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Abstract

The rapid escalation in complexity of real-time embed-
ded systems design has made embedded software an inte-
gral system part such that formal software synthesis has
become an indispensable design automation technique. The
current work takes one more step forward in this research
direction by proposing a formal synthesis method for com-
plex real-time embedded software. Compared to previous
work, our method not only synthesizes embedded software
with complex interrelated branching choices for execution
within a user-given memory bound, but also tries to guar-
antee the satisfaction of all user-given local and global time
constraints. Our proposed method called Time-Extended
Quasi-Static Scheduling (TEQSS) synthesizes real-time em-
bedded software code from a set of Time Complex-Choice
Petri Nets. The two most important issues in real-time em-
bedded software, namely memory and time constraints are
both elegantly and efficiently handled by TEQSS. We show
the feasibility of our method through a master-slave role
switch application which is a part of the Bluetooth wireless
communication protocol.

Keywords: real-time embedded software, Time
Complex-Choice Petri Nets, time-extended quasi-static
scheduling, code generation

1 Introduction

Embedded systems must interact with humans and with
other embedded systems installed in a larger system. In
general, these interactions are temporally constrained, or in
other words, embedded systems are also intrinsically real-

1This work was supported in part by a project grant NSC91-2213-E-
194-008 from the National Science Council, Taiwan.

time systems. For example, an embedded system must often
react to a button-push within 0.1 second, otherwise a user
will push the button a second time, thinking that it is mal-
functioning. On the contrary, most current methods for the
automatic synthesis of embedded software do not consider
temporal constraints [15, 16, 20, 21], which results in tem-
porally infeasible schedules and thus incorrect systems. To
solve this problem, we are proposing a time-extension of
extended quasi-static scheduling [21], by generalizing the
system model and the synthesis and code-generation meth-
ods.

Software now accounts for more than 70% of embed-
ded system functions. Software has enhanced the acces-
sibility, testability, and flexibility of embedded systems,
but along with these advantages the inherent complexity
of software often introduces design errors that increase
maintenance costs. To ensure the correctness of software
designs in an embedded system, formal methods are be-
ing adopted successfully for embedded software design
[5, 9, 10, 12, 15, 16, 20].

Temporal correctness of a system is often formulated
in terms of deadlines for certain jobs, that are either spo-
radic or periodic. Basically, we classify time constraints
into two categories: local deadlines and global deadlines. A
local deadline is imposed on the execution of a partial task,
whereas a global deadline is imposed on the execution of
all tasks in a system model [6, 14]. Correspondingly, two
issues arise here: (1) How can the satisfaction of a local
deadline be guaranteed? (2) How can a real-time embed-
ded software be synthesized to satisfy all global deadlines?
Before discussing how these problems are to be solved, we
will give a motivating example along with a system model.

The functions that an embedded software is required to
perform are generally specified as a set of communicat-
ing concurrent tasks, where each task is a sequential pro-
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cess. Since Petri nets (introduced later in Section 3.1) are
a semantically precise model for several desirable common
system properties such as concurrency, branching, synchro-
nization, and mutual exclusion, previous works on software
synthesis were mainly based on a subclass of the Petri net
model. We also adopt the Petri net model for software re-
quirements specification, but we remove restrictions from
previously used models. As a motivating example, con-
sider the Petri net model for part of an Autonomous Cruise
Controller (ACC) [7] depicted in Figure 1. There are two
sensors in ACC, one of which periodically senses the dis-
tance between a preceding vehicle and the vehicle in which
ACC is installed, and another periodically senses the speed
limit of the road on which the vehicle is currently moving.
Based on these sense data, there is a choice of decision on
whether to decelarate or accelerate the vehicle with ACC.
This choice is not a free one (as in Free-Choice Petri Nets
[20]), thus the software for such a system cannot be mod-
eled and synthesized by previous works [12, 20] which have
the Free-Choice restriction imposed on the system model.
Further, as can be observed from the figure, there are also
time constraints on the execution of each action such as ac-
celerate or decelarate, which cannot be synthesized by pre-
vious methods [12, 20, 21]. Thus, the example shows that
we need new system models and new methods for synthe-
sizing embedded software with time constraints.

The above-described non-free choices with time con-
straints appear often in many embedded systems, thus re-
moving the restriction significantly expands the domain of
applications that can be modeled and synthesized. How-
ever, with the enhancements in model expressiveness, syn-
thesis becomes more complicated. We propose an Time-
Extended Quasi-Static Scheduling (TEQSS) method for the
synthesis of real-time embedded software that are modeled
using Time Complex-Choice Petri Nets (TCCPN). Details
on the TCCPN system model, our target problem, and the
proposed TEQSS method will be described in Sections 3.1,
3.2, and 3.3, respectively.

TEQSS extends previously proposed quasi-static
scheduling (QSS) [20] by handling non-free choices (or
complex choices) that appear in TCCPN models. Further,
TEQSS also ensures that limited embedded memory con-
straints and time constraints are also satisfied. For feasible
schedules, real-time embedded software code is generated
as a set of communicating POSIX threads, which may
then be deployed for execution by a real-time operating
system. An application example on a master/slave switch
software driver for Bluetooth wireless communication
devices will illustrate the feasibility and benefits of our
proposed method.

The article is organized as follows. Section 2 gives some
previous work related to embedded software synthesis. Sec-
tion 3 formulates, models, and solves the embedded soft-

ware synthesis problem. Section 4 illustrates the proposed
problem solution through an application example. Section 5
concludes the article giving some future work.

2 Previous Work

Due to the importance of ensuring the correctness of em-
bedded software, formal synthesis has emerged as a pre-
cise and efficient method for designing software in control-
dominated and real-time embedded systems [6, 12, 20, 21].
In the past, a large number of efforts was directed towards
hardware synthesis and comparatively little attention paid to
software synthesis. Partial software synthesis was mainly
carried out for communication protocols [19], plant con-
trollers [18], and real-time schedulers [1] because they gen-
erally exhibited regular behaviors. Only recently has there
been some work on automatically generating software code
for embedded systems [2, 16, 20], including commercial
tools such as MetaH from Honeywell. In the following, we
will briefly survey the existing works on the synthesis of
real-time embedded software, on which our work is based.

Lin [16] proposed an algorithm that generates a software
program from a concurrent process specification through in-
termediate Petri-Net representation. This approach is based
on the assumption that the Petri-Nets are safe, i.e., buffers
can store at most one data unit, which implies that it is
always schedulable. The proposed method applies quasi-
static scheduling to a set of safe Petri-Nets to produce a set
of corresponding state machines, which are then mapped
syntactically to the final software code.

A software synthesis method was proposed for a more
general Petri-Net framework by Sgroi et al. [20]. A quasi-
static scheduling algorithm was proposed for Free-Choice
Petri Nets (FCPN) [20]. A necessary and sufficient condi-
tion was given for a FCPN to be schedulable. Schedulability
was first tested for a FCPN and then a valid schedule gen-
erated by decomposing a FCPN into a set of Conflict-Free
(CF) components which were then individually and stati-
cally scheduled. Code was finally generated from the valid
schedule.

Later, Hsiung integrated quasi-static scheduling with
real-time scheduling to synthesize real-time embedded soft-
ware [12]. A synthesis method for soft real-time systems
was also proposed by Hsiung [13]. The free-choice restric-
tion was first removed by Su and Hsiung in their work [21]
on extended quasi-static scheduling. Recently, Gau and
Hsiung proposed a more integrated approach called time-
memory scheduling [6] based on reachability trees.

Balarin et al. [2] proposed a software synthesis proce-
dure for reactive embedded systems in the Codesign Fi-
nite State Machine (CFSM) [3] framework with the POLIS
hardware-software codesign tool [3]. This work cannot be
easily extended to other more general frameworks.
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Figure 1. Time Complex-Choice Petri Net Model for an Automatic Cruise Controller

Besides synthesis of software, there are also some recent
work on the verification of software in an embedded system
such as the Schedule-Verify-Map method [9], the linear hy-
brid automata techniques [8, 10], and the mapping strategy
[5]. Recently, system parameters have also been taken into
consideration for real-time software synthesis [11].

The work presented here extends two research results:
(1) Sgroi et al’s work [20]: by removing the free-choice
restriction on the Petri net model, and (2) Su and Hsi-
ung’s work [21]: by adding time constraints in the Petri
net model. Correspondingly, the work proposes a time-
extended scheduling method for the unrestricted model, and
implements a code generator that produces multithreaded
embedded software code in the C programming language.

3 Embedded Software Synthesis

Motivated by the Autonomous Cruise Controller exam-
ple (Fig. 1), the previous work described in Section 2 in-
cluding QSS [20], QSS with real-time scheduling [12], and
extended QSS [21] are all not adequate for synthesizing
real-world, time-constrained, complex embedded software,
because they either simply cannot be modeled or require a
great deal of work-around efforts. QSS synthesizes free-
choice Petri nets, which have free-choice restriction and no
time constraints. QSS with real-time scheduling synthe-
sizes free-choice Petri nets with time constraints, but the
free-choice restriction is still imposed. EQSS synthesizes
complex-choice Petri nets, which do not have free-choice

restriction, but also do not have time constraints. However,
our work in this article removes the free-choice restriction
as well as adds time constraints in the Petri net model.

In this work, we remove the free-choice restriction and
add time constraints in the system model by proposing
Time Complex-Choice Petri Nets (TCCPN) as our system
model. Using TCCPN, software designers can model a
larger domain of real-time embedded applications by allow-
ing choice (branching) and concurrency to synchronize at
the same transition and each transition can be associated
with an execution time and a local deadline. For example,
in Fig. 1 when the preceding vehicle’s distance is greater
than a given threshold (the “yes” arc) and the current speed
of the vehicle with ACC is less than a detected speed limit
(the “yes” arc), then the vehicle should accelerate (choice
and concurrency synchronized at the accelerate transition),
between 2 to 4 time units.

An embedded software is specified as a set of TCCPNs,
which will be defined in Section 3.1. We will formulate
our target problem in Section 3.2 and describe our time-
extended QSS algorithm along with code generation in Sec-
tion 3.3.

3.1 System Model

We define TCCPN as follows, where N is the set of pos-
itive integers.

Definition 1 Time Complex-Choice Petri Nets (TCCPN)
A Time Complex-Choice Petri Net is a 4-tuple
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(P, T, F, M0, τ), where:

• P is a finite set of places,

• T is a finite set of transitions, P ∪T �= ∅, and P ∩T =
∅,

• F : (P×T )∪(T×P ) → N is a weighted flow relation
between places and transitions, represented by arcs,
where N is a set of nonnegative integers. The flow
relation has the following characteristics:

– Synchronization at a transition is allowed be-
tween a branch arc of a choice place and another
independent concurrent arc.

– Synchronization at a transition is not allowed
between two or more branch arcs of the same
choice place.

– A self-loop from a place back to itself is allowed
only if there is an initial token in one of the places
in the loop.

• M0 : P → N is the initial marking (assignment of
tokens to places), and

• τ : T → N × (N ∪ ∞), i.e., τ(t) = (α, β), where
t ∈ T , α is the earliest firing time (EFT), and β is
latest firing time (LFT). We will use the abbreviations
τα(t) and τβ(t) to denote EFT and LFT, respectively.

‖

Graphically, a TCCPN can be depicted as shown in
Fig. 1, where circles represent places, vertical bars repre-
sent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights
as defined by F . Here, F (x, y) > 0 implies there is an arc
from x to y with a weight of F (x, y), where x and y can be
a place or a transition. Conflicts are allowed in a TCCPN,
where a conflict occurs when there is a token in a place with
more than one outgoing arc such that only one enabled tran-
sition can fire, thus consuming the token and disabling all
other transitions. The transitions are called conflicting and
the place with the token is also called a choice place. For ex-
ample, decelerate and accelerate are conflicting transitions
in Fig. 1.

Intuitions for the characteristics of the flow relation in a
TCCPN, as given in Definition 1, are as follows. First, un-
like FCPN, confusions are also allowed in TCCPN, where a
confusion is a result of synchronization between an arc of a
choice place and another independently concurrent arc. For
example, the accelerate transition in Fig. 1 is such a syn-
chronization. Second, synchronization is not allowed be-
tween two or more arcs of the same choice place because
arcs from a choice place represent (un)conditional branch-
ing, thus synchronizing them would amount to executing
both branches, which conflicts with the original definition

of a choice place (only one succeeding enabled transition is
executed). Third, at least one place occurring in a loop of
a TCCPN should have an initial token because our TEQSS
scheduling method requires a TCCPN to return to its ini-
tial marking after a finite complete cycle of markings. This
is basically not a restriction as can be seen from most real-
world system models because a loop without an initial token
would result in two unrealistic situations: (1) loop triggered
externally resulting in accumulation of infinite number of
tokens in the loop, and (2) loop is never triggered.

Semantically, the behavior of a TCCPN is given by a
sequence of markings, where a marking is an assignment
of tokens to places. Formally, a marking is a vector M =
〈m1, m2, . . . , m|P |〉, where mi is the non-negative number
of tokens in place pi ∈ P . Starting from an initial marking
M0, a TCCPN may transit to another marking through the
firing of an enabled transition and re-assignment of tokens.
A transition is said to be enabled when all its input places
have the required number of colored tokens for the required
amount of time, where the required number of colored to-
kens is the weight as defined by the flow relation F and the
required amount of time is the earliest firing time α as de-
fined by τ . An enabled transition need not necessarily fire.
But upon firing, the required number of tokens are removed
from all the input places and the specified number of tokens
are placed in the output places, where the specified number
of tokens is that specified by the flow relation F on the out-
going arcs from the transition. An enabled transition may
not fire later than its latest firing time β.

3.2 Problem Formulation

A user specifies the requirements for an embedded soft-
ware by a set of TCCPNs. The problem we are trying to
solve here is to find a construction method by which a set
of TCCPNs can be made feasible to execute as a software
code, running under given limited memory space and time
constraints. The following is a formal definition of the real-
time embedded software synthesis problem.

Definition 2 Real-Time Embedded Software Synthesis
Given a set of TCCPNs, an upper-bound on available mem-
ory space, and a set of real-time constraints such as periods
and deadlines, a piece of real-time embedded software code
is to be generated such that (1) it can be executed on a sin-
gle processor, (2) it satisfies all the TCCPN requirements,
including local time constraints, (3) it uses memory no more
than the user-specified upper-bound, and (4) it satisfies all
the real-time constraints, including periods and deadlines.

‖
There are mainly two issues in solving the above de-

fined real-time embedded software synthesis problem as de-
scribed in the following.
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• TCCPN Scheduling: The first issue is how to sched-
ule all the TCCPN requirements onto a single pro-
cessor, while obeying the local time constraints and
the global real-time constraints. Due to the complex-
choice and time characteristics of TCCPN, generation
of conflict-free components and scheduling are more
intricate than that in QSS and extended QSS.

• Code Generation: The second issue is how to gener-
ate uni-processor code so that the multi-tasking behav-
ior of a real-time embedded software is still visible,
thus increasing the ease of future maintenance. Fur-
ther, how can interrupt handling code be generated?

3.3 Synthesis Algorithm

As formulated in Definition 2 and described in Sec-
tion 3.2, there are two objectives for solving the embed-
ded software synthesis problem, namely scheduling of TC-
CPN requirements on a single processor and real-time em-
bedded software code generation. For TCCPN scheduling,
we propose a Time-Extended Quasi-Static Scheduling algo-
rithm, which can handle complex-choices and can satisfy
time constraints specified in a set of TCCPNs. For code
generation, we propose a Code Generation with Multiple
Threads method, which can generate code such that the
multi-tasking behavior of an embedded software is still vis-
ible, thus increasing the ease of future maintenance.

3.3.1 Time-Extended Quasi-Static Scheduling

To handle complex choices and to satisfy time constraints
specified in a TCCPN, we propose the Time-Extended
Quasi-Static Scheduling (TEQSS) method. TEQSS is based
on the previously proposed QSS and extended QSS meth-
ods, which make most scheduling decisions statically, leav-
ing only the data-dependent decisions to run-time. Basi-
cally, QSS work as follows [21, 20]. Whenever a choice
place is encountered, a T-allocation selects one of the en-
abled conflicting transition for execution, thus disabling all
other conflicting transitions. The T-allocation is performed
for each conflicting transition. Then, a T-reduction actu-
ally eliminates all the disabled conflicting transition from a
T-allocation, including all successor places and transitions
that are no longer triggerable. Intuitively, each T-reduction
is a possible computation behavior of the net, which is then
scheduled independently from the other T-reductions. If all
T-reductions can be scheduled, then the system is declared
schedulable and valid schedules generated, which is used
for code generation. The generated code ensures that the
number of tasks is minimal, that is, it is the same as the
number of source transitions with independent firing rates,
where a source transition is one without any incoming place
thus represents a system input event. Two source transitions

are said to have independent firing rates if the rates at which
they fire are not related in any way.

Table 1. Time-Extended Quasi Static Algorithm

TEQSS Schedule(S,µ, ψ)
S = {Ai | Ai = (Pi, Ti, Fi,Mi0, τi), i = 1, 2, . . . , n};
µ: integer; // maximum memory
ψ: real-time constraints; // periods, deadlines, etc.
{

while (C = Get CCS(S) �= NULL) { (1)
ExTable = Create Table(C); (2)
for each transition t ∈ C (3)

for each transition t′ ∈ C (4)
if (M Exclusive(t, t′))

ExTable[t, t′] = True; (5)
// Decompose CCS C into conflict-free subsets
D = {C}; // D is a power-set of C (6)
for each subset H ∈ D (7)

for each transition t ∈ H (8)
for each transition t′ ∈ H (9)

if (ExTable[t, t′] = True) { (10)
H ′ = Copy Set(H); (11)
Delete Trans(H, t′); (12)
Delete Trans(H ′, t); (13)
D = D ∪H ′; } (14)

// Decompose TCCPN according to D
for each subset H ∈ D (15)

Decompose TCCPN(S,H); (16)
}
// Schedule all CF components
for each TCCPN Ai ∈ S (17)

for each conflict-free subnet X of Ai { (18)
Xs = Schedule(X,µ); (19)
if (Xs = NULL) return ERROR; (20)
else TEQSSi = TEQSSi ∪Xs; } (21)

if (Check Sched(S,µ, ψ, TEQSS1, . . .) == False)
return ERROR; (22)

Gen Code(S, µ, TEQSS1, . . .); (23)
}

As QSS cannot handle non-free choices, which we call
complex choices, thus extended QSS was proposed [21],
which can handle complex choices, but extended QSS still
could not synthesize software satisfying time constraints,
thus TEQSS is proposed here. The details of our proposed
TEQSS algorithm are as shown in Table 1. Given a set
of TCCPNs S = {Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i =
1, 2, . . . , n}, a maximum bound on memory µ, and a set
of real-time constraints psi such as periods and deadlines,
the algorithm finds and processes each set of complex
choice transitions (Step (1)), which is simply called Com-
plex Choice Set (CCS) and defined as follows.

Definition 3 Complex Choice Set (CCS)
Given a TCCPN Ai = (Pi, Ti, Fi, Mi0, τi), a subset of
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transitions C ⊆ Ti is called a complex choice set if there
exists a sequence of the transitions such that each adjacent
pair of transitions has a common input place.

From Definition 3, we can see that a free-choice is a spe-
cial case of CCS. Thus, QSS and extended are special cases
of TEQSS. For each CCS, TEQSS analyzes the mutual ex-
clusiveness of the transitions in that CCS and then records
their relations into an Exclusion Table (Steps (2)–(5)). Two
complex-choice transitions are said to be mutually exclu-
sive if the firing of any one of the two transitions disables
the other transition. The (i, j) element of an exclusion table
can take values True or False, where True means the ith and
the jth transitions are mutually exclusive, and False means
not mutually exclusive.

Based on the exclusion table, a CCS is decomposed into
two or more conflict-free (CF) subsets, which are sets of
transitions that do not have any conflicts, neither free-choice
nor complex-choice. The decomposition is done as follows
(Steps (6)–(14)).

• For each pair of mutually exclusive transitions t, t′, do
the following.

• Make a copy H ′ of the CCS H (Step (11)),

• Delete t′ from H (Step (12)), and

• Delete t from H ′ (Step (13)).

Based on the CF subsets, a TCCPN is decomposed into
conflict-free components (subnets) (Steps (15)–(16)). The
CF components are not distinct decompositions as a tran-
sition may occur in more than one component. Starting
from an initial marking for each component, a finite com-
plete cycle is constructed, where a finite complete cycle is a
sequence of transition firings that returns the net to its ini-
tial marking. A CF component is said to be schedulable
(Step (19)) if a finite complete cycle can be found for it and
it is deadlock-free. Once all CF components of a TCCPN
are scheduled, a valid schedule for the TCCPN can be gen-
erated as a set of the finite complete cycles. The reason
why this set is a valid schedule is that since each compo-
nent always returns to its initial marking, no tokens can get
collected at any place. Satisfaction of memory bound is
checked by observing if the memory space represented by
the maximum number of tokens in any marking does not ex-
ceed the bound. Here, each token represents some amount
of buffer space (i.e., memory) required after a computation
(transition firing). Hence, the total amount of actual mem-
ory required is the memory space represented by the max-
imum total number of tokens that can get collected at all
the places in a marking during its transition from the initial
marking back to its initial marking. After checking tempo-
ral schedulability of all the schedules (Step (22)), real-time

embedded software code is generated (Step (23)), which
will be discussed in the following and in Section 3.3.2, re-
spectively.

The procedure Check Sched() (Step (22)), which is de-
tailed in Table 2, ensures that the following conditions are
satisfied by the generated set of schedules {TEQSS1, . . .}.

• Transition Deadline: Each transition t in each of the
schedules can be fired within its firing time interval
[τα(t), τβ(t)],

• TCCPN Deadline: Each schedule of a TCCPN Ai can
be completed within the deadline di of that TCCPN,
and

• Memory Usage: The maximum amount of total mem-
ory used by each set of concurrent schedules of all the
TCCPNs is within the upper bound of µ.

From the above three conditions we can observe that due
to the complexity of local and global time constraints, mere
application of real-time scheduling does not suffice to solve
this problem. For instance, suppose a task is executing in
one of its schedules, and another task wants to preempt the
first task, but the first task cannot be preempted at any ran-
dom point in time. This restriction comes from the basic
assumption that a subtask (as represented by the firing of a
transition) cannot be preempted. To solve this issue, we pro-
pose a schedulability check algorithm as given in Table 2,
which in turn redefines schedulability in terms of real-time
scheduling.

In Steps (1) and (2) of Table 2, from all the generated
schedules {TEQSS1, . . .}, system schedules are generated
from the composition of net schedules as follows:

1. One schedule is selected from each TEQSSi, i ≥ 1.
Each one of the schedule is called a net schedule.

2. The selected set of net schedules is checked for feasi-
bility, where a set of schedules is feasible if the sched-
ules can be executed concurrently. If feasible, the set
of net schedules is called a system schedule.

3. Repeat the above two steps as long as a distinct set of
schedules can be selected and tested for feasibility.

For each transition in a net schedule (Step (3)), we first
find its concurrent set of transitions and then test that set
for schedulability. The procedure Find Conc Trans(ti) in
Step (4) of Table 2 constructs a set Conc(ti) of transitions
which can be concurrently executed with a given transition
ti, after all preceding transitions have been scheduled and
executed. This set Conc(ti) of transitions is then tested for
schedulability as follows (Schedulable() procedure in Step
(5)).
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Table 2. Schedulability Check Algorithm

Check Sched(S,µ, ψ, TEQSS1, . . .)
S = {Ai | Ai = (Pi, Ti, Fi,Mi0, τi), i = 1, 2, . . . , n};
µ: integer; // maximum memory
ψ: real-time constraints; // periods, deadlines, etc.
TEQSS1, . . .: TEQSS schedules
{

for each system schedule Y { (1)
for each net schedule Xs ∈ Y { (2)

for each transition ti ∈ Xs { (3)
Conc(ti) = Find Conc Trans(ti); (4)
if (Schedulable(Conc(ti)) == False)

return Trans Deadline Violated(ti); (5)
}
if (WCET(Xs) > Deadline(ψ,As))

return TCCPN Deadline Violated(Xs); (6)
}
if (Max Mem(Y ) > µ)

return Memory Bound Violated(Y ); (7)
}
return True; (8)

}

1. A scheduling policy such as rate-monotonic schedul-
ing or earliest deadline first [17] is selected,

2. A total system time is maintained, which starts from 0
and gradually increments upon time elapse,

3. It is assumed that the total system time has reached
a stage where all predecessor transitions of the tran-
sitions in Conc(ti) have been scheduled and executed
using the selected policy from the first step.

4. Now, Conc(ti) is said to be schedulable if all the transi-
tions can be scheduled by whatever scheduling policy
was chosen in the first step.

5. Time is allowed to elapse and transitions from Conc(ti)
are scheduled as long as no new transitions are en-
abled.

6. If a new transition is enabled, goto to Step (3).

In Step (6) of Table 2, the procedure WCET() checks if
the worst case execution time of a net schedule exceeds the
deadline of a TCCPN with which the schedule is associated.
In Step (7), the procedure Max Mem() checks if the max-
imum memory utilized by a system schedule exceeds the
maximum memory bound µ given by a user. Due to page-
limit, details of these two procedures are omitted here.

3.3.2 Code Generation with Multiple Threads

In contrast to the conventional single-threaded embedded
software, we propose to generate embedded software with

multiple threads, which can be processed for dispatch by
a real-time operating system. Our rationalizations are as
follows:

• With advances in technology, the computing power of
microprocessors in an embedded system has increased
to a stage where fairly complex software can be exe-
cuted.

• Due to the great variety of user needs such as inter-
active interfacing, networking, and others, embedded
software needs some level of concurrency and low
context-switching overhead.

• A multi-threaded software architecture preserves the
user-perceivable concurrencies among tasks, such that
future maintenance becomes easier.

The procedure for code generation with multiple threads
is given in Table 3. Each source transition in a TCCPN
represents an input event. Corresponding to each source
transition, a P-thread is generated (Steps (1), (2)). Thus,
the thread is activated whenever there is an incoming event
represented by that source transition. There are two sub-
procedures in the code generator, namely Visit Trans() and
Visit Place(), which call each other in a recursive manner,
thus visiting all transitions and places and generating the
corresponding code segments. A TCCPN transition repre-
sents a piece of user-given code, and is simply generated
as call t k; as in Step (3). Code generation begins by
visiting the source transition, once for each of its successor
places (Steps (4), (5)).

In both the sub-procedures Visit Trans() (Steps (1)–(3))
and Visit Place() (Steps (6)–(8)), a semaphore mutex is
used for exclusive access to the token num variable as-
sociated with a place. This semaphore is required because
two or more concurrent threads may try to update the vari-
able at the same time by producing or consuming tokens,
which might result in inconsistencies. Based on the firing
semantics of a TCCPN, tokens are either consumed from an
input place or produced into an output place, upon the firing
of a transition. When visiting a choice place, a switch()
construct is generated as in Step (3).

After all the codes in threads are generated, a main pro-
cedure is generated, which creates all the threads and passes
control to the executing threads.

4 Application Example

We give an example to illustrate our proposed TEQSS
algorithm and code generation procedures. It is an exam-
ple on a real-time embedded software for the master-slave
role switch between two wireless Bluetooth devices. In the
Bluetooth wireless communication protocol [4], a piconet is
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Table 3. Code Generation Algorithm for TEQSS

Generate Code(S, µ, TEQSS1, TEQSS2, . . . , TEQSSn)
S = {Ai | Ai = (Pi, Ti, Fi,Mi0), i = 1, 2, . . . , n};
µ: integer; // Maximum memory
TEQSS1, . . . , TEQSSn: sets of schedules
{

for each source transition tk ∈ ⋃
i
Ti do { (1)

Tk = Create Thread(tk); (2)
output(Tk , "call t k;"); (3)
for each successor place p of tk (4)

Visit Trans(TEQSSk, Tk, tk, p); (5)
}
Create Main(); (6)

}
Visit Trans(TEQSSk, Tk, tk, p){

output(Tk , "mutexs lock(&mutex);"); (1)
output(Tk , "p.token num += weight[t k, p];"); (2)
output(Tk , "mutexs unlock(&mutex);"); (3)
Visit Place(TEQSSk, Tk, p); (4)

}
Visit Place(TEQSSk, Tk, p){

if(Visited(p) = True) return; (1)
if(Is Choice Place(p)=True) (2)

output(Tk , "switch (p) {"); (3)
for each successor transition t′ of p (4)

if(Enabled(TEQSSk, t
′)) { (5)

output(Tk , "mutexs lock(&mutex);"); (6)
output(Tk ,"p.token num-=weight[p,t’];"); (7)
output(Tk , "mutexs unlock(&mutex);"); (8)
output(Tk , "call t’;"); (9)
for each successor place p′ of t′ { (10)

Visit Trans(TEQSSk, Tk, t
′, p′); } (11)

output(Tk , "break;"); } (12)
output(Tk , "}"); (13)

}

formed of one master device and seven active slave devices.
As described in the following, there are three situations in
which a master device and a slave device would attempt to
perform a Master/Slave (M/S) role switch. First, a device
may want to join an existing piconet thus it will have to as-
sume the master role, requiring a role switch with the orig-
inal master. Second, a slave device sets up a new piconet
with the original master as its slave. Third, a slave device
takes the role of master of the original piconet. Due to wire-
less device mobility, M/S role switches are quite frequent
and are accomplished by exchanging some commands be-
tween the two devices at the host control and link manager
layers and a time-division duplex switch at the baseband
layer.

In our TCCPN model of an M/S switch between two de-

vices A and B, there are totally four Petri nets as follows.
Host of device A as shown in Figure 2, Host Control / Link
Manager (HC/LM) of device A as shown in Figure 3, host
of device B similar to that for A, and HC/LM of device
B similar to that for A. Timings for the transitions are al-
located as follows. A Bluetooth device times out after 32
slots of 625µs each, which is totally 0.02 second. Thus in
our model, we take 0.01 second as one unit of time.

Host_A

ACL_Connection

Initialize

Send

HA2LA_HCI_Switch_Role

Receive

LA2HA_HCI_Command_

status_event

Receive

LA2HA_HCI_Role_

change_event

End

[2,4]

[2,4]

[1,3]

[2,3]

[12,22]

[1,1]

Wait

[1,1]

t0

t1

t2

t4

t3

t5

t6

Figure 2. TCCPNmodel of HostA in Bluetooth
M/S switch

The proposed TEQSS algorithm (Table 1), was applied
to the given system of four TCCPN. The results of schedul-
ing are given in Table 4. We observe that each of the two
HC/LM models has a CCS {t8, t9, t10}, which is decom-
posed by TEQSS into three subsets: {t8, t10}, {t9}, and
{t10}, because {t8, t9} and {t9, t10} are mutually exclusive
pairs of transitions. Further, given a deadline and period of
38 and 40, respectively, for the host model and a deadline
and period of both 40 for the HC/LM model, TEQSS de-
rived that the system is schedulable under the earliest dead-
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HC/LM_A

Initialize

ACL_Connection

End

Receive

HA2LA_HCI_Switch_

Role

Receive

N2LA_LMP_Switch_req

Send

LA2HA_HCI_Command_

Status_Event

Send

LA2N_LMP_slot_offset_

sub2

Send

LA2N_LMP_Switch_req

Receive

N2LA_LMP_

Slot_offset_

sub1

Checking

NetWork

Send

LA2N

_LMP

_acce

pted

Send
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Receive
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1
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Send
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[2,5]

[2,5]

[3,5]

[3,5]

[1,2]
[3,5]

[1,1]

[2,5]

[2,3][2,3]

[1,2]

[1,1]

[1,1]

[1,2]
[1,1]

[2,5]

[3,5]

t0

t1

t2

t4
t5

t6

t7

t9

t10

t11

t12

t13

t14
t15

t16

t17

t19

t18

t20

t3

t8

Figure 3. TCCPN model of HC/LM A in Bluetooth M/S switch

line first scheduling policy. The last column in Table 4 gives
the best-case and worst-case execution times of each net
schedule.

There are totally six source transitions in the four TC-
CPN models of the M/S role switch. Thus, six threads were
generated to handle each of the six input events represented
by the source transitions. Due to page-limits, the generated
code structure is omitted.

5 Conclusion

We have extended the expressiveness of previous sys-
tem models by allowing complex choices and by adding
time constraints in the Petri net specifications. We also ex-
tended the quasi-static scheduling algorithm to handle com-

plex choices and to satisfy time constraints. Further, we
proposed a multi-threaded code generation procedure for
a scheduled system of real-time embedded software spec-
ifications in Time Complex-Choice Petri Nets. Through a
real-world example on the master/slave role switch between
two wireless Bluetooth devices, we have shown the feasibil-
ity of our approach and the benefits obtained from broaden-
ing the possible class of systems that could be modeled and
scheduled for code generation.
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