition t of a statechart, a
temporary clock variable x is used to represent a
corresponding timer. Variable x is reset on all incoming
ETA transitions to the mapped source state of t. A time
invariant x � TO is added to the mapped source state of t.
A triggering condition x ¼ TO is added to the ETA
transition that corresponds to t.

As shown in Fig. 11, once we have the set of ETA models
generated from the user-specified UML statecharts, they are
merged, along with the scheduler ETA generated in the
scheduling phase, into a state-graph. The verification kernel
used in VERTAF is adapted from State Graph Manipulators
(SGM) [58], which is a high-level model checker for real-
time systems that operate on state-graph representations of
system behavior through manipulators, including a state-
graph merger, several state-space reduction techniques, a
dead state checker, and a TCTL model checker. There are
two classes of system properties that can be verified in
VERTAF: 1) system-defined properties including dead
states, deadlocks, livelocks, and 2) user-defined properties
specified in the Object Constraint Language (OCL) as defined
by OMG in its UML specifications. All of these properties

664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

Fig. 7. Mapping a message loop with timer interrupt to a Petri net.

Fig. 8. Concatenating two Petri nets into one. (a) Two Petri nets.

(b) Concatenated PN.

are automatically translated into TCTL specifications for
verification by SGM.

As shown in Fig. 11, except for the edges marked by
SGM, all other transformations are automated in VERTAF,
including the generation of ETA models from statecharts,
Petri nets from sequence diagrams, scheduler automaton
after scheduling, TCTL properties from OCL constraints,
and the final counterexamples, if any, in terms of sequence
diagrams.

Design complexity is a major issue in formal verification,
which leads to unmanageable and exponentially large state-
spaces. Both engineering paradigms and scientific techni-
ques are applied in VERTAF to handle the state-space size
explosion issue. Described in the following is a summary of
the applied techniques.

. Model Construction Guidelines: The kind of specifica-
tion models that a designer inputs to any tool always
has a great effect on how the tool performs, thus
guidelines aid designers to get the most out of a tool.
Some typical guidelines that a VERTAF user is
suggested to follow are:

1. reuse existing components as much as possible,

2. maximize the explicit definition of all hardware
deployments in the class diagram,

3. a class should have only one statechart repre-
senting its behavior,

4. a statechart should have no more than four
levels of hierarchy,

5. make explicit the relations among all sequence
diagrams, and

6. both event-triggered and time-triggered meth-
ods in each class should appear somewhere in
its statechart or sequence diagram.

. Architectural Abstractions: An assume-guarantee
reasoning (AGR) based approach is adopted,
whereby a complex verification task of a system
is broken down into several smaller verification
tasks of constituent subsystems. The theory of
AGR is beyond scope here, but details can be
found in [26], [61]. For the purpose of automation,
we have proposed and implemented the automatic
generation of assumptions and guarantees for each

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 665

Fig. 9. Combining Petri nets that correspond to sequence diagrams with precedence.

Fig. 10. Petri net model of the sequence diagrams in EGS.

ETA based on their interface traces, which are then
verified individually [29]. This divide and conquer
approach overcomes the exponential state-space
size issue to a significant extent. The benefit of
AGR becomes limited when we are trying to verify
properties that cross-cut the entire system. Thus,
VERTAF users are suggested to decompose their
properties into several smaller parts. The formal
verification of component-based software is made
feasible through the hierarchical decomposition of
system properties into subproperties for each
software component [53]. Related issues such as
memory reference, object reference, and reentrance
[56] are handled using a Call-Graph which records
all component invocations.

. Functional Abstractions: The smaller tasks of verifying
each module obtained in the architectural abstrac-
tion step is further simplified through a series of
user-guided functional abstractions, including com-
munication abstraction (communication methods
such as protocols are individually verified),

bit-width abstraction (instead of a 32-bit wide bus,
a 1-bit or 2-bits abstract model is used), transactor
models (an abstract model of other components in
the system is used to verify a specific functionally
detailed component), transaction-level verification
(both hardware and software signals are abstracted),
and assertion-based verification (only interface
assertions are verified).

. State-Space Reductions: Several of the state-space
reduction manipulators provided by SGM have been
either directly applied to the ETA models generated
in VERTAF or modified for adaptation to embedded
systems. Since the scope here does not allow us to go
into details of the reduction techniques, we merely
list the techniques available and refer designers to
related work [58]. The techniques applicable are:
read-write reduction, discrete variable hiding reduc-
tion, clock shielding reduction, internal transition
bypassing, and timed symmetry reduction.

The above abstraction techniques are applied to a user-
specified UML model as follows: While constructing the

666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

Fig. 11. Automation in VERTAF.

UMLmodels, users not following the guidelines are warned
of the possible intricacies. Upon completion of model
construction, first Petri net models are generated, which
are then scheduled to produce feasible system schedules
that are represented by a scheduler ETA. Then, for each
ETA generated from the statecharts, its assumptions and
guarantees are generated. The guarantees of an ETA are
verified by first merging the ETA with functional abstrac-
tions of the other ETA in the system and then reducing the
state-spaces of the merged state-graph using SGM reduc-
tion manipulators. We can see that not only is verification
automated but abstraction techniques such as AGR and
state-space reductions are also automatically performed,
which makes VERTAF scalable to large applications.

For our running EGS example, the ETA for each
statechart were generated and then merged with the

scheduler ETA. For illustration, we show in Fig. 12 the

ETA that is generated by VERTAF corresponding to the

controller statechart of Fig. 3. The other six ETA are omitted

due to page limit. All ETA were input to SGM and AGR

was applied. Reduction techniques were then applied to

each state-graph obtained from AGR. OCL constraints were

then translated into TCTL [44] and verified by the SGM

model checker kernel.

3.4 Component Mapping

This is the first phase in the back-end design of VERTAF

and starts to be more hardware dependent. All hardware

classes specified in the deployments of the class diagram

are those supported by VERTAF and, thus, belong to some

existing class libraries. The component mapping phase then

becomes simply the configuration of the hardware system

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 667

Fig. 12. Extended timed automaton for controller in EGS.

and operating system through the automatic generation of
configuration files, make files, header files, and dependency
files. The corresponding hardware class API will be linked
during compilation.

The main issue in this phase occurs when a software
class is not deployed on any hardware component or not
deployed on any specific hardware device type, for
example, the type of microcontroller to be used is not
specified. Currently, VERTAF adopts an interactive
approach whereby the designer is warned of this lack of
information and he/she is requested to choose from a list of
available compatible device types for the deployment. An
automatic solution to this issue is not feasible because
software performance profiling estimates are not easy
without further hardware deployment information about
the nondeployed software classes. Another issue in this
phase is the possible conflicts among hardware devices
specified in a class diagram such as interrupts, memory
address ranges, I/O ports, and bus-related characteristics
such as device priorities. Users are also warned in case of
such conflicts.

3.5 Code Generation

There are basically three issues in this phase including
hardware portability, software portability, and temporal
correctness. We adopt a 3-tier approach for code generation:
a hardware abstraction layer, an OS with middleware layer,
and a scheduler with temporal monitor, which solves the
above three issues, respectively. Currently, supported
underlying hardware platforms include ARM-based, Stron-
gARM-based, 8051-based, and Lego RCX-based Mindstorm
systems. For hardware abstraction, VERTAF supports
MicroHAL and the embedded version of POSIX. For OS,
VERTAF supports MicroC/OS, Linux, and eCOS. For
middleware, VERTAF is currently based on the Quantum
Framework [47]. For scheduler, VERTAF creates a custom
ActiveObject according to the Quantum API. Included in
the scheduler is a temporal monitor that checks if any
temporal constraints are violated. As shown in Fig. 13, this
multitier approach decouples application code from the OS
through the middleware and from the hardware platform
through the OS and hardware abstraction layer.

Each ETA is implemented as an ActiveObject in the
Quantum Framework. The user-defined classes along with

data and methods are incorporated into the corresponding
ActiveObject. The final program is a set of concurrent
threads, one of which is a scheduler that can control the
other objects by sending messages to them after observing
their states. For systems without an OS, the scheduler also
takes the role of a real-time executive kernel.

For safety-critical systems, generated code must undergo
standards compliance testing and verification. We are
currently trying to integrate Safecharts [12], a safety
extended version of UML Statecharts, into VERTAF for
conforming to safety standards such as DO-178B.

For our running example, the final application code
consisted of six activeobjects derived from the statecharts
and one activeobject representing the scheduler. Makefiles
were generated for linking in the API of the six hardware
classes and configuration files were generated for the
StrongARM microprocessor with MicroC/OS II and
embedded Linux. In total, there were 2,300 lines of
C code, out of which the designer had to write only
around 300 lines of code.

4 VERTAF COMPONENTS

Fig. 14 illustrates the component-based architecture of VER-
TAF, which consists of five components, namely, Implanter,
Modeler, Scheduler, Verifier, and Generator.

First, a VERTAF user identifies the objects that are
specific to an application and then specifies the three kinds
of UML models, namely, class diagram with deployments,
timed statecharts, and extended sequence diagrams using
the Implanter component of VERTAF. Real-time and
embedded constraints are specified in OCL. Second, the
models are then transformed by theModeler component into
corresponding ETA, Petri nets, and TCTL formulas. Third,
the Scheduler schedules the Petri nets using QDS/EQSS and
generates a scheduler ETA for verification and a scheduler
ActiveObject for code generation. Fourth, the Verifier proves
the feasibility of the scheduled set of ETA by showing if
they satisfy all the given real-time and embedding con-
straints. AGR and other abstraction techniques are also
applied by Verifier. Finally, the Generator is used to generate
the application code from user-defined class details, the
ActiveObjects corresponding to statecharts, and the sche-
duler ActiveObject.

The architecture of VERTAF has clear interfacing among
the five components; hence, any of the components can be
modified individually with minimal effect on the other
parts of the framework. This modular structure also allows
replacement of different components such as a new
scheduler, a new verifier, or a new code generator to meet
the demands of varied users.

Besides the above framework designer view of VERTAF,
an application designer or framework user is mainly
concerned with the modeling of objects in an application.
Our logical model of an application object is expressed as an
Embedded Real-Time Object (ERTO) as depicted in Fig. 15.
ERTO is a merger and extension of the Port-Based Object
(PBO) [54] and Time-triggered Message-triggered Object
(TMO) [33]. ERTO incorporates the interface model of PBO
with the methods model of TMO. The syntax of ERTO is
defined in the left part of Fig. 15 consisting of data

668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

Fig. 13. Multitier architecture of VERTAF code generation.

attributes, event-triggered methods, and time-triggered

methods. The semantics of ERTO is defined in the right

part of Fig. 15, consisting of hardware deployments, a timed

statechart, and communication mechanisms such as queues,

timers, and messages. Class-specific constraints are given in

OCL. Communication with other objects is restricted to in

and out ports. Configuration ports are used to reconfigure

generic components for use with specific hardware.

Resource ports connect to sensors and actuators.

5 APPLICATIONS AND EXPERIMENTAL RESULTS

Two application examples developed using VERTAF are

presented in this section: an avionics application consisting

of 24 tasks (10 ERTO) used to control an aircraft and a

cruiser application consisting of 12 tasks (five ERTO) used to

control the vehicle speed under different circumstances.

The benefits of using VERTAF in developing the two

examples have been evaluated by the authors and the

results show a marked improvement in design productivity

and efficiency.

5.1 Avionics Application

This is an avionics system application called digital flight

control [5]. A summary of the 24 tasks executed by 10 ERTO

is shown in Table 1 [5], [41], [43]. The hardware resource for

executing these tasks is the SIFT (Software-Implemented Fault

Tolerance) computer [43] with eight processors, each having

an instruction execution rate of 0.5 MIPS and an address

space of 64 Kbytes. The UML models were input to

VERTAF, formal ETA and Petri net models generated,

and then QDS was applied. The system was schedulable

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 669

Fig. 14. Component view of VERTAF.

Fig. 15. Embedded real-time object.

and a scheduler generated. A Call-Graph as shown in Fig. 16

depicts the invocation relationships among objects and is
used in VERTAF for scheduling the RTPN generated from

sequence diagrams. In total, there were 10 application

domain objects (five designed by each of two designers) and
35 application framework objects (20 and 15 objects

specified by the two designers, respectively). Thus, in total,

there are 45 objects in the final program code generated. The
average integration time per object was 0.4 day and the

learning time was amortized as 0.1 day for each designer

using the framework. The average integration time was two
days for an object developed by one designer without using

the framework. The initial effort at developing the applica-

tion using VERTAF took only one week for two real-time
system designers. The same two designers took five weeks

in total to design the same application a second time

without using VERTAF. The order for the experiments was
determined by minimizing the amount of knowledge the

second experiment needed from the first.

5.2 AICC Cruiser Application

Another application developed with VERTAF is AICC

(Autonomous Intelligent Cruise Controller) [23], which had
been developed and installed in a Saab automobile by

Hansson et al. The AICC system can receive information

from road signs and adapt the speed of the vehicle to
automatically follow speed limits. Also, with a vehicle in
front cruising at lower speed the AICC adapts the speed
and maintains safe distance. The AICC can also receive
information from the roadside (e.g., from traffic lights) to
calculate a speed profile which will reduce emission by
avoiding stop and go at traffic lights. The system
architecture consisting of hardware (HW) and software
(SW) is shown in Fig. 17.

As shown in Fig. 18, there are five domain objects
specified by the designer of AICC for implementing a
Basement system. Basement is a vehicle’s internal real-time
architecture developed in the Vehicle Internal Architecture

(VIA) project [23], within the Swedish Road Transport
Informatics Programme. As observed in Fig. 18, each object
may correspond (map) to one or more tasks. The tasks and
the Call-Graph are as shown in Table 2 and Fig. 18,
respectively. In total, there are 12 tasks performed by five
application domain objects. There were 21 application
framework objects specified by the designer. In total,
26 objects were in the final program code generated. The
average integration time per object was 0.5 day and the
average learning time was amortized as 0.1 day for each
designer using the framework. Without using the frame-
work, the average integration time was two days for each

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

TABLE 1
Avionics Digital Flight Control Tasks [5]

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 671

Fig. 16. Avionics system call-graph.

Fig. 17. AICC system architecture.

Fig. 18. AICC call-graph.

object. In the initial effort, the application took five days for
three real-time system designers using VERTAF. The same
application took the same designers 20 days to complete
development a second time without using VERTAF. The
order was chosen because it was fairer than the reverse one
in terms of learning effects.

6 CONCLUSION

An object-oriented component-based application frame-
work, called VERTAF, was proposed for embedded real-
time systems application development. It was a result of the
integration of three different technologies: software compo-
nent reuse, formal synthesis, and formal verification. Starting
from user-specified UML models, automation was pro-
vided in model transformations, scheduling, verification,
and code generation. A new Embedded Real-Time Object
model was proposed for users to implant application
domain objects into the application framework. A modular
architecture was constructed for VERTAF, including five
components: Implanter, Modeler, Scheduler, Verifier, and
Generator. Besides an illustrative entrance guard system
example, two industrial application examples were devel-
oped using VERTAF. Both the examples have shown how
design time is significantly reduced due to a large extent of
object and code reuse from VERTAF. VERTAF can be easily
extended since new specification languages, scheduling
algorithms, etc. can easily be integrated into it. Future
extensions will include support for share-driven scheduling
algorithms. More applications will also be developed using
VERTAF. VERTAF will be enhanced in the future by
considering more advanced features of real-time applica-
tions, such as, network delay, network protocols, and online
task scheduling. Performance related features such as
context switch time and rate, external events handling,
I/O timing, mode changes, transient overloading, and setup
time will also be incorporated into VERTAF in the future.
More abstractions required for successful model checking
such as the abstraction of numeric constants [9] will also be
integrated into VERTAF in the future.

ACKNOWLEDGMENTS

This work was supported in part by project grants NSC91-
2213-E-194-008, NSC92-2213-E-194-003, NSC91-2215-E-194-
008, NSC92-2218-E-194-009, and NSC91-2213-E-230-002
from the National Science Council of Taiwan.

REFERENCES

[1] B. Achauer, “Objects in Real-Time Systems: Issues for Language
Implementers,” ACM OOPS Messenger, vol. 7, pp. 21-27, Jan. 1996.

[2] R. Alur and D. Dill, “Automata for Modeling Real-Time Systems,”
Theoretical Computer Science, vol. 126, no. 2, pp. 183-236, Apr. 1994.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Petterson, and W. Yi,
“TIMES: A Tool for Schedulability Analysis and Code Generation
of Real-Time Systems,” Proc. First Int’l Workshop Formal Modeling
and Analysis of Timed Systems (FORMATS), Sept. 2003.

[4] B-toolkit, B-core (UK) Ltd., http://www.b-core.com/, 2002
[5] J.A. Bannister and K.S. Trivedi, “Task Allocation in Fault-Tolerant

Distributed Systems,” Acta Informatica, vol. 20, no. 3, pp. 261-281,
1983.

[6] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML Sequence
Diagrams and Statecharts to Analyzable Petri Net Models,” Proc.
Third Int’l Workshop Software and Performance (WOSP ’02), pp. 35-
45, July 2002.

[7] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M.
Turnbull, The Real-Time Specification for Java. Addison Wesley, Jan.
2000.

[8] J. Browne, “Object-Oriented Development of Real-Time Systems:
Verification of Functionality and Performance,” ACM OOPS
Messenger, special issue on object-oriented real-time systems,
vol. 7, pp. 59-62, Jan. 1996.

[9] Y. Choi, S. Rayadurgam, and M.P.E. Heimdahl, “Automatic
Abstraction for Model Checking Software Systems with Inter-
related Numeric Constraints,” Proc. Eighth European Software Eng.
Conf. and Ninth ACM SIGSOFT Symp. Foundation of Software Eng.,
Sept. 2001.

[10] E.M. Clarke and E.A. Emerson, “Design and Synthesis of
Synchronization Skeletons Using Branching Time Temporal
Logic,” Proc. Logics of Programs Workshop, 1981.

[11] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking. MIT
Press, 1999.

[12] H. Dammag and N. Nissanke, “Safecharts for Specifying and
Designing Safety Critical Systems,” Proc. 18th IEEE Symp. Reliable
Distributed Systems, Oct. 1999.

[13] DO-178B: Software Considerations in Airborne Systems and
Equipment Certification, RTCA, 1992.

[14] B.P. Douglass, Doing Hard Time: Developing Real-Time Systems with
UML, Objects, Frameworks, and Patterns. Addison Wesley, Nov.
1999.

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

TABLE 2
AICC Tasks

[15] M. Elkoutbi and R.K. Keller, “Modeling Interactive Systems with
Hierarchical Colored Petri Nets,” Proc. Advanced Simulation
Technologies Conf., pp. 432-437, Apr. 1998.

[16] Esterel Technologies, http://www.esterel-technologies.com/,
2003.

[17] M. Fayad and D. Schmidt, “Object-Oriented Application Frame-
works,” Comm. ACM, special issue on object-oriented application
frameworks, vol. 40, Oct. 1997.

[18] O. Fengler, W. Fengler, and T. Hummel, “Verification Method for
Modeling Cooperating Processes with Colored Sequence Dia-
grams,” Proc. 23rd IASTED Int’l Conf. Modelling, Identification, and
Control (MIC ’04), Feb. 2004.

[19] M. Gergeleit, J. Kaiser, and H. Streich, “Checking Timing
Constraints in Distributed Object-Oriented Programs,” ACM
OOPS Messenger, special issue on object-oriented real-time
systems, vol. 7, pp. 51-58, Jan. 1996.

[20] A. Grimshaw, A. Silberman, and J. Liu, “Real-Time Mentat, A
Data-Driven Object-Oriented System,” Proc. IEEE Globecom Conf.,
pp. 141-147, Nov. 1989.

[21] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
Synchronous Dataflow Programming Language Lustre,” Proc.
IEEE, vol. 79, no. 9, pp. 1305-1320, 1991.

[22] D. Hammer, L. Welch, and O. vanRoosmalen, “A Taxonomy for
Distributed Object-Oriented Real-Time Systems,” ACM OOPS
Messenger, special issue on object-oriented real-time systems,
vol. 7, pp. 78-85, Jan. 1996.

[23] H.A. Hansson, H.W. Lawson, M. Stromberg, and S. Larsson,
“BASEMENT: A Distributed Real-Time Architecture for Vehicle
Applications,” Real-Time Systems, vol. 11, no. 3, pp. 223-244, 1996.

[24] C.L. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR*: A
Toolset for Specifying and Analyzing Software Requirements,”
Proc. 10th Int’l Conf. Computer-Aided Verification, pp. 526-531, 1998.

[25] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
Model Checking for Real-Time Systems,” Proc. IEEE Logics in
Computer Science, 1992.

[26] T.A. Henzinger, S. Qadeer, and S.K. Rajamani, “Decomposing
Refinement Proofs Using Assume-Guarantee Reasoning,” Proc.
IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD ’00), pp. 245-
252, 2000.

[27] P.-A. Hsiung, “RTFrame: An Object-Oriented Application Frame-
work for Real-Time Applications,” Proc. 27th Int’l Conf. Technology
of Object-Oriented Languages and Systems (TOOLS ’98), pp. 138-147,
Sept. 1998.

[28] P.-A. Hsiung, “Embedded Software Verification in Hardware-
Software Codesign,” J. Systems Architecture-the Euromicro J., vol. 46,
no. 15, pp. 1435-1450, Nov. 2000.

[29] P.-A. Hsiung and S.-Y. Cheng, “Automating Formal Modular
Verification of Asynchronous Real-Time Embedded Systems,”
Proc. 16th Int’l Conf. VLSI Design, (VLSI ’03), pp. 249-254, Jan. 2003.

[30] P.-A. Hsiung and C.-Y. Lin, “Synthesis of Real-Time Embedded
Software with Local and Global Deadlines,” Proc. First ACM/IEEE/
IFIP Int’l Conf. Hardware-Software Codesign and System Synthesis
(CODES+ISSS ’03), pp. 114-119, Oct. 2003.

[31] P.-A.Hsiung, C.-Y. Lin, and T.-Y. Lee, “Quasi-Dynamic Scheduling
for the Synthesis of Real-Time Embedded Software with Local and
Global Deadlines,” Proc. Ninth Int’l Conf. Real-Time and Embedded
Computing Systems and Applications (RTCSA ’03), Feb. 2003.

[32] Y. Ishikawa, H. Tokuda, and C.W. Mercer, “Object-Oriented Real-
Time Language Design: Constructs for Timing Constraints,” ACM
SIGPLAN Notices, Proc. ECOOP/OOPSLA ’90 Confs., vol. 25,
pp. 289-298, Oct. 1990.

[33] K.H. Kim, “APIs for Real-Time Distributed Object Programming,”
Computer, vol. 33, no. 6, pp. 72-80, June 2000.

[34] A. Knapp, S. Merz, and C. Rauh, “Model Checking Timed UML
State Machines and Collaboration,” Proc. Seventh Int’l Symp. Formal
Techniques in Real-Time and Fault-Tolerant Systems, Sept. 2002.

[35] T. Kuan, W.-B. See, and S.-J. Chen, “An Object-Oriented Real-Time
Framework and Development Environment,” Proc. OOPSLA ’95
Conf. Workshop 18, 1995.

[36] S. Kodase, S. Wang, and K.G. Shin, “Transforming Structural
Model to Runtime Model of Embedded Software with Real-Time
Constraints,” Proc. Design, Automation and Test in Europe Conf.,
pp. 170-175, Mar. 2003.

[37] L. Lavazza, “A Methodology for Formalizing Concepts Under-
lying the DESS Notation,” Software Development Process for
Real-Time Embedded Software Systems, EUREKA-ITEA project
D1.7.4, http://www.dess-itea.org, Dec. 2001.

[38] W.-S. Liao and P.-A. Hsiung, “FVP: A Formal Verification
Platform for SoC,” Proc. 16th IEEE Int’l SoC Conf., Sept. 2003.

[39] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real Time Environment,” J. ACM, vol. 20, pp. 46-
61, Jan. 1973.

[40] D. de Niz and R. Rajkumar, “Time Weaver: A Software-Through-
Models Framework for Embedded Real-Time Systems,” Proc. Int’l
Workshop Languages, Compilers, and Tools for Embedded Systems,
pp. 133-143, June 2003.

[41] M. Potkonjak and W. Wolf, “A Methodology and Algorithms for
the Design of Hard Real-Time Multitasking ASICs,” ACM Trans.
Design Automation of Electronic Systems, vol. 4, no. 4, pp. 430-459,
Oct. 1999.

[42] J.-P. Queille and J. Sifakis, “Specification and Verification of
Concurrent Systems in CESAR,” Proc. Int’l Symp. Programming,
1982.

[43] R. Ratner, E. Shapiro, H. Zeidler, S. Wahlstrom, C. Clark, and J.
Goldberg, “Design of a Fault-Tolerant Airborne Digital Compu-
ter,” Computational Requirements and Technology, vol. 2, SRI Final
Report, NASA Contract NAS1-10920, 1973.

[44] E.E. Roubtsova, J. van Katwijk, W.J. Toetenel, C. Pronk, and
R.C.M. de Rooij, “Specification of Real-Time Systems in UML,”
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 39,
no. 3, 2000.

[45] J. Rumbaugh, G. Booch, and I. Jacobson, The UML Reference Guide.
Addison Wesley Longman, 1999.

[46] J.A. Saldhana and S.M. Shatz, “UML Diagrams to Object Petri Net
Models: An Approach for Modeling and Analysis,” Proc. Int’l
Conf. Software Eng. and Knowledge Eng. (SEKE), pp. 103-110, July
2000.

[47] M. Samek, Practical Statecharts in C/C++ Quantum Programming for
Embedded Systems. CMP Books, 2002.

[48] D. Schmidt, “Applying Design Patterns and Frameworks to
Develop Object-Oriented Communication Software,” Handbook of
Programming Languages, vol. I 1997.

[49] W.-B. See and S.-J. Chen, “Object-Oriented Real-Time System
Framework,” Domain-Specific Application Frameworks, M.E. Fayad
and R.E. Johnson, eds., pp. 327-338, 2000.

[50] B. Selic, “Modeling Real-Time Distributed Software Systems,”
Proc. Fourth Int’l Workshop Parallel and Distributed Real-Time
Systems, pp. 11-18, 1996.

[51] B. Selic, “An Efficient Object-Oriented Variation of the Statecharts
Formalism for Distributed Real-Time Systems,” Proc. IFIP Conf.
Hardware Description Languages and Their Applications, 1993.

[52] B. Selic, G. Gullekan, and P.T. Ward, Real-Time Object Oriented
Modeling. John Wiley and Sons, 1994.

[53] T.-Y. Shen, “Assume-Guarantee Based Formal Verification of
Hierarchical Software Designs,” master’s thesis, Dept. of Compu-
ter Software and Information Eng., Nat’l Chung Cheng Univ., July
2003.

[54] D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of Dynami-
cally Reconfigurable Real-Time Software Using Port-Based Ob-
jects,” IEEE Trans. Software Eng., vol. 23, no. 12, Dec. 1997.

[55] F.-S. Su and P.-A. Hsiung, “Extended Quasi-Static Scheduling for
Formal Synthesis and Code Generation of Embedded Software,”
Proc. 10th IEEE/ACM Int’l Symp. Hardware/Software Codesign
(CODES ’02), pp. 211-216, May 2002.

[56] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 2002.

[57] J.M. Thompson, M.P.E. Heimdahl, and S.P. Miller, “Specification-
Based Prototyping for Embedded Systems,” Proc. Seventh ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 163-179, Sept.
1999.

[58] F. Wang and P.-A. Hsiung, “Efficient and User-Friendly Verifica-
tion,” IEEE Trans. Computers, vol. 51, no. 1, pp. 61-83, Jan. 2002.

[59] S. Wang, S. Kodase, and K.G. Shin, “Automating Embedded
Software Construction and Analysis with Design Models,” Proc.
Int’l Conf. Euro-uRapid, Dec. 2002.

[60] L.R. Welch, “A Metrics-Driven Approach for Utilizing Concur-
rency in Object-Oriented Real-Time Systems,” ACM OOPS
Messenger, vol. 7, pp. 70-77, Jan. 1996.

[61] M. Zulkernine and R.E. Seviora, “Assume-Guarantee Supervisor
for Concurrent Systems,” Proc. 15th Int’l Parallel and Distributed
Processing Symp., pp. 1552-1560, Apr. 2001.

HSIUNG ET AL.: VERTAF: AN APPLICATION FRAMEWORK FOR THE DESIGN AND VERIFICATION OF EMBEDDED REAL-TIME SOFTWARE 673

Pao-Ann Hsiung received the BS degree in
mathematics and the PhD degree in electrical
engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, ROC, in 1991 and 1996,
respectively. From 1993 to 1996, he was a
teaching assistant and system administrator in
the Department of Mathematics, National Tai-
wan University. From 1996 to 2000, he was a
postdoctoral researcher at the Institute of
Information Science, Academia Sinica, Taipei,

Taiwan, ROC. From February 2001 to July 2002, he was an assistant
professor in the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan, ROC.
He is currently an associate professor. He was the recipient of the 2001
ACM Taipei Chapter Kuo-Ting Li Young Researcher for his significant
contributions to design automation of electronic systems. This award is
given annually to only one person under the age of 36, conducting
research in Taiwan. Dr. Hsiung was also a recipient of the 2004 Young
Scholar Research Award given by National Chung Cheng University to
five young faculty members per year. He is on the editorial board of the
International Journal of Embedded Systems (Inderscience Publishers)
and has guest edited two special issues in 2004 and 2005 for that
journal. He has been on the program committee of and chaired several
international conferences. He has published more than 90 papers in
international journals and conferences. His main research interests
include: System-on-Chip (SoC) design and verification, embedded
software synthesis and verification, real-time system design and
verification, hardware-software codesign and coverification, and com-
ponent-based object-oriented application frameworks for real-time
embedded systems. He is a member of the IEEE.

Shang-Wei Lin received the BS degree in
management information system from National
Chung Cheng University, Chiayi, Taiwan, ROC,
in 2002. He is currently working toward the PhD
degree in the Department of Computer Science
and Information Engineering at National Chung
Cheng University, Chiayi, Taiwan, ROC. He is a
teaching and research assistant in the Depart-
ment of Computer Science and Information
Engineering at National Chung Cheng Univer-

sity. His research interests include formal verification, scheduling, and
object-oriented software synthesis.

Chih-Hao Tseng received the BS degree in
computer science and information engineering
from the National Taiwan University of Science
and Technology, Taipei, Taiwan, ROC, in 2003.
He is currently working toward the MS degree in
the Department of Computer Science and
Information Engineering at the National Chung
Cheng University. He is a teaching and research
assistant in the Department of Computer
Science and Information Engineering at the

National Chung Cheng University. His research interests include
object-oriented design techniques in system syntheses and hardware-
software codesign.

Trong-Yen Lee received the PhD degree in
electrical engineering from the National Taiwan
University, Taipei, Taiwan ROC, in 2001. Since
2002, he has been a member of the faculty in the
Department of Electronic Engineering, National
Taipei University of Technology, where he is
currently an assistant professor. His research
interests include the hardware-software code-
sign of embedded systems, SoC testing, and a
software synthesis tool on embedded systems.

Jih-Ming Fu received the BS degree in compu-
ter science from the Tamkang University, Taipei
County, Taiwan, ROC, in 1988, and the PhD
degree in electrical engineering from the Na-
tional Taiwan University, Taipei, Taiwan, ROC,
in 2001. Currently, he is an assistant professor
in the Department of Electronic Engineering,
Cheng Shiu University, Kaohsiung, Taiwan,
ROC. His main research interests include dis-
tributed real-time system framework, hardware-

software codesign and coverification, object-oriented design techniques
in system synthesis, embedded software synthesis and verification, and
real-time system design and verification.

Win-Bin See received the PhD degree in
electrical engineering from the National Taiwan
University, Taipei, Taiwan, ROC, in 2003. He is
currently with the Aerospace Industrial Develop-
ment Corporation, Taichung, Taiwan, ROC. His
main research interests include embedded
system software design, System-on-Chip (SoC)
harware-software codesign, object-oriented soft-
ware framework for embedded systems, system
and software engineering. He is a member of the

ACM, the IEEE, the IEEE Computer Society, and the IEEE Commu-
nication Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

