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Abstract

A formal synthesis method for complex real-time embed-
ded software is proposed in this work. Compared to previ-
ous work, our method not only synthesizes embedded soft-
ware with complex interrelated branching choices for ex-
ecution within a user-given memory bound, but also tries
to guarantee the satisfaction of local and global time con-
straints. Our proposed method called Timed Quasi-Static
Scheduling (TQSS) synthesizes real-time embedded soft-
ware code from a set of Time Complex-Choice Petri Nets.
The two most important issues in real-time embedded soft-
ware, namely memory and time constraints are both ele-
gantly and efficiently handled in TQSS. We show the fea-
sibility of our method through a master-slave role switch
application which is a part of the Bluetooth wireless com-
munication protocol.

1 Introduction

Current methods for the automatic synthesis of embed-
ded software mostly do not consider temporal constraints
[10, 11, 14, 15], which results in temporally infeasible
schedules and thus incorrect systems. To solve this prob-
lem, we are proposing a time-extension of extended quasi-
static scheduling [15], by generalizing the system model
and the synthesis and code-generation methods based on
formal synthesis techniques [7, 10, 11, 14].

Time constraints are classified into two categories: local
deadlines and global deadlines. A local deadline is imposed
on the execution of a partial task, whereas a global dead-
line is imposed on the execution of all tasks in a system
model [5, 9]. Two issues arise here: (1) How can the sat-
isfaction of a local deadline be guaranteed? (2) How can
a real-time embedded software be synthesized to satisfy all
global deadlines?

1This work was supported in part by a project grant NSC91-2213-E-
194-008 from the National Science Council, Taiwan.

Previous works on software synthesis were mainly based
on a subclass of the Petri net model (introduced later in Sec-
tion 3.1). We also adopt the Petri net model for software re-
quirements specification, but we remove restrictions from
previously used models. As a motivating example, con-
sider the Petri net model for part of an Autonomous Cruise
Controller (ACC) [6] depicted in Figure 1. There are two
sensors in ACC, one of which periodically senses the dis-
tance between a preceding vehicle and the vehicle in which
ACC is installed, and another periodically senses the speed
limit of the road on which the vehicle is currently moving.
Based on these sense data, there is a choice of decision on
whether to decelarate or accelerate the vehicle with ACC.
This choice is not a free one (as in Free-Choice Petri Nets
[14]), thus the software for such a system cannot be mod-
eled and synthesized by previous works [7, 14] which have
the Free-Choice restriction imposed on the system model.
Further, as can be observed from the figure, there are also
time constraints on the execution of each action such as ac-
celerate or decelarate, which cannot be synthesized by pre-
vious methods [7, 14, 15]. Thus, the example shows that we
need new system models and new methods for synthesizing
embedded software with time constraints.

The above-described non-free choices with time con-
straints appear often in many embedded systems, thus re-
moving the restriction significantly expands the domain of
applications that can be modeled and synthesized. How-
ever, with the enhancements in model expressiveness, syn-
thesis becomes more complicated. We propose an Timed
Quasi-Static Scheduling (TQSS) method for the synthe-
sis of real-time embedded software that are modeled us-
ing Time Complex-Choice Petri Nets (TCCPN). Details on
the TCCPN system model, our target problem, and the pro-
posed TQSS method will be described in Sections 3.1, 3.2,
and 3.3, respectively.

TQSS extends previously proposed quasi-static schedul-
ing (QSS) [14] by handling non-free choices (or complex
choices) that appear in TCCPN models. Further, TQSS also
ensures that limited embedded memory constraints and time
constraints are also satisfied. For feasible schedules, real-

Proceedings of the 16th International Conference on VLSI Design (VLSI’03) 
1063-9667/03 $17.00 © 2003 IEEE 



speed
limit

sensor

preceding vehicle
distance sensor

current speed
< speed limit

distance >
threshold

yes

no

no

yes

decelerate

accelerate

no speed
limit?

yes

no

[1, 3]

[2, 4]

[3, 5]

[2, 4]

[1, 1]

Figure 1. Time Complex-Choice Petri Net Model
for an Automatic Cruise Controller

time embedded software code is generated as a set of com-
municating POSIX threads, which may then be deployed for
execution by a real-time operating system. An application
example on a master/slave switch software driver for Blue-
toothwireless communication devices will illustrate the fea-
sibility and benefits of our proposed method.

The article is organized as follows. Section 2 gives some
previous work related to embedded software synthesis. Sec-
tion 3 formulates, models, and solves the embedded soft-
ware synthesis problem. Section 4 illustrates the proposed
problem solution through an application example. Section 5
concludes the article giving some future work.

2 Previous Work

Due to the importance of ensuring the correctness of em-
bedded software, formal synthesis has emerged as a pre-
cise and efficient method for designing software in control-
dominated and real-time embedded systems [5, 7, 14, 15].
Partial software synthesis was mainly carried out for com-
munication protocols [13], plant controllers [12], and real-
time schedulers [1] because they generally exhibited regu-
lar behaviors. Only recently has there been some work on
automatically generating software code for embedded sys-
tems [2, 11, 14], including commercial tools such as MetaH
from Honeywell. In the following, we will briefly survey
the existing works on the synthesis of real-time embedded
software, on which our work is based.

Lin [11] proposed an algorithm that generates a software
program from a concurrent process specification through in-
termediate Petri-Net representation. This approach is based
on the assumption that the Petri-Nets are safe, i.e., buffers
can store at most one data unit, which implies that it is
always schedulable. The proposed method applies quasi-
static scheduling to a set of safe Petri-Nets to produce a set

of corresponding state machines, which are then mapped
syntactically to the final software code.

A software synthesis method was proposed for a more
general Petri-Net framework by Sgroi et al. [14]. A quasi-
static scheduling algorithm was proposed for Free-Choice
Petri Nets (FCPN) [14]. A necessary and sufficient condi-
tion was given for a FCPN to be schedulable. Schedulability
was first tested for a FCPN and then a valid schedule gen-
erated by decomposing a FCPN into a set of Conflict-Free
(CF) components which were then individually and stati-
cally scheduled. Code was finally generated from the valid
schedule.

Later, Hsiung integrated quasi-static scheduling with
real-time scheduling to synthesize real-time embedded soft-
ware [7]. A synthesis method for soft real-time systems
was also proposed by Hsiung [8]. The free-choice restric-
tion was first removed by Su and Hsiung in their work [15]
on extended quasi-static scheduling. Recently, Gau and
Hsiung proposed a more integrated approach called time-
memory scheduling [5] based on reachability trees.

Balarin et al. [2] proposed a software synthesis proce-
dure for reactive embedded systems in the Codesign Fi-
nite State Machine (CFSM) [3] framework with the POLIS
hardware-software codesign tool [3]. This work cannot be
easily extended to other more general frameworks.

The work presented here extends two research results:
(1) Sgroi et al’s work [14]: by removing the free-choice
restriction on the Petri net model, and (2) Su and Hsi-
ung’s work [15]: by adding time constraints in the Petri
net model. Correspondingly, the work proposes a time-
extended scheduling method for the unrestricted model, and
implements a code generator that produces multithreaded
embedded software code in the C programming language.

3 Embedded Software Synthesis

Motivated by the Autonomous Cruise Controller exam-
ple (Fig. 1), the previous work described in Section 2 in-
cluding QSS [14], QSS with real-time scheduling [7], and
extended QSS [15] are all not adequate for synthesizing
real-world, time-constrained, complex embedded software,
because they either simply cannot be modeled or require a
great deal of work-around efforts. QSS synthesizes free-
choice Petri nets, which have free-choice restriction and no
time constraints. QSS with real-time scheduling synthe-
sizes free-choice Petri nets with time constraints, but the
free-choice restriction is still imposed. EQSS synthesizes
complex-choice Petri nets, which do not have free-choice
restriction, but also do not have time constraints. However,
our work in this article removes the free-choice restriction
as well as adds time constraints in the Petri net model.

In this work, we remove the free-choice restriction and
add time constraints in the system model by proposing
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Time Complex-Choice Petri Nets (TCCPN) as our system
model. Using TCCPN, software designers can model a
larger domain of real-time embedded applications by allow-
ing choice (branching) and concurrency to synchronize at
the same transition and each transition can be associated
with an execution time and a local deadline. For example,
in Fig. 1 when the preceding vehicle’s distance is greater
than a given threshold (the “yes” arc) and the current speed
of the vehicle with ACC is less than a detected speed limit
(the “yes” arc), then the vehicle should accelerate (choice
and concurrency synchronized at the accelerate transition),
between 2 to 4 time units.

An embedded software is specified as a set of TCCPNs,
which will be defined in Section 3.1. We will formulate
our target problem in Section 3.2 and describe our time-
extended QSS algorithm along with code generation in Sec-
tion 3.3.

3.1 System Model

We define TCCPN as follows, where N is the set of pos-
itive integers.

Definition 1 Time Complex-Choice Petri Nets (TCCPN)
A Time Complex-Choice Petri Net is a 5-tuple
(P, T, F,M0, τ), where:

• P is a finite set of places,

• T is a finite set of transitions, P ∪ T �= ∅, P ∩ T = ∅,
• F : (P × T ) ∪ (T × P ) → N is a weighted flow re-
lation between places and transitions, represented by
arcs, with the following characteristics: (1) Synchro-
nization at a transition is allowed between a branch
arc of a choice place and another independent con-
current arc, (2) Synchronization at a transition is not
allowed between two or more branch arcs of the same
choice place, and (3) A self-loop from a place back to
itself is allowed only if there is an initial token in one
of the places in the loop.

• M0 : P → N is the initial marking (assignment of
tokens to places), and

• τ : T → N × (N ∪ ∞), i.e., τ(t) = (α, β), where
t ∈ T , α is the earliest firing time (EFT), and β is
latest firing time (LFT). We will use the abbreviations
τα(t) and τβ(t) to denote EFT and LFT, respectively.

‖
Graphically, a TCCPN can be depicted as shown in

Fig. 1, where circles represent places, vertical bars repre-
sent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights
as defined by F . A place with more than one outgoing tran-
sition is called a choice place and the transitions are said to

be conflicting. For example, decelerate and accelerate are
conflicting transitions in Fig. 1.

3.2 Problem Formulation

A user specifies the requirements for an embedded soft-
ware by a set of TCCPNs. The problem we are trying to
solve here is to find a construction method by which a set
of TCCPNs can be made feasible to execute as a software
code, running under given limited memory space and time
constraints. The following is a formal definition of the real-
time embedded software synthesis problem.

Definition 2 Real-Time Embedded Software Synthesis
Given a set of TCCPNs, an upper-bound on available mem-
ory space, and a set of real-time constraints such as periods
and deadlines, a piece of real-time embedded software code
is to be generated such that (1) it can be executed on a sin-
gle processor, (2) it satisfies all the TCCPN requirements,
including local time constraints, (3) it uses memory no more
than the user-specified upper-bound, and (4) it satisfies all
real-time constraints, including periods and deadlines. ‖

There are mainly two issues in solving the above defined
problem, namely TCCPN scheduling and code generation.
The first issue is how to schedule all the TCCPN require-
ments onto a single processor, while obeying the local time
constraints and the global real-time constraints. The sec-
ond issue is how to generate uni-processor code so that the
multi-tasking behavior of a real-time embedded software is
still visible, thus increasing the ease of future maintenance.
Further, how can interrupt handling code be generated?

3.3 Synthesis Algorithm

For TCCPN scheduling, we propose a Timed Quasi-
Static Scheduling algorithm, which can handle complex-
choices and can satisfy time constraints specified in a set
of TCCPNs. For code generation, we propose a Code Gen-
eration with Multiple Threads method, which can generate
code such that the multi-tasking behavior of an embedded
software is still visible, thus increasing the ease of future
maintenance.

3.3.1 Timed Quasi-Static Scheduling

To handle complex choices and to satisfy time constraints
specified in a TCCPN, we propose the Timed Quasi-Static
Scheduling (TQSS) method. TQSS is based on the previ-
ously proposed QSS [14] and extended QSS [15] methods,
which make most scheduling decisions statically, leaving
only the data-dependent decisions to run-time.

As QSS cannot handle non-free choices, which we call
complex choices, thus extended QSS was proposed [15],
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Table 1. Timed Quasi Static Scheduling Algorithm

TQSS Schedule(S, µ, ψ)
S = {Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, . . . , n};
µ: integer; // maximum memory
ψ: real-time constraints; // periods, deadlines, etc.
{

while (C = Get CCS(S) �= NULL) { (1)
ExTable = Create Table(C); (2)
for each transition t ∈ C (3)

for each transition t′ ∈ C (4)
if (M Exclusive(t, t′))

ExTable[t, t′] = True; (5)
// Decompose CCS C into conflict-free subsets
D = {C}; // D is a power-set of C (6)
for each subset H ∈ D (7)

for each transition t ∈ H (8)
for each transition t′ ∈ H (9)

if (ExTable[t, t′] = True) { (10)
H ′ = Copy Set(H); (11)
Delete Trans(H, t′); (12)
Delete Trans(H ′, t); (13)
D = D ∪ H ′; } (14)

// Decompose TCCPN according to D
for each subset H ∈ D (15)

Decompose TCCPN(S, H); (16)
}
// Schedule all CF components
for each TCCPN Ai ∈ S (17)

for each conflict-free subnet X of Ai { (18)
Xs = Schedule(X, µ); (19)
if (Xs = NULL) return ERROR; (20)
else TQSSi = TQSSi ∪ Xs; } (21)

if (Check Sched(S, µ, ψ, TQSS1, . . .) == False)
return ERROR; (22)

Gen Code(S, µ, TQSS1, . . .); (23)
}

which can handle complex choices, but extended QSS still
could not synthesize software satisfying time constraints,
thus TQSS is proposed here. The details of our proposed
TQSS algorithm are as shown in Table 1. Given a set
of TCCPNs S = {Ai | Ai = (Pi, Ti, Fi,Mi0, τi), i =
1, 2, . . . , n}, a maximum bound on memory µ, and a set
of real-time constraints ψ such as periods and deadlines,
the algorithm finds and processes each set of complex
choice transitions (Step (1)), which is simply called Com-
plex Choice Set (CCS) and defined as follows.

Definition 3 Complex Choice Set (CCS)
Given a TCCPN Ai = (Pi, Ti, Fi,Mi0, τi), a subset of
transitions C ⊆ Ti is called a complex choice set if there
exists a sequence of the transitions such that each adjacent
pair of transitions has a common input place.

From Definition 3, we can see that a free-choice is a spe-
cial case of CCS. Thus, QSS and extended QSS are spe-
cial cases of TQSS. For each CCS, TQSS analyzes the mu-
tual exclusiveness of the transitions in that CCS and then
records their relations into an Exclusion Table (Steps (2)–
(5)). Based on the exclusion table, a CCS is decomposed
into two or more conflict-free subsets (Steps (6)–(14)).

Based on the CF subsets, a TCCPN is decomposed into
conflict-free components (subnets) (Steps (15)–(16)). The
CF components are not distinct decompositions as a tran-
sition may occur in more than one component. Starting
from an initial marking for each component, a finite com-
plete cycle is constructed, where a finite complete cycle is a
sequence of transition firings that returns the net to its ini-
tial marking. A CF component is said to be schedulable
(Step (19)) if a finite complete cycle can be found for it and
it is deadlock-free. Once all CF components of a TCCPN
are scheduled, a valid schedule for the TCCPN can be gen-
erated as a set of the finite complete cycles. The reason
why this set is a valid schedule is that since each compo-
nent always returns to its initial marking, no tokens can get
collected at any place. Satisfaction of memory bound is
checked by observing if the memory space represented by
the maximum number of tokens in any marking does not ex-
ceed the bound. After checking temporal schedulability of
all the schedules (Step (22)), real-time embedded software
code is generated (Step (23)), which will be discussed in the
following and in Section 3.3.2, respectively.

The procedure Check Sched() (Step (22)) ensures that
the following conditions are satisfied by the generated set
of schedules {TQSS1, . . .}: (1) Each transition t in each
of the schedules can be fired within its firing time interval
[τα(t), τβ(t)], (2) Each schedule of a TCCPN Ai can be
completed within the deadline di of that TCCPN, and (3)
The maximum amount of total memory used by each set of
concurrent schedules of all the TCCPNs is within the upper
bound of µ.

3.3.2 Code Generation with Multiple Threads

Based on the hardware resource configuration provided by a
designer, an embedded software code with multiple threads
is generated. Each source transition in a TCCPN represents
an input event. Corresponding to each source transition, a
P-thread is generated. Thus, the thread is activated when-
ever there is an incoming event represented by that source
transition. There are two sub-procedures in the code gen-
erator, namely Visit Trans() and Visit Place(), which call
each other in a recursive manner, thus visiting all transi-
tions and places and generating the corresponding code seg-
ments. A TCCPN transition represents a piece of user-given
code, and is simply generated as call t k;. Code gener-
ation begins by visiting the source transition, once for each

Proceedings of the 16th International Conference on VLSI Design (VLSI’03) 
1063-9667/03 $17.00 © 2003 IEEE 



of its successor places.

In both the sub-procedures Visit Trans() and
Visit Place(), a semaphore mutex is used for exclu-
sive access to the token num variable associated with a
place. This semaphore is required because two or more
concurrent threads may try to update the variable at the
same time by producing or consuming tokens, which might
result in inconsistencies. Based on the firing semantics
of a TCCPN, tokens are either consumed from an input
place or produced into an output place, upon the firing of
a transition. When visiting a choice place, a switch()
construct is generated. After all the codes in threads are
generated, a main procedure is generated, which creates all
the threads and passes control to the executing threads.

4 Application Example

We give an example to illustrate our proposed TQSS al-
gorithm and code generation procedures. It is an exam-
ple on a real-time embedded software for the master-slave
role switch between two wireless Bluetooth devices. In the
Bluetooth wireless communication protocol [4], a piconet is
formed of one master device and seven active slave devices.
In our TCCPN model of a Master/Slave (M/S) switch be-
tween two devices A and B, there are totally four Petri nets.
Host of device A as shown in Figure 2, Host Control / Link
Manager (HC/LM) of device A as shown in Figure 3, host
of device B similar to that for A, and HC/LM of device
B similar to that for A. Timings for the transitions are al-
located as follows. A Bluetooth device times out after 32
slots of 625µs each, which is totally 0.02 second. Thus in
our model, we take 0.01 second as one unit of time.

The proposed TQSS algorithm (Table 1), was applied to
the given system of four TCCPN. The results of schedul-
ing are given in Table 2. We observe that each of the
two HC/LM models has a CCS {t8, t9, t10}, which is de-
composed by TQSS into three subsets: {t8, t10}, {t9}, and
{t10}, because {t8, t9} and {t9, t10} are mutually exclusive
pairs of transitions. Further, given a deadline and period of
38 and 40, respectively, for the host model and a deadline
and period of both 40 for the HC/LM model, TQSS derived
that the system is schedulable under the earliest deadline
first scheduling policy. The last column in Table 2 gives the
best-case and worst-case execution times of each net sched-
ule.

There are totally six source transitions in the four TC-
CPN models of the M/S role switch. Thus, six threads were
generated to handle each of the six input events represented
by the source transitions. Due to page-limits, the generated
code structure is omitted.

Host_A

ACL_Connection

Initialize

Send

HA2LA_HCI_Switch_Role

Receive

LA2HA_HCI_Command_

status_event

Receive

LA2HA_HCI_Role_

change_event

End

[2,4]

[2,4]

[1,3]

[2,3]

[12,22]

[1,1]

Wait

[1,1]

t0

t1

t2

t4

t3

t5

t6

Figure 2. TCCPN model of Host A in Bluetooth
M/S switch

5 Conclusion

We have extended the expressiveness of previous sys-
tem models by allowing complex choices and by adding
time constraints in the Petri net specifications. We also ex-
tended the quasi-static scheduling algorithm to handle com-
plex choices and to satisfy time constraints. Further, we
proposed a multi-threaded code generation procedure for
a scheduled system of real-time embedded software spec-
ifications in Time Complex-Choice Petri Nets. Through a
real-world example on the master/slave role switch between
two wireless Bluetooth devices, we have shown the feasibil-
ity of our approach and the benefits obtained from broaden-
ing the possible class of systems that could be modeled and
scheduled for code generation.
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