
Electronic Notes in Theoretical Computer Science 65 No. 6 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 20 pages

Formal Synthesis of Real-Time Embedded
Software by Time-Memory Scheduling of

Colored Time Petri Nets?

Pao-Ann Hsiung1 and Chuen-Hau Gau

Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi, Taiwan, ROC

Abstract

With the computerization of most daily-life human amenities such as home appliances, the
software in a real-time embedded system now accounts for as much as70% of a system
design. On one hand, this increase in software has made embedded systems more acces-
sible and easy to use, while on the other hand, it has also necessitated further research
on how a complex, real-time, embedded software can be designed automatically and cor-
rectly. Enhancing recent advances in this research, we propose aTime-Memory Scheduling
(TMS) method for formally synthesizing and automatically generating code for real-time
embedded software, using theColored Time Petri Netsmodel. Our method extends pre-
vious work in three ways: (1) by allowing the specification oftemporal constraintsin the
system description to modelreal-timebehaviors of software, (2) by allowing the specifi-
cation ofcolored tokensin the system description to model different memory usages by
data-types, and (3) by proposing an extended algorithm to schedule the enhanced system
model and generate static code. A real-time embedded software, which is specified by a
set of CTPN, is scheduled using TMS such that the schedules satisfy limited embedded
memory requirements and all real-time and task precedence constraints. Finally, a portable
embedded software program is generated in the C programming language using the valid
TMS schedules. The proposed method was implemented in Java so that it can be installed
in design prototypes for on-line code change in order to satisfy the dynamic needs of users.
Through a real-world example on the ATM Virtual Private Network server, we illustrate
the feasibility and advantages of the proposed TMS method for synthesizing embedded
real-time software.

Key words: real-time embedded software, colored time Petri nets,
quasi-static scheduling, code generation

? This work was partially supported by research project grant NSC-90-2215-E-194-009 from the
National Science Council, Taiwan, ROC.
1 Email: hpa@computer.org and URL:http://www.cs.ccu.edu.tw/ ∼pahsiung/

c©2002 Published by Elsevier Science B. V.

mailto:hpa@computer.org�
http://www.cs.ccu.edu.tw/~pahsiung/�

Hsiung and Gau

1 Introduction

With advances in electronic technology, it is now possible to embed a microproces-
sor in almost any electric appliance such as home appliances, internet appliances,
personal assistants, wearable computers, telecommunication gadgets, and trans-
portation facilities. Consequently, the number of embedded systems that a man
encounters in a typical day of his or her life has increased dramatically from a
few tens in the past to the order of hundreds in the recent few years. Moreover,
once an embedded system interacts with a human, there are temporal expectations
on its behavior, which may be a soft constraint (such as multimedia servers) or a
hard one (such as the braking system in a vehicle). Nowadays, most embedded
systems are alsoreal-timesystems, thus their design must also satisfy all real-time
requirements. With this motivation, we propose atime-memory schedulingmethod
to formally synthesize and automatically generate code for a real-time embedded
system.

A real-time embedded system is a computation unit, installed in a larger system
called environment, such that it helps the environment accomplish some dedicated
set of tasks with temporal and spatial constraints. In general, an embedded sys-
tem has both hardware and software parts. Hardware is fabricated as one or more
ASICs, ASIPs, or PLDs. Software is executed on one or more microprocessors,
with or without an operating system.Real-time embedded software(RTES) is a
piece of program code that must: (1) satisfy real-time constraints such as response
time, deadlines, and periods, and (2) execute within a specified size of memory
space. RTES communicates with the embedded hardware either through an inter-
face or through direct connections.

Following the above definition, there are two main issues in the design of RTES:

• Bounded Memory Execution: A processor cannot have infinite amount of mem-
ory space for the execution of any software process. This fact is even more
emphasized in an embedded system, which generally has only a few hundreds of
kilobytes memory installed.

• Real-Time Constraints: A processor may have to execute several concurrent
tasks with precedence and temporal constraints. Thus, an RTES is generally
composed of several concurrent, real-time, computation tasks.

In solution to the above two issues, a synthesis method for RTES must generate
program code that can be executed in a bounded amount of memory, while satisfy-
ing all given real-time constraints. The proposed solution consists of the following
two steps:

• Time-Memory Scheduling: A partial reachability tree is computed such that all
computations that violate either temporal or spatial constraints are pruned from
the tree. The resulting tree guarantees that, for all possible outcomes in a non-
deterministic data-dependent execution choice, the memory utilized for compu-
tation is always within limits and the execution of the software is periodic, that
is, it always returns to its initial state within its deadline constraints.

2

Hsiung and Gau

• Code Generation: The tree obtained after TMS represents a feasible computation
of a system and code can be generated for the schedule through a direct mapping
translation.

In this work, a formal synthesis method based onColored Time Petri Nets
(CTPN) is proposed, which employsTime-Memory Scheduling(TMS) for satisfy-
ing limited embedded memory restrictions and hard real-time constraints. Software
code is then generated from TMS schedules. The number of tasks in the software
code is minimized to improve efficiency and code-size. Finally, an application ex-
ample illustrates the feasibility and benefits of our proposed method.

This article is organized as follows. Section2 gives some previous work related
to RTES synthesis. Section3 formulates, models, and solves the RTES synthesis
problem. Section4 illustrates the proposed problem solution through an application
example. Section5 concludes the article giving some future work.

2 Previous Work

Currently, software synthesisis a hot topic of research in the field of hardware-
software codesign of embedded systems [10]. Previously, a large effort was di-
rected towards hardware synthesis and comparatively little attention paid to soft-
ware synthesis. Partial software synthesis was mainly carried out for communica-
tion protocols [18], plant controllers [17], and real-time schedulers [1] because they
generally exhibited regular behaviors. Only recently has there been some work on
automatically generating software code for embedded systems [2,16,21,22]. Ex-
cept for MetaH from Honeywell, no other automatic software synthesis method is
available forconcurrent embedded real-time software. In the following, we will
briefly survey the existing works on the synthesis of non real-time software, on
which our work is based.

Lin [16] proposed an algorithm that generates a software program from a con-
current process specification through intermediate Petri-Net representation. This
approach is based on the assumption that the Petri-Nets are safe,i.e., buffers can
store at most one data unit, which implies that it is always schedulable. The pro-
posed method appliesquasi-static schedulingto a set of safe Petri-Nets to produce
a set of corresponding state machines, which are then mapped syntactically to the
final software code. Later, Zhu and Lin [22] proposed a compositional version
of the synthesis method that reduced the generated code size and was thus more
efficient.

A quasi-static scheduling algorithm was proposed by Sgroi et al. for a class of
Petri nets calledFree-Choice Petri Nets(FCPN) [21]. A necessary and sufficient
condition was given for a set of FCPNs to be schedulable. Schedulability was first
checked for a FCPN and then a valid schedule generated by decomposing a FCPN
into a set ofConflict-Free(CF) components, which were then individually and
statically scheduled. Code was finally generated from the valid schedules. Based
on FCPN, Hsiung proposed an extended scheduling method that incorporated real-

3

Hsiung and Gau

time constraints into the synthesis procedure such that code could be generated for
hard real-time embedded systems [14]. It was later modified to synthesize code for
soft real-time embedded systems [15]. Both methods were still restricted by the
Free-Choice constraint on the system description model.

Cortadella et al. [7] proposed a reachability graph algorithm for a more general
class of Petri nets, which allowed unbounded FIFO channels between two multi-
rate communicating processes and synchronization-dependent control on multiple
ports. The input consisted of FlowC sources and the output was scheduled embed-
ded software code. No timing constraints were considered in the proposed algo-
rithm.

Balarin et al. [2] proposed a software synthesis procedure for reactive embedded
systems in theCodesign Finite State Machine(CFSM) [3] framework with the
POLIS hardware-software codesign tool [3]. This work cannot be easily extended
to other more general frameworks.

Besides synthesis of software, there are also some recent work on the verifica-
tion of software in an embedded system such as theSchedule-Verify-Mapmethod
[11], the linear hybrid automata techniques [9,12], and the mapping strategy [8].
Recently, system parameters have also been taken into consideration for software
synthesis [13].

Among the above related software synthesis work, either they have not consid-
eredreal-timeconstraints in their system model for embedded software synthesis
or their model was restricted in some way so that not all systems could be syn-
thesized. In contrast, our work focuses on how scheduled program code may be
generated forreal-time embedded softwarewithout any model restrictions.

3 Real-Time Embedded Software Synthesis

A formal synthesis method for real-time embedded software is presented in this
section. Its basic features are that the software code generated by the proposed
synthesis method executes inbounded memoryand satisfies all user-givenreal-
time constraints. Before going into the details of this method, the system model
and related terminologies are presented first.

A real-time embedded software is specified as a set ofColored Time Petri Nets
(CTPN), which are a combination ofColored Petri Nets(CPN) [19] andTime Petri
Nets(TPN) [4,5]. As mentioned in Section2, several variations of Petri nets (PN)
were used for the synthesis of embedded software [7,16,21], but somehow neither
the modeling of memory usages nor that of timing constraints were allowed explic-
itly by those models. Hence, we propose to use CTPN, which allows an explicit
modeling of both memory usages and timing constraints.

In the rest of this section, we first define CTPN, give a system model, its se-
mantics, and its scheduling. Then, we formulate our target problem. Finally, we
describe our proposed synthesis algorithm, along with code generation.

4

Hsiung and Gau

t2

t0

t3

t5

t1

t4

p0

p1

p2

p4

p3

� � � � �
� � � � �

[2, 5]

[1, ∞]

[1, 5]

[3, 6]

[7, 7]

[1, 2]

{(3, grey)}

{(2, black),
(1, grey)}

Fig. 1. A Colored Time Petri Net

3.1 System Model

A real-time embedded system is modeled as a set ofColored Time Petri Nets
(CTPN), which is defined as follows.

Definition 3.1 Colored Time Petri Nets(CTPN)
A Colored Time Petri Netis a 6-tuple(P, T, C, φ,M0, τ), where:

• P is a finite set of places,
• T is a finite set of transitions,P ∪ T 6= ∅, andP ∩ T = ∅,
• C is a set of colors, which is a property associated with each token,
• φ : (P × T) ∪ (T × P) → 2N×C is a weighted flow relation between places

and transitions, represented by arcs, such that each arc is associated with a set of
integer-color pairs{(k, c) | k ∈ N, c ∈ C}, whereN is the set of non-negative
integers,

• M0 : P → 2N×C is the initial marking (assignment of colored tokens to places),
and

• τ : T → N∗× (N∗ ∪∞), i.e.,τ(t) = (α, β), wheret ∈ T , α is theearliest firing
time(EFT), andβ is latest firing time(LFT). We will use the abbreviationsτα(t)
andτβ(t) to denote EFT and LFT, respectively. ‖
Graphically, a CTPN can be depicted as shown in Fig.1, where circles represent

places, vertical bars represent transitions, arrows represent arcs, dots represent to-
kens, different shadings of dots represent different colors, and sets of integer-color
pairs labeled over arcs represent the weights as defined byφ. Here,φ(x, y) 6= ∅
implies there is an arc fromx to y with a weight ofφ(x, y), wherex andy can be a
place or a transition. Bothconflictsandconfusionsare allowed in a CTPN. A con-
flict occurs when there is a token in a place with more than one outgoing arc such
that only one enabled transition can fire, thus consuming the token and disabling
all other transitions. For example,{t2, t3} and{t3, t4} are pairs of conflicting tran-
sitions in Fig.1. A confusionis a result of the coexistence of both concurrency and

5

Hsiung and Gau

conflict at the same transition. For example, there is a confusion at transitiont2 and
also att3 in Fig. 1.

Semantically, the behavior of a CTPN is given by a sequence ofmarkings,
where a marking is an assignment of colored tokens to places. Starting from an
initial markingM0, a CTPN may transit to another marking through the firing of an
enabled transition and re-assignment of tokens. A transition is said to beenabled
when all its input places have the required number of colored tokens for the required
amount of time, where the required number of colored tokens is the weight as
defined by the flow relationφ and the required amount of time is the earliest firing
time α as defined byτ . An enabled transition need not necessarily fire. But upon
firing, the required number of tokens are removed from all the input places and
the specified number of tokens are placed in the output places, where the specified
number of colored tokens is that specified by the flow relationφ on the outgoing
arcs from the transition. An enabled transition may not fire later than its latest firing
timeβ.

To formalize the above semantics description with notations, we give the fol-
lowing basic definitions. A set of integer-color pairs is defined as{(n, c) | n ∈
N, c ∈ C}, whereN is the set of non-negative integers andC is a set of colors. If
NC andNC ′ are two sets of integer-color pairs, then we sayNC ′ ≤ NC iff k′ ≤ k
for all (k′, c) ∈ NC ′, (k, c) ∈ NC, andk′ > 0. Intuitively, this means for each
type of color the number of tokens of that color inNC ′ is not greater than that in
NC. Further, forNC ′ ≤ NC, we can also define their differenceNC −NC ′ as a
setNC ′′ of integer-color pairs{(k′′, c) | k′′ = k−k′, ∀(k, c) ∈ NC, (k′, c) ∈ NC ′,
andk′ ≤ k}. Similarly, sum can also be defined for two sets of integer-color pairs.

Formally, a marking is a vectorM = 〈NC1, NC2, . . . , NC|P |〉, whereNCi ⊆
N× C is a set of integer-color pairs, representing the non-negative number of col-
ored tokens in placepi ∈ P . Associated with each markingM , there are two
attributes: (1) a time-stampψ(M), and (2) a memory-usageµ(M). A time-stamp
ψ(M) is defined as the time elapsed for a CTPN to change from the initial marking
M0 to the markingM . Here,ψ(M0) = 0. A memory-usageµ(M) is defined as the
amount of memory used by a CTPN when it is in the markingM .

A transitiont is said to be enabled at timeκ in a markingM with time-stamp
ψ(M) if the following conditions hold: (1)φ(pk, t) ≤ NCk, for all φ(pk, t) 6= ∅
andk ∈ {1, . . . , |P |}, and (2)κ−ψ(M) ≥ τα(t). When a transitiont fires in some
markingM , the state of a CTPN changes to a new markingM ′ = 〈NC ′

1, NC ′
2, . . . ,

NC ′
|P |〉, whereNC ′

k = NCk − φ(pk, t) + φ(t, pk) for all k ∈ {1, . . . , |P |}. The
firing of a transitiont at timeκ in a markingM with time-stampψ(M) is called a
valid firing if it satisfies the following two properties:

• Transition Deadline: τα(t) ≤ κ− ψ(M) ≤ τβ(t), and
• Memory Constraint: µ(M ′) ≤ µmax, whereM ′ is the marking obtained by firing

t in M andµmax is a user-specified maximum amount of memory available in a
real-time embedded system.

Some properties of Petri Nets (PN) can be defined as follows.Reachability:

6

Hsiung and Gau

a markingM ′ is reachable from a markingM if there exists a firing sequence
σ starting at markingM and finishing atM ′. Boundedness: a PN is said to be
k-bounded if the number of tokens in every place of a reachable marking does
not exceed a finite numberk. A safe PN is 1-bounded.Deadlock-free: a PN is
deadlock-free if there is at least one enabled transition in every reachable marking.
Liveness: a PN is live if for every reachable marking and every transitiont it is
possible to reach a marking that enablest.

3.2 Problem Formulation

A user specifies the requirements for the design of a real-time embedded software
by a set of CTPNs and an upper bound on memory use, which can be defined
formally as follows.

Definition 3.2 Real-Time Embedded Software(RTES)
A real-time embedded software systemS is defined as a set of CTPNs{A1, A2, . . . ,
An}, whereAi = (Pi, Ti, C, φi, M0i, τi), along with an integerµmax representing
the maximum amount of memory available in the system.

The problem we are trying to solve here is to find a construction method by
which a set of CTPNs can be made feasible to execute as a software code, running
under given limited memory space and satisfying all given real-time constraints
such as the earliest and latest firing times on each transition, system period, and
system deadline. The following is a formal definition of the RTES synthesis prob-
lem.

Definition 3.3 RTES Synthesis
Given the specification of a real-time embedded software systemS modeled by a
set of CTPNs{A1, A2, . . . , An}, whereAi = (Pi, Ti, C, φi,M0i, τi), and an upper-
boundµmax on memory use, and given a set of real-time constraints such as system
period and deadline for each CTPN, a software code is to be generated such that
(1) it can be executed on a single processor, (2) it uses memory less than or equal
to the upper-boundµmax, and (3) it satisfies all the transition EFT and LFT and the
set of real-time constraints.

3.3 Synthesis Algorithm

Before going into the details of the synthesis algorithm, some basic concepts and
definitions are required and described as follows. Given a CTPN, we definechoice
sets andexclusionsets to ensure full coverage of all transitions in a final feasible
schedule of the full CTPN.

Definition 3.4 Choice Set
Given a CTPNAi = (Pi, Ti, C, φi,M0i, τi), a set of transitionsH = {t0, t1, . . . , tm}
⊆ Ti is called achoice setif there exists a placep ∈ Pi such that there are arcs con-

7

Hsiung and Gau

nectingp with each of the transitions inH and with none inTi\H. Notationally,
∃p ∈ Pi, φ(p, tk) 6= ∅ for all k ∈ {0, 1, . . . ,m} andφ(p, t′) = ∅ for all t′ ∈ Ti\H.

Conflicting transitions as mentioned in Section3.1are a special case of a choice
set because sets of conflicting transitions are disjoint. However, choice sets are not
necessarily disjoint since a transition may belong to two or more choice sets. For
example, asynchronizationtransition between two places, each of which has a set
of more than one outgoing transitions, belong to two choice sets. When we merge
all non-disjoint choice sets into one set of transitions, it is called an exclusion set,
which is formally defined as follows.

Definition 3.5 Exclusion Set
Given a CTPNAi = (Pi, Ti, C, φi,M0i, τi), a set of transitionsH = {t0, t1, . . . , tm}
⊆ Ti is called anexclusion setif there exists a sequence of the transitions such that
each adjacent pair of transitions has a common input place.

From the above definition, we can observe that a choice set is a special case of
an exclusion set, an exclusion set is always connected, and two or more exclusion
sets are disjoint. Intuitively, an exclusion set represents all possible choices of
dependent computation (behavior) at a particular system state (CTPN marking).
Thus, in our scheduling algorithm to be presented later in this Section, we enforce
the fact that an exclusion set should be either completely enabled or completely
disabled at a marking before we accept the marking as a feasible state for the system
schedule. Partial enabling of an exclusion set will eventually result in a partial
system schedule.

Now, we introduce the notions of source transitions and independent tasks. A
transitiont is called asource transitionif φ(p, t) = ∅ for all placesp ∈ P , that is,
it has no input place. Physically, a source transition represents an uncontrollable
input event from the environment. Two source transitions are said to bedepen-
dentif they synchronize at some common reachable transition, where a transitiont
is said to be reachable from another transitiont′ if there exists a sequence of valid
transition firings from the firing oft to the enabling oft′. A set of source transitions
is defined asmaximalif it consists of all source transitions that are inter-dependent
and there is no other source transition in a CTPN that is dependent on any transition
in that set. For example, in Figure1, source transitionst0 andt1 are dependent be-
cause their corresponding computation runs eventually synchronize att3. Further,
a set of transitions constitute anindependent taskif they are all reachable from
some maximal set of dependent source transitions. In Figure1, the whole CTPN
constitutes one single independent task.

Given the above basic definitions and concepts on the CTPN model, we will
now formally present our synthesis algorithm. As introduced in Section1 and for-
mulated in Definition3.3, there are two objectives for an RTES synthesis algorithm,
namely bounded memory execution and satisfaction of real-time constraints. The
algorithm proposed here gives an integrated solution to the two issues, in the form
of aTime-Memory Schedulingstrategy.

8

Hsiung and Gau

Given a set of CTPNsS = {Ai | Ai = (Pi, Ti, C, φi,M0i, τi), i = 1, 2, . . . , n},
a maximum bound on memoryµmax, a set of periodsE = {πi | πi ∈ N, i =
1, 2, . . . , n}, whereπi is the period ofAi, a set of deadlinesD = {di | di ∈ N, i =
1, 2, . . . , n}, wheredi is the deadline ofAi, a software code is generated after the
following two phases:Time-Memory Scheduling(TMS) andCode Generation.

3.3.1 Time-Memory Scheduling
In Time-Memory Scheduling(TMS), valid software schedules are generated for a
real-time embedded system by creating a process for each independent task, which
consists of one or more dependent source transitions. Each process is a sequen-
tial schedule generated by creating a reachability tree with markings as nodes and
valid transition firings as edges. Several factors are considered when creating a
reachability tree such as the bound on maximum memory available, the period of
the CTPN in which an independent task belongs, and the corresponding deadline.
Each task can be assigned a priority such as execution frequency, thus we do not
allow preemption of a task while it is executing. This ensures that transition firing
intervals are obeyed according to the sequential schedule of a process.

The details of our proposed TMS algorithm is given in Table1. The given set
of CTPNs is first partitioned into independent tasks, as defined earlier (Step 1).
Each independent task is contained within a CTPN, whereas a CTPN may consists
of more than one independent task. Then, a reachability tree is generated for each
independent task by starting with the initial marking as the root node. Here, the
root node is in fact a projection of the CTPN initial marking onto the independent
task (Steps 2, 3, 4). Each node of the reachability tree represents a marking of
the independent task and each tree edge represents the valid firing of an enabled
transition. First, child nodes (1-step successor markings) are generated for the root
node (Spawn Child () in Step 6). Second, one of the child nodes of the root is
selected for traversal, where selection is based on an evaluation of memory and
time usages (SelectChild () in Step 7), as described later. Lastly, a reachability
tree is generated iteratively (Steps 8–28) until either the root node is marked and
thus code can be generated (Gen TMS Code() in Step 9) or all nodes have been
deleted (Step 8) and thus no feasible schedule exists.

In the generation of a reachability tree, amarkednode indicates that starting
from the marking represented by that node, there is a valid schedule. For each
current node (CNode) under consideration, either it is a complete schedule or not
(Step 24). If it is, then it is simply marked (Step 25) and its parent considered
as the current node (Step 26). If it is not a complete schedule, then a child node is
created (Spawn Child () in Step 27) for each of its 1-step successor marking, which
satisfies all constraints including:

• Transition Deadline: ψ(M ′)−ψ(M) + τα(t) ≤ τβ(t), where it is assumed thatt
is a transition which is enabled starting from markingM , represented by CNode,
at the time-stampψ(M), andt is continuously enabled until another markingM ′

with time-stampψ(M ′) is reached,

9

Hsiung and Gau

Table 1
Time-Memory Scheduling Algorithm

TM Schedule(S, µmax, E, D)
S = {Ai | Ai = (Pi, Ti, C, φi,M0i, τi), i = 1, 2, . . . , n};
integerµmax; // maximum memory
E = {πi | πi ∈ N, i = 1, 2, . . . , n}; // periods
D = {di | di ∈ N, i = 1, 2, . . . , n}; // deadlines
{

T = Independent Tasks(S); (1)
for eachtask ∈ T { // assumetask ∈ Ai, for somei ∈ {1, . . . , n} (2)

RTree =Create New ReachTree(t); (3)
RTree.root =Project Marking (M0i, t); (4)
CNode = RTree.root; // CNode: Current Node (5)
Spawn Child (CNode,µmax, πi, di); (6)
CNode =SelectChild (CNode); (7)
while (RTree.size != 0){ (8)

if(CNode==RTree.root && CNode.HasChild
&& CNode.AllChildMarked)Gen TMS Code(RTree); (9)

if(CNode.Spawned){ (10)
if(CNode.HasChild){ (11)

Delete Incomplete ExSet(CNode); (12)
if(Marked (CNode.HasCompleteExSet)){ (13)

DeleteOther Child (CNode); (14)
Mark (CNode); (15)
CNode = CNode.Parent;} (16)

else if(Marked (CNode.HasNonExSet)){ (17)
DeleteOther Child (CNode); (18)
Mark (CNode); (19)
CNode = CNode.Parent;} (20)

else CNode =SelectChild (CNode);} (21)
else{ Delete(CNode); (22)

CNode = CNode.Parent;} } (23)
else{ if(CNode.IsCompleteSchedule){ (24)

Mark (CNode); (25)
CNode = CNode.Parent;} (26)

elseSpawn Child (CNode,µmax, πi, di); (27)
}}}}

• CTPN Deadline: ψ(M ′) + τα(t) ≤ di, wheredi is the deadline of the CTPN to
which the current task belongs.

• Memory Usage: µ(M ′′) ≤ µmax, whereM ′′ is a new marking reached after firing
t from M ′.

If CNode has some child (Step 11), then all child nodes that represent markings

10

Hsiung and Gau

of incomplete exclusion sets are deleted (Step 12). The intuition here is that a partial
enabling of an exclusion set will eventually lead to a partial schedule, which is not
acceptable. If there is some child node with a complete exclusion set and is also
marked (Step 13), then all other child nodes are deleted (Step 14), CNode is marked
(Step 15) and its parent considered as the current node (Step 16). The same is done
for a single marked child node that does not belong to any exclusion set (Steps 17–
20). If there is no marked child node, then one of the child nodes is selected as the
current node (SelectChild () in Step 21). If no child can be generated for CNode,
then it is deleted (Step 22) and its parent considered as the current node (Step 23).

For the selection of a child node (SelectChild ()) as a feasible next marking in
the reachability tree schedule, TMS algorithm adopts theEarliest Deadline First
(EDF) approach, that is, among all the possible markings, the marking with the
earliest deadline is chosen as the next marking in the generated schedule. If two
or more markings have equal earliest deadlines, then the marking with the largest
execution time is chosen. If two or more markings have equal earliest deadlines as
well as equal execution times, then the one with the least memory usage is chosen.
Here, the satisfaction of timing constraints is given preference over that of memory
constraints because time accumulates over a computation run, whereas memory
usage is the maximum of memory usages of all markings in a computation run.

After applying the above method, a reachability tree is created for each inde-
pendent task. These tasks can then be scheduled according to their priorities in a
non-preemptive manner.

During scheduling, an estimation of memory usage is made for each new mark-
ing and the satisfaction of memory bound is checked by observing if the estimated
memory space does not exceed the bound. Memory space used by a program can
be classified functionally into the following:

• Global Memory: Global variables and data reside in global memory and their
life-span is the entire duration of program execution. This space is assumed to
be allocated at the very beginning of program execution, thus it is of constant
size and can be determined statically. This constant space size must be added to
each estimation of memory space.

• Local Memory: Local variables used by the user-given code for a transition reside
in local memory. This space size differs for each transition and must be estimated
a priori through code analysis. The maximum size of local memory spaces used
by all transitions, whose firings result in a marking, must be added to the memory
size estimate.

• Buffer Memory: Intermediate variables or data that are passed from the code of
one transition to that of another reside in buffer memory. Since CTPNs have
colored tokens with colors from the setC, if the amount of memory occupied
by some colorc in C is denoted asµC(c), we can estimate the amount of buffer

11

Hsiung and Gau

Table 2
Code Generation Algorithm

Gen TMS Code(RTree Set)
RTree Set: set of reachability trees
{

for eachRTree in RTree Set { (1)
ProcessCode =Extract (RTree.root); (2)
Output (ProcessCode); (3)

}
Gen Main (); (4)

}

memory used by a markingM = 〈NC1, . . . , NC|P |〉 as follows:

µB(M) =
∑

1≤i≤|P |

 ∑

(n,c)∈NCi

(n× µC(c))

(1)

It is assumed here that garbage collection of released memory space is either
performed by each transition (upon consumption of input colored tokens), or by
the system such as the Java Virtual Machine.

The maximum amount of memory space used by a program code can be estimated
as follows:

µ(S) = max
R∈S

{
µG(R) + max

M∈R

[
max
t→M

(µL(t)) + µB(M)
]}

(2)

whereµG(R) is the global memory size for an independent task that is scheduled
using the reachability treeR, maxt→M(µL(t)) is the maximum amount of local
memory spaceµL() used by transitionst whose firings result in the markingM ,
andµB(M) is as defined in Equation (1).

3.3.2 Code Generation
After time-memory scheduling, the set of schedules (reachability trees) obtained
from the set of CTPNs are mapped into software programs by acode generation
procedureGen TMS Code() as shown in Table2. A real-time processis created
for each independent task (reachability tree) in the system (Steps 1–3). This method
of code generation minimizes the number of tasks in a system because the degree of
concurrency in a system is equal to the number of independently firing transitions
[21], which is the same as the number of independent tasks.

In the code generation algorithm (Table2), anExtract () procedure is used to
recursively extract code for a reachability tree starting from its root node. The
details of the procedure are given in Table3. If the current node CNode is a leaf
node (Step 1), the corresponding user-given code for that node is extracted and
concatenated to the Code variable, representing the final code for that process (Step
2). One morereturn; statement is appended because the leaf node represents the
end of a schedule (Step 3). For a single-child node (Step 4), the corresponding user-

12

Hsiung and Gau

Table 3
Extract Code Procedure

Extract (CNode)
CNode: a node in a reachability tree
{

if (CNode is leaf){ (1)
Code += getCode(CNode); (2)
Code += “return; ”; (3)

}
else if (Nchild(CNode) == 1){ (4)

Code += getCode(CNode); (5)
Extract (CNode.child); (6)

}
else{

Code += getBranchCode(CNode); (7)
for each child node CNode.ci (8)

Extract (CNode.ci); (9)
}
return(Code); (10)

}

given code for that node is extracted (Step 5) andExtract () is called recursively
with the only child node of CNode (Step 6). For a node with more than one child,
a branching construct is created and code is extracted for each child recursively
(Steps 7–9).

3.3.3 Implementation
The proposed TMS algorithm and code generation procedures were implemented
in the Java programming language which generates C code. Due to the portability
of Java, our small synthesis program can be installed in different kinds of embedded
systems and prototypes so that users can dynamically change features of embedded
application software according to their needs. The reasoning for generating C code
is because it is more efficient than Java and equally portable on most machines.
An example on an ATM server will be given in the next Section, whose code was
synthesized and generated by executing our synthesis program.

4 ATM Virtual Private Network Server Example

To illustrate the feasibility and advantages of our real-time embedded software syn-
thesis method, we have applied it to a real-world system: an ATM Server for Virtual
Private Networks (VPN) [6]. An ATM server resides in ATM switching nodes inter-
connecting LANs via an ATM backbone. An ATM server temporarily stores input
cells fromVirtual Channel Connections(VCCs) and forwards them toVirtual Path
Connections(VPCs) according to cell header information and internal state tables
of VCCs. A VPC is a group of statistically multiplexed VCCs that share a fixed

13

Hsiung and Gau

Message Selective

Discarding

Cell ExtractCounter

Weighted Fair

Queuing Scheduling

VCC cell

TICK

INSERT

POP

CID / PTI

PUSH

Fig. 2. ATM Virtual Private Network Server

amount of bandwidth. The functionalities of an ATM server are shown in Figure2,
where CID and PTI are interrupts that carry header information and occur at irreg-
ular times when a non-empty cell enters the server, TICK is a periodic event that,
afterN occurrences, enables the algorithm (Cell Extract) that chooses the next cell
to be emitted [20]. According to the specification, CID/PTI and TICK do not have
a fixed sampling rate ratio and are thus independently fireable. We thus have two
independent tasks for scheduling (reachability tree construction) and code genera-
tion.

Further, there are two algorithms in the ATM server as follows:

• A Message Selective Discarding(MSD) algorithm that avoids buffer overflow
by discarding selected incoming cells. Indiscriminate loss of cells is prevented
by using a threshold mechanism to preserve the integrity of messages (groups of
cells).

• A Weighted Fair Queuing(WFQ) scheduling algorithm that assigns to every
queue a fixed portion of the bandwidth of the output link. Each incoming cell
is assigned a time-stamp at which it must be emitted, so that each connection is
guaranteed not to exceed its bandwidth.

A colored time Petri net model is given in Figure3, which models the MSD
algorithm. There are totally 24 places and 27 transitions in the model. It is a
modified version of that found in [20]. Our model is a more compact one.

As illustrated in Figure3, the MSD algorithm starts executing whenever it re-
ceives both interrupts CID and PTI (synchronized at t1). It first checks the state of
the VCC of the incoming cell and the logic queue where the cell is to be forwarded,
from the internal tables (READSTATE VCC and READOUT QUID). Then, the
incoming cell is processed according to the VCC state. At place p9, the value of
variablest indicates the state of a VCC, which may be either of the following:

• IDLE (st = 0): Here, the queue length is compared with the buffer threshold (in
state p20). If the queue length is smaller than the threshold (t11), the cell is for-
warded into the queue (PUSH), WFQ scheduling is called if the queue is empty
(SCHEDULEWFQ), and VCC state is updated to ACCEPT (UPDATESTATE
ACC). If the queue length is larger than the threshold, then it is discarded (UP-

14

Hsiung and Gau

CID READ_STATE_VCC UPDATE_STATE_INIT

p1

p2

p3

p4

p5

p6

p7

p8

p10

MSD

PTI

t1

READ_OUT_QUID

t2

t6

t9

p9

p11

p12

p15

p16

p19

p13

p14

p17

p18

p20

p22

p23

t3

t4

t5

READ_MAX_QLENGTH

CHECK_QLENGTH

t8

READ_THRESHOLD

CHECK_QLENGTH

t7

t11

UPDATE_STATE_REJ

t10

t12

PUSH

Qlength < thres ?

UPDATE_STATE_ACC

N

Y

Qlength <max ?

Y

N

p21

Qlength = 0 ?

*SCHEDULE_WFQ

COMPUTE_OUT_TIME

Y

N

p24st=2

st=0

st=1

PTI = 1/3 ?

Y

N

[1, 16]

[10, 25]

[9, 9]

[6, 15]

[12, 37]

Fig. 3. Message Selective Discarding algorithm in ATM VPN Server

DATE STATE REJ).
• ACCEPT (st = 1): The queue length is compared with the maximum queue

size (in state p19). If the queue is not full (t10), the cell is pushed into the
buffer (PUSH) and WFQ scheduling is called if the queue is empty (SCHED-
ULE WFQ). If the queue is full (t9), the cell is discarded (t12).

• REJECT (st = 2): No further action is taken and the cell is discarded.

For any state of the VCC of the incoming cell, the MSD algorithm checks the
value of the last bit of the PTI field in the header. If the bit is one, the cell is an end-
message cell and the state of the VCC is updated to IDLE (UPDATESTATE INIT),
otherwise no action is taken (t6).

Further, the execution time and the memory used by the output data of each
transition in the CTPN model of the MSD algorithm were specified as shown in
Table4, where transitions are grouped according to type.

On applying our proposed time-memory scheduling algorithm (Table1), to the
given CTPN model of MSD algorithm in Figure3, we obtain a reachability tree
as illustrated in Figure4. There are totally 49 nodes (reachable markings) and 14
different computation runs, which are listed in Table5. The estimates for execution
time and memory usage for each computation run are also given. The maximum of
those estimates are reported as system execution time (66 instructions) and memory
usage (12 bytes).

Upon execution of transition t11, there are tokens in places p21, p22, and p23,
which concurrently enables transitions PUSH, UPDATESTATE ACC, and t12 or
COMPUTEOUT TIME. During time-memory scheduling, we have a choice here
to select one of the child nodes as the next marking. As described in Section3.3.1,

15

Hsiung and Gau

Table 4
Transition Execution Time and Memory Space Size in MSD algorithm

Transition Type Transitions Time Mem

Interrupt Handling MSD, CID, PTI 1 4

Memory Read READ STATE VCC, READ OUT QUID,
READ MAX QLENGTH,
CHECK QLENGTH, READ THRESHOLD

3 4

Memory Write UPDATE STATE INIT,
UPDATE STATE REJ,
UPDATE STATE ACC

6 4

Synchronization t1, t2, t7, t8 1 4

Push Queue PUSH 9 8

Event Triggers t3, t4, t5, t9, t10, t11 1 4

Sink (No-Op) t6, t12 1 4

Computation COMPUTEOUT TIME 10 8

Scheduling SCHEDULEWFQ 15 8

Time is in number of instructions, Memory (Mem) is in number of bytes

we use earliest deadline first (EDF) as our selection policy. Here, the deadlines
are, respectively, 9, 15, 16, and 25. Thus, that is also the order in which they are
selected as next markings, as can be seen from Figure4 and Table5.

Software code was then generated for the MSD algorithm in the ATM VPN
server using our code generation procedure. Since the code is a straightforward
mapping of the reachability tree to a C procedure, we have omitted it here. Branch-
ing constructs such as if-then-else or switch-case are inserted at branching nodes of
the tree. Nodes are then replaced by actual user-given codes. Since our focus was
on the MSD algorithm, we have abstracted the cell extraction and WFQ scheduling
procedures as single transitions.

5 Conclusion and Future Work

A formal automatic method for the synthesis ofReal-Time Embedded Software
(RTES) was proposed, including a time-memory scheduling algorithm and a code
generation procedure. The resulting program code not only satisfied all user spec-
ified real-time and memory constraints, but also consisted of a minimum number
of scheduled tasks, which minimized both memory usage and execution time. The
proposed method was applied to a real-world ATM Virtual Private Network exam-
ple to illustrate its feasibility and advantages. A qualitative comparison to previous
work shows that: (1) we removed model restrictions (such as free-choice) thus al-
lowing the synthesis of a larger domain of systems, (2) we allowed the explicit

16

Hsiung and Gau

0

MSD

1

CID

2

PTI

3

t1

4

READ_STATE_VCC

7

READ_OUT_QUID

10

t2

11

t3 t4 t5

12

t6 UPDATE_STATE_INIT

13 18

12

READ_MAX_QLENGTH

15

CHECK_QLENGTH1

18

t7

19

t6 UPDATE_STATE_INIT

12

READ_THRESHOLD

15

CHECK_QLENGTH2

18

t8

19

t10 t9

PUSH

COMPUTE_OUT_TIME t12

*SCHEDULE_WFQ

t10 t9

PUSH

COMPUTE_OUT_TIME t12

*SCHEDULE_WFQ

PUSH

t11 UPDATE_STATE_REJ

PUSH

COMPUTE_OUT_TIME t12

*SCHEDULE_WFQ

COMPUTE_OUT_TIME t12

*SCHEDULE_WFQ

UPDATE_STATE_ACC UPDATE_STATE_ACC

t11 UPDATE_STATE_REJ

t6 UPDATE_STATE_INIT
20

21 21

30

40 31

55

20

21 26

30

36

46 37

61

25

26 31

35

41

51 42

66

25

26 26

35

45 36

60

Fig. 4. Reachability Tree for MSD algorithm in ATM-VPN Server

specification of timings in the model thus allowing the synthesis ofreal-timeem-
bedded software, (3) we made an explicit estimation of memory usages throughout
our scheduling procedure thus ensuring that there is never a buffer overflow in em-
bedded systems, and (4) we proposed a time-memory scheduling algorithm and
implemented it in the Java programming language, which could generate portable

17

Hsiung and Gau

Table 5
Computation Runs and Time-Memory Estimates for MSD in ATM-VPN

Computation Run Time Mem

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t3, t6〉 13 8

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t3, UPDATESTATE INIT〉 18 8

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t4,
READ MAX QLENGTH, CHECKQLENGTH1, t7, t6, t9〉

21 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t4,
READ MAX QLENGTH, CHECKQLENGTH1, t7, t6, t10, PUSH, t12〉

31 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t4, READMAX QLENGTH,
CHECK QLENGTH1, t7, t6, t10, PUSH, COMPUTEOUT TIME, *SCHEDULE WFQ〉

55 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t4, READMAX QLENGTH,
CHECK QLENGTH1, t7, UPDATESTATE INIT, t9〉

26 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t4, READMAX QLENGTH,
CHECK QLENGTH1, t7, UPDATESTATE INIT, t10, PUSH, t12〉

36 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t4, READMAX QLENGTH,
CHECK QLENGTH1, t7, UPDATESTATE INIT, t10, PUSH, COMPUTEOUT TIME,
*SCHEDULE WFQ〉

60 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t5, READTHRESHOLD,
CHECK QLENGTH2, t8, t6, UPDATESTATE REJ〉

26 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t5, READTHRESHOLD,
CHECK QLENGTH2, t8, t6, t11, PUSH, UPDATESTATE ACC, t12〉

37 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t5, READTHRESHOLD,
CHECK QLENGTH2, t8, t6, t11, PUSH, UPDATESTATE ACC, COMPUTEOUT TIME,
*SCHEDULE WFQ〉

61 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t5, READTHRESHOLD,
CHECK QLENGTH2, t8, UPDATESTATE INIT, UPDATE STATE REJ〉

31 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t5, READTHRESHOLD,
CHECK QLENGTH2, t8, UPDATESTATE INIT, t11, PUSH, UPDATESTATE ACC, t12〉

42 12

〈MSD, CID, PTI, t1, READSTATE VCC, READ OUT QUID, t2, t5, READTHRESHOLD,
CHECK QLENGTH2, t8, UPDATESTATE INIT, t11, PUSH, UPDATESTATE ACC, COM-
PUTE OUT TIME, *SCHEDULE WFQ〉

66 12

Time is in number of instructions, Memory (Mem) is in number of bytes

C code.
Future work consists of installing our small synthesis program into a prototyp-

ing platform for on-the-fly synthesis and code-generation of real-time embedded
software. Future research directions include the development of methods for au-
tomatic code generation and code modifications based on the frequently changing
dynamic needs of users, such as web computations.

References

[1] Altisen, K., G. G̈ossler, A. Pnueli, J. Sifakis, S. Tripakis and S. Yovine,A framework
for scheduler synthesis, in: Real-Time System Symposium (RTSS’99)(1999).

[2] Balarin, F. and M. Chiodo,Software synthesis for complex reactive embedded systems,
in: Proc. of International Conference on Computer Design (ICCD’99)(1999), pp. 634
– 639.

[3] Balarin, F. and et al., “Hardware-software Co-design of Embedded Systems: the

18

Hsiung and Gau

POLIS approach,” Kluwer Academic Publishers, 1997.

[4] Berthomieu, B. and D. Diaz,Modeling and verification of time dependent systems
using time petri nets, IEEE Transactions on Software Engineering17 (1991), pp. 259–
275.

[5] Berthomieu, B. and M. Menasche,An enumerative approach for analyzing time petri
nets, in: Proc. of the IFIP Congress, 1983.

[6] Coppo, P., M. D’Ambrosio and V. Vercellone,The A-VPN server: a solution for ATM
virtual private networks, in: Proc. Singapore ICCS’94, 1994.

[7] Cortadella, J., A. Kondratyev, L. Lavagno, M. Massot, S. Moral, C. Passerone,
Y. Watanabe and A. Sangiovanni-Vincentelli,Task generation and compile-time
scheduling for mixed data-control embedded software, in: Proc. Design Automation
Conference (DAC’00), 2000.

[8] Fu, J.-M., T.-Y. Lee, P.-A. Hsiung and S.-J. Chen,Hardware-software timing
coverification of distributed embedded systems, IEICE Trans. on Information and
SystemsE83-D (2000), pp. 1731–1740.

[9] Hsiung, P.-A.,Timing coverification of concurrent embedded real-time systems, in:
Proc. of the 7th IEEE/ACM International Workshop on Hardware Software Codesign
(CODES’99)(1999), pp. 110 – 114.

[10] Hsiung, P.-A.,CMAPS: A cosynthesis methodology for application-oriented parallel
systems, ACM Transactions on Design Automation of Electronic Systems5 (2000),
pp. 51–81.

[11] Hsiung, P.-A.,Embedded software verification in hardware-software codesign, Journal
of Systems Architecture — the Euromicro Journal46 (2000), pp. 1435–1450.

[12] Hsiung, P.-A.,Hardware-software timing coverification of concurrent embedded real-
time systems, IEE Proceedings — Computers and Digital Techniques147 (2000),
pp. 81–90.

[13] Hsiung, P.-A.,Synthesis of parametric embedded real-time systems, in: Proc. of the
International Computer Symposium (ICS’00), Workshop on Computer Architecture
(ISBN 957-02-7308-9), 2000, pp. 144–151.

[14] Hsiung, P.-A.,Formal synthesis and code generation of embedded real-time software,
in: Proc. ACM/IEEE 9th International Symposium on Hardware/Software Codesign
(CODES’01),(Copenhagen, Denmark)(2001), pp. 208–213.

[15] Hsiung, P.-A.,Formal synthesis and control of soft embedded real-time systems,
in: Proc. 21st International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’01), (Cheju Island, Korea)(2001), pp. 35–50.

[16] Lin, B., Software synthesis of process-based concurrent programs, in: Proc. of Design
Automation Conference (DAC’98)(1998), pp. 502 – 505.

[17] Maler, O., A. Pnueli and J. Sifakis,On the synthesis of discrete controllers for timed
systems, in: 12th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’95), Lecture Notes in Computer Science900, 1995, pp. 229 – 242.

19

Hsiung and Gau

[18] Merlin, P. and G. Bochman,On the construction of submodule specifications and
communication protocols, ACM Trans. on Programming Languages and Systems5
(1983), pp. 1 – 25.

[19] Merlin, P. and D. Farber,Recoverability of communication protocols – implication of
a theoretical study, IEEE Transactions on Communications (1976).

[20] Sgroi, M., “Quasi-Static Scheduling of Embedded Software Using Free-Choice Petri
Nets,” Master’s thesis, Dept. of Electrical Engineering and Computer Science, Univ.
of California at Berkeley (1999).

[21] Sgroi, M., L. Lavagno, Y. Watanabe and A. Sangiovanni-Vincentelli,Synthesis
of embedded software using free-choice Petri nets, in: Proc. Design Automation
Conference (DAC’99)(1999).

[22] Zhu, X. and B. Lin,Compositional software synthesis of communicating processes, in:
Proc. of International Conference on Computer Design (ICCD’99)(1999), pp. 646 –
651.

20

