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Abstract
Increase in software has made embedded systems more

accessible and easy to use, but it has also necessitated
further research on how a complex, real-time, embedded
software can be designed automatically and correctly. En-
hancing recent advances in this research, we propose a
Time-Memory Scheduling (TMS) method for formally syn-
thesizing and automatically generating code for real-time
embedded software, using the Colored Time Petri Nets
model. Our method extends previous work in three ways:
(1) by allowing the specification of temporal constraints in
the system description to model real-time behaviors of soft-
ware, (2) by allowing the specification of colored tokens in
the system description to model different memory usages
by data-types, and (3) by proposing an extended algorithm
to schedule the enhanced system model and generate static
code. A real-time embedded software, which is specified
by a set of CTPN, is scheduled using TMS such that the
schedules satisfy limited embedded memory requirements
and all real-time and task precedence constraints. Finally,
a portable embedded software program is generated in the
C programming language using the valid TMS schedules.
Through a real-world example on the ATM Virtual Private
Network server, we illustrate the feasibility and advantages
of the proposed TMS method for synthesizing embedded
real-time software.

1 Introduction
With advances in electronic technology, it is now pos-

sible to embed a microprocessor in almost any electric ap-
pliance such as home appliances, internet appliances, per-
sonal assistants, wearable computers, telecommunication
gadgets, and transportation facilities. Consequently, the
number of embedded systems that a man encounters in a
typical day of his or her life has increased dramatically
from a few tens in the past to the order of hundreds in the
recent few years. Moreover, once an embedded system in-
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teracts with a human, there are temporal expectations on
its behavior, which may be a soft constraint (such as mul-
timedia servers) or a hard one (such as the braking system
in a vehicle). Nowadays, most embedded systems are also
real-time systems, thus their design must also satisfy all
real-time requirements. With this motivation, we propose
a time-memory scheduling method to formally synthesize
and automatically generate code for a real-time embedded
system.

A real-time embedded system is a computation unit, in-
stalled in a larger system called environment, such that it
helps the environment accomplish some dedicated set of
tasks with temporal and spatial constraints. In general, an
embedded system has both hardware and software parts.
Hardware is fabricated as one or more ASICs, ASIPs, or
PLDs. Software is executed on one or more microproces-
sors, with or without an operating system. Real-time em-
bedded software (RTES) is a piece of program code that
must: (1) satisfy real-time constraints such as response
time, deadlines, and periods, and (2) execute within a spec-
ified size of memory space. RTES communicates with the
embedded hardware either through an interface or through
direct connections. There are two main issues in the design
of RTES:

� Bounded Memory Execution: A processor cannot
have infinite amount of memory space for the exe-
cution of any software process. This fact is even
more emphasized in an embedded system, which gen-
erally has only a few hundreds of kilobytes memory
installed.

� Real-Time Constraints: A processor may have to ex-
ecute several concurrent tasks with precedence and
temporal constraints. Thus, an RTES is generally
composed of several concurrent, real-time, computa-
tion tasks.

In solution to the above two issues, a synthesis method
for RTES must generate program code that can be executed
in a bounded amount of memory, while satisfying all given



real-time constraints. The proposed solution consists of the
following two steps:

� Time-Memory Scheduling: A partial reachability tree
is computed such that all computations that violate ei-
ther temporal or spatial constraints are pruned from
the tree. The resulting tree guarantees that, for all pos-
sible outcomes in a non-deterministic data-dependent
execution, the memory utilized for computation is al-
ways within limits and the execution of the software
is periodic, that is, it always returns to its initial state
within its deadline.

� Code Generation: The tree obtained after schedul-
ing represents a feasible computation of a system and
code can be generated through a direct mapping trans-
lation.

In this work, a formal synthesis method based on Col-
ored Time Petri Nets (CTPN) is proposed, which employs
Time-Memory Scheduling (TMS) for satisfying limited em-
bedded memory restrictions and hard real-time constraints.
Software code is then generated from TMS schedules. The
number of tasks in the software code is minimized to im-
prove efficiency and code-size. Finally, an application ex-
ample illustrates the feasibility and benefits of our pro-
posed method.

This article is organized as follows. Section 2 gives
some previous work related to RTES synthesis. Section 3
formulates, models, and solves the RTES synthesis prob-
lem. Section 4 illustrates the proposed problem solution
through an application example. Section 5 concludes the
article giving some future work.

2 Previous Work
Currently, software synthesis is a hot topic of research

in the field of hardware-software codesign of embedded
systems [9]. Previously, a large effort was directed to-
wards hardware synthesis and comparatively little attention
paid to software synthesis. Partial software synthesis was
mainly carried out for communication protocols [17], plant
controllers [16], and real-time schedulers [1] because they
generally exhibited regular behaviors. Only recently has
there been some work on automatically generating soft-
ware code for embedded systems [2, 15, 19].

Lin [15] proposed an algorithm that generates a soft-
ware program from a concurrent process specification
through intermediate Petri-Net representation. This ap-
proach is based on the assumption that the Petri-Nets are
safe, i.e., buffers can store at most one data unit, which im-
plies that it is always schedulable. The proposed method
applies quasi-static scheduling to a set of safe Petri-Nets to
produce a set of corresponding state machines, which are
then mapped syntactically to the final software code.

A quasi-static scheduling algorithm was proposed by
Sgroi et al. for a class of Petri nets called Free-Choice
Petri Nets (FCPN) [19]. A necessary and sufficient con-
dition was given for a set of FCPNs to be schedulable.
Schedulability was first checked for a FCPN and then a
valid schedule generated by decomposing a FCPN into a
set of Conflict-Free (CF) components, which were then in-
dividually and statically scheduled. Code was finally gen-
erated from the valid schedules. Based on FCPN, Hsiung
proposed an extended scheduling method that incorporated
real-time constraints into the synthesis procedure such that
code could be generated for hard real-time embedded sys-
tems [13]. It was later modified to synthesize code for soft
real-time embedded systems [14]. Both methods were still
restricted by the Free-Choice constraint on the system de-
scription model.

Cortadella et al. [6] proposed a reachability graph al-
gorithm for a more general class of Petri nets, which al-
lowed unbounded FIFO channels between two multi-rate
communicating processes and synchronization-dependent
control on multiple ports. The input consisted of FlowC
sources and the output was scheduled embedded software
code. No timing constraints were considered in the pro-
posed algorithm.

Besides synthesis of software, there are also some re-
cent work on the verification of software in an embedded
system such as the Schedule-Verify-Map method [10], the
linear hybrid automata techniques [8, 11], and the mapping
strategy [7]. System parameters have also been considered
for software synthesis [12].

Among the above related software synthesis work, ei-
ther they have not considered real-time constraints in their
system model or their models were restricted so that not
all systems could be synthesized. In contrast, our work
focuses on how scheduled program code may be gener-
ated for real-time embedded software without any model
restrictions.

3 Real-Time Embedded Software Synthesis
A real-time embedded software is specified as a set of

Colored Time Petri Nets (CTPN), which are a combina-
tion of Colored Petri Nets (CPN) [18] and Time Petri Nets
(TPN) [3, 4]. As mentioned in Section 2, several variations
of Petri nets were used for the synthesis of embedded soft-
ware [6, 15, 19], but neither the modeling of memory us-
ages nor that of timing constraints were allowed explicitly
by those models. Thus, we propose to use CTPN, which al-
lows explicit modeling of memory usages and timing con-
straints.

In the rest of this section, we first define CTPN, give
a system model, its semantics, and its scheduling. Then,
we formulate our target problem. Finally, we describe our
synthesis algorithm, along with code generation.
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Figure 1: A Colored Time Petri Net

3.1 System Model
A real-time embedded system is modeled as a set of

Colored Time Petri Nets, defined as follows.

Definition 1 : Colored Time Petri Nets (CTPN)
A Colored Time Petri Net is a 6-tuple ��� �� �� �����

��,where � is a finite set of places, � is a finite set of tran-
sitions, � � � �� �, and � � � � �, � is a set of colors
associated with each token, � � ���� ������ �� ����

is a weighted flow relation between places and transitions,
represented by arcs, such that each arc is associated with a
set of integer-color pairs 	��� 	� 
 � � � � 	 � �, and �
is the set of non-negative integers, �� � � � ���� is the
initial marking (assignment of colored tokens to places),
and � � � � � � � �� � ���, i.e., ��
� � ��� ��, 
 � � ,
� is the earliest firing time (EFT), and � is latest firing time
(LFT). We will use ���
� and ���
� to denote EFT and LFT,
respectively.

Graphically, a CTPN can be depicted as shown in Fig. 1,
where circles represent places, vertical bars represent tran-
sitions, arrows represent arcs, dots represent tokens, differ-
ent shadings of dots represent different colors, and sets of
integer-color pairs labeled over arcs represent the weights
as defined by �. Here, ��� �� �� � implies there is an arc
from  to � with a weight of ��� ��, where  and � can
be a place or a transition. Both conflicts and confusions are
allowed in a CTPN. A conflict occurs when there is a token
in a place with more than one outgoing arc such that only
one enabled transition can fire, thus consuming the token
and disabling all other transitions. For example, 	
�� 
�
and 	
�� 
� are pairs of conflicting transitions in Fig. 1. A
confusion is a result of the coexistence of both concurrency
and conflict at the same transition. For example, there is a
confusion at transition 
� in Fig. 1.

Semantically, the behavior of a CTPN is given by a se-
quence of markings, where a marking is an assignment of
colored tokens to places. Starting from an initial marking

��, a CTPN may transit to another marking through the
firing of an enabled transition and re-assignment of tokens.
A transition is said to be enabled when all its input places
have the required number of colored tokens for the required
amount of time, where the required number of colored to-
kens is the weight as defined by the flow relation � and
the required amount of time is the earliest firing time � as
defined by � . An enabled transition need not necessarily
fire. But upon firing, the required number of tokens are re-
moved from all the input places and the specified number
of tokens are placed in the output places, where the speci-
fied number of colored tokens is that specified by the flow
relation � on the outgoing arcs from the transition. An en-
abled transition may not fire later than �.

To formalize the above semantics description with no-
tations, we give the following basic definitions. A set of
integer-color pairs is defined as 	��� 	� 
 � � � � 	 � �,
where � is the set of non-negative integers and � is a
set of colors. If �� and �� � are two sets of integer-
color pairs, then we say �� � � �� iff �� � � for
all ���� 	� � �� �, ��� 	� � ��, and �� � �. Intu-
itively, this means for each type of color the number of
tokens of that color in �� is not greater than that in �� �.
Further, for �� � � ��, we can also define their dif-
ference �� � �� � as a set �� �� of integer-color pairs
	����� 	� 
 ��� � � � ������� 	� � ��� ���� 	� � �� �, and
�� � �. Similarly, sum can also be defined for two sets of
integer-color pairs.

Formally, a marking is a vector � �
����� ���� � � � � ���� ��, where ��� � � � � is a set
of integer-color pairs, representing the non-negative num-
ber of colored tokens in place �� � � . Associated with
each marking � , there are two attributes: (1) a time-
stamp ����, and (2) a memory-usage ����. A time-
stamp ���� is defined as the time elapsed for a CTPN
to change from the initial marking �� to the marking � .
Here, ����� � �. A memory-usage ���� is defined as
the amount of memory used by a CTPN when it is in the
marking � .

A transition 
 is said to be enabled at time � in
a marking � with time-stamp ���� if the follow-
ing conditions hold: (1) ����� 
� � ���, for all
����� 
� �� � and � � 	�� � � � � 
� 
, and (2) � �
���� � ���
�. When a transition 
 fires in some mark-
ing � , the state of a CTPN changes to a new marking
� � � ��� �

�� �� �
�� � � � � �� �

�� ��, where �� �
� � ��� �

����� 
� � ��
� ��� for all � � 	�� � � � � 
� 
. The firing of
a transition 
 at time � in a marking � with time-stamp
���� is called a valid firing if it satisfies the following
two properties:

� Transition Deadline: ���
� � �� ���� � ���
�,



� Memory Constraint: ��� �� � ���	, where � � is
the marking obtained by firing 
 in � and ���	 is
the maximum amount of memory available.

3.2 Problem Formulation
A user specifies the requirements for a real-time em-

bedded software by a set of CTPNs and an upper bound on
memory use, which can be defined formally as follows.

Definition 2 : Real-Time Embedded Software
A real-time embedded software system � is defined
as a set of CTPNs 	��� ��� � � � � �
, where �� �
���� ��� �� ������� ���, and an upper-bound on the amount
of system memory, ���	. �

The following is a formal definition of the real-time em-
bedded software (RTES) synthesis problem.

Definition 3 : RTES Synthesis
Given the specification of a real-time embedded software
system � modeled by a set of CTPNs 	��� ��� � � � � �
,
where �� � ���� ��� �� ������� ���, and an upper-bound
���	 on memory use, and given a set of real-time con-
straints such as system period and deadline for each CTPN,
a software code is to be generated such that (1) it can be ex-
ecuted on a single processor, (2) it uses memory less than
or equal to the upper-bound ���	, and (3) it satisfies all
transition EFT, LFT, and real-time constraints. �

3.3 Synthesis Algorithm
Before going into the details of the synthesis algorithm,

some basic concepts and definitions are required and de-
scribed as follows. Given a CTPN, we define choice sets
and exclusion sets to ensure full coverage of all transitions
in a final feasible schedule of the full CTPN.

Definition 4 : Choice Set
Given a CTPN �� � ���� ��� �� ������� ���, a set of tran-
sitions � � 	
�� 
�� � � � � 
� � �� is called a choice set
if there exists a place � � �� such that there are arcs
connecting � with each of the transitions in � and with
none in ���� . Notationally, �� � ��, ���� 
�� �� �,
� � � 	�� �� � � � �� and ���� 
�� � �, � 
� � ���� . �

Conflicting transitions as mentioned in Section 3.1 are
a special case of a choice set because sets of conflicting
transitions are disjoint. However, choice sets are not nec-
essarily disjoint since a transition may belong to two or
more choice sets. For example, a synchronization transi-
tion between two places, each of which has a set of more
than one outgoing transitions, belongs to two choice sets.
When we merge all non-disjoint choice sets into one set of
transitions, it is called an exclusion set, which is formally
defined as follows.

Definition 5 : Exclusion Set
Given a CTPN �� � ���� ��� �� ������� ���, a set of tran-
sitions � � 	
�� 
�� � � � � 
� � �� is called an exclusion
set if there exists a sequence of the transitions such that
each adjacent pair of transitions has a common input place.

�
From the above definition, we can observe that a choice

set is a special case of an exclusion set, an exclusion set is
always connected, and two or more exclusion sets are dis-
joint. Intuitively, an exclusion set represents all possible
choices of dependent computation (behavior) at a particu-
lar system state (CTPN marking). Thus, in our scheduling
algorithm to be presented later in this Section, we enforce
the fact that an exclusion set should be either completely
enabled or completely disabled at a marking before we ac-
cept the marking as a feasible state for the system schedule.
Partial enabling of an exclusion set will eventually result in
a partial system schedule.

Now, we introduce the notions of source transitions and
independent tasks. A transition 
 is called a source tran-
sition if ���� 
� � � for all places � � � , that is, it has
no input place. Physically, a source transition represents
an uncontrollable input event from the environment. Two
source transitions are said to be dependent if they synchro-
nize at some common reachable transition, where a transi-
tion 
 is said to be reachable from another transition 
 � if
there exists a sequence of valid transition firings from the
firing of 
 to the enabling of 
 �. A set of source transitions
is defined as maximal if it consists of all source transitions
that are inter-dependent and there is no other source tran-
sition in a CTPN that is dependent on any transition in that
set. For example, in Figure 1, source transitions 
� and

� are dependent because their corresponding computation
runs eventually synchronize at 
�. Further, a set of transi-
tions constitute an independent task if they are all reachable
from some maximal set of dependent source transitions. In
Figure 1, the CTPN constitutes a single independent task.

Given the above basic definitions and concepts on the
CTPN model, we will now formally present our synthesis
algorithm. As introduced in Section 1 and formulated in
Definition 3, there are two objectives for an RTES synthe-
sis algorithm, namely bounded memory execution and sat-
isfaction of real-time constraints. The algorithm proposed
here gives an integrated solution to the two issues, in the
form of a Time-Memory Scheduling strategy.

3.3.1 Time-Memory Scheduling

In Time-Memory Scheduling (TMS), valid software sched-
ules are generated for a real-time embedded system by cre-
ating a process for each independent task, which consists
of one or more dependent source transitions. Each process
is a sequential schedule generated by creating a reachabil-



ity tree with markings as nodes and valid transition firings
as edges. Several factors are considered when creating a
reachability tree such as the bound on maximum memory
available, the period of the CTPN in which an independent
task belongs, and the corresponding deadline. Each task
can be assigned a priority such as execution frequency, thus
we do not allow preemption of a task while it is executing.
This ensures that transition firing intervals are obeyed ac-
cording to the sequential schedule of a process.

The details of our proposed TMS algorithm is given in
Table 1. The given set of CTPNs is first partitioned into
independent tasks, as defined earlier (Step 1). Each inde-
pendent task is contained within a CTPN, whereas a CTPN
may consists of more than one independent task. Then, a
reachability tree is generated for each independent task by
starting with the initial marking as the root node. Here, the
root node is in fact a projection of the CTPN initial mark-
ing onto the independent task (Steps 2, 3, 4). Each node of
the reachability tree represents a marking of the indepen-
dent task and each tree edge represents the valid firing of
an enabled transition. First, child nodes (1-step successor
markings) are generated for the root node (Spawn Child()
in Step 6). Second, one of the child nodes of the root is
selected for traversal, where selection is based on an eval-
uation of memory and time usages (Select Child() in Step
7), as described later. Lastly, a reachability tree is gener-
ated iteratively (Steps 8–28) until either the root node is
marked and thus code can be generated (Gen Code() in
Step 9) or all nodes have been deleted (Step 8) and thus no
feasible schedule exists.

In the generation of a reachability tree, a marked node
indicates that starting from the marking represented by that
node, there is a valid schedule. For each current node (CN-
ode) under consideration, either it is a complete schedule
or not (Step 24). If it is, then it is simply marked (Step 25)
and its parent considered as the current node (Step 26). If
it is not a complete schedule, then a child node is created
(Spawn Child() in Step 27) for each of its 1-step successor
marking, which satisfies all constraints including:

� Transition Deadline: ��� �����������
� � ���
�,
where it is assumed that 
 is a transition which is en-
abled starting from marking � , represented by CN-
ode, at the time-stamp ����, and 
 is continuously
enabled until another marking � � with time-stamp
��� �� is reached,

� CTPN Deadline: ��� �� � ���
� � ��, where �� is
the deadline of the CTPN to which the current task
belongs.

� Memory Usage: ��� ��� � ���	, where� �� is a new
marking reached after firing 
 from � �.

Table 1: Time-Memory Scheduling Algorithm

TM Schedule��� ����� ����
� � ��� � �� � ���� ��� �� 	��
��� ���� � � �� ��    � ���
integer ����; // maximum memory
� � ��� � �� � � � � � �� ��    � ��; // periods
� � ��� � �� � � � � � �� ��    � ��; // deadlines
� � � Independent Tasks���; (1)

for each ���� � � � // assume ���� � ��, (2)
RTree = Create New Reach Tree(�); (3)
RTree.root = Project Marking�
��� ��; (4)
CNode = RTree.root; // CNode: Current Node (5)
Spawn Child(CNode, ����, ��, ��); (6)
CNode = Select Child(CNode); (7)
while (RTree.size != 0) � (8)

if(CNode==RTree.root && CNode.HasChild
&& CNode.AllChildMarked)
Gen Code(RTree); (9)

if(CNode.Spawned) � (10)
if(CNode.HasChild) � (11)

Delete Incomplete ExSet(CNode); (12)
if(Marked(CNode.CompleteExSet)) � (13)

Delete Other Child(CNode); (14)
Mark(CNode); (15)
CNode = CNode.Parent; � (16)

else if(Marked(CNode.NonExSet)) � (17)
Delete Other Child(CNode); (18)
Mark(CNode); (19)
CNode = CNode.Parent; � (20)

else CNode = Select Child(CNode); � (21)
else � Delete(CNode); (22)

CNode = CNode.Parent; � � (23)
else � if(CNode.Is Complete Schedule) � (24)

Mark(CNode); (25)
CNode = CNode.Parent; � (26)

else Spawn Child(CNode, ����, ��, ��); (27)
����

If CNode has some child (Step 11), then all child nodes
that represent markings of incomplete exclusion sets are
deleted (Step 12). The intuition here is that a partial en-
abling of an exclusion set will eventually lead to a partial
schedule, which is not acceptable. If there is some child
node with a complete exclusion set and is also marked
(Step 13), then all other child nodes are deleted (Step 14),
CNode is marked (Step 15) and its parent considered as
the current node (Step 16). The same is done for a single
marked child node that does not belong to any exclusion
set (Steps 17–20). If there is no marked child node, then
one of the child nodes is selected as the current node (Se-
lect Child() in Step 21). If no child can be generated for
CNode, then it is deleted (Step 22) and its parent consid-
ered as the current node (Step 23).



For the selection of a child node (Select Child()) as
a feasible next marking in the reachability tree schedule,
TMS algorithm adopts the Earliest Deadline First (EDF)
approach, that is, among all the possible markings, the
marking with the earliest deadline is chosen as the next
marking in the generated schedule. If two or more mark-
ings have equal earliest deadlines, then the marking with
the largest execution time is chosen. If two or more mark-
ings have equal earliest deadlines as well as equal execu-
tion times, then the one with the least memory usage is
chosen. Here, the satisfaction of timing constraints is given
preference over that of memory constraints because time
accumulates over a computation run, whereas memory us-
age is the maximum of memory usages of all markings in
a computation run.

After applying the above method, a reachability tree is
created for each independent task. These tasks can then be
scheduled non-preemptively according to their priorities.

During scheduling, an estimation of memory usage is
made for each new marking and the satisfaction of memory
bound is checked by observing if the estimated memory
space does not exceed the bound. Memory space used by a
program can be classified functionally into the following:

� Global Memory: Global variables and data reside in
global memory and their life-span is the entire dura-
tion of program execution. This space is assumed to
be allocated at the very beginning of program execu-
tion, thus it is of constant size and can be determined
statically. This constant space size must be added to
each estimation of memory space.

� Local Memory: Local variables used by the user-
given code for a transition reside in local memory.
This space size differs for each transition and must
be estimated a priori through code analysis. The max-
imum size of local memory spaces used by all transi-
tions, whose firings result in a marking, must be added
to the memory size estimate.

� Buffer Memory: Intermediate variables or data that are
passed from the code of one transition to that of an-
other reside in buffer memory. Since CTPNs have col-
ored tokens with colors from the set �, if the amount
of memory occupied by some color 	 in � is denoted
as ���	�, we can estimate the amount of buffer mem-
ory used by a marking � � ����� � � � � ���� �� as
follows:

���
� �
�

������ �

�
� �

���	��
��

��� ������

�
� (1)

It is assumed here that garbage collection of released
memory space is either performed by each transition

Table 2: Code Generation Algorithm

Gen Code�������
�����: reachability tree
	
� = Create Queue(); (1)
Extract(RTree.root); (2)
schedule = Create Schedule(); (3)
while(� �� NULL) (4)

schedule = Concatenate(schedule,� .pop()); (5)
Replace Code(schedule); (6)



(upon consumption of input colored tokens), or by the
system such as the Java Virtual Machine.

The maximum amount of memory space used by a pro-
gram code can be estimated as follows:

���� � ��	
��

�
����� 
 ��	

���

�
��	
���

������� 
 ���
�
�	

(2)
where ����� is the global memory size for an indepen-
dent task that is scheduled using the reachability tree �,
	
��� ����
�� is the maximum amount of local mem-
ory space ���� used by transitions 
 whose firings result in
the marking � , and ����� is as defined in Equation (1).

3.3.2 Code Generation

After time-memory scheduling, the schedules (reachabil-
ity trees) obtained from the set of CTPNs are mapped
into software programs by a code generation procedure
Gen Code() as shown in Table 2. A real-time process
is created for each independent task in the system. This
method of code generation minimizes the number of tasks
in a system because the degree of concurrency in a system
is equal to the number of independently firing transitions
[19], which is the same as the number of independent tasks.

As shown in Table 2, for transforming a reachability
tree into software code, a queue is used to store a sched-
ule of the tree (Step 1). An Extract() procedure recur-
sively extracts code from the tree and stores it into the
queue (Step 2). A schedule is thus generated by popping
out all the extracted codes in sequence (Step 3, 4). Finally,
all scheduling symbols are replaced by actual user-defined
codes (Step 5). For example, the code for each transition
is now used to replace scheduling symbols that represented
the transition.
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3.3.3 Implementation

The proposed TMS algorithm and code generation pro-
cedures were implemented in the Java programming lan-
guage which generates C code. Due to the portability of
Java, our small synthesis program can be installed in dif-
ferent kinds of embedded systems and prototypes so that
users can dynamically change features of embedded appli-
cation software according to their needs. The reasoning for
generating C code is because it is more efficient than Java
and equally portable on most machines. An example on an
ATM server will be given in the next Section, whose code
was synthesized and generated by executing our synthesis
program.

4 ATM VPN Server Example
To illustrate the feasibility and advantages of our real-

time embedded software synthesis method, we have ap-
plied it to a real-world system: an ATM Server for Virtual
Private Networks (VPN) [5]. An ATM server resides in
ATM switching nodes interconnecting LANs via an ATM
backbone. An ATM server temporarily stores input cells
from Virtual Channel Connections (VCCs) and forwards
them to Virtual Path Connections (VPCs) according to cell
header information and internal state tables of VCCs. The
functionalities of an ATM server are shown in Figure 2,
where CID and PTI are interrupts that carry header in-
formation and occur at irregular times when a non-empty
cell enters the server, TICK is a periodic event that, after
� occurrences, enables the algorithm (Cell Extract) that
chooses the next cell to be emitted [20]. According to the
specification, CID/PTI and TICK do not have a fixed sam-
pling rate ratio and are thus independently fireable. We
thus have two independent tasks for scheduling (reachabil-
ity tree construction) and code generation. There are two
algorithms in ATM: Message Selective Discarding (MSD)
and Weighted Fair Queuing (WFQ) scheduling.

A set of CTPN is given in Figure 3, which models the
ATM-VPN server. There are totally 39 places and 44 tran-
sitions in the model. It is a compact modified version
of that in [20]. As illustrated in Figure 3, the MSD al-
gorithm starts executing whenever it receives both inter-
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rupts CID and PTI (synchronized at t1). It first checks the
state of the VCC of the incoming cell and the logic queue
where the cell is to be forwarded, from the internal tables
(READ STATE VCC and READ OUT QUID). Then, the
incoming cell is processed according to the VCC state. At
place p9, the value of variable �
 indicates the state of a
VCC: IDLE, ACCEPT, or REJECT.

For any state of VCC of the incoming cell, the MSD al-
gorithm checks the value of the last bit of the PTI field in
the header. If the bit is one, the cell is an end-message
cell and the state of the VCC is updated to IDLE (UP-
DATE STATE INIT), otherwise no action is taken (t6).

TICK is also a source transition that fires independently.
After � occurrences of TICK (modeled by transitions
I=I+1, t16, and I=0), a real-time sorter with time-stamp
information of each cell is read and the cell with the small-
est timestamp equal to the current global time is popped
from its VPC queue. If the queue becomes empty, then
a timestamp computation algorithm is invoked to compute
the next timestamp and WFQ scheduling is also performed.

The execution time and the memory used by the output
data of each transition in the CTPN model of the ATM-
VPN server were specified as shown in Table 3, where tran-
sitions are grouped according to type.



Table 3: Time and Memory of ATM-VPN Transitions
Transition Type Transitions T M
Interrupt Handling MSD, CID, PTI, TICK 1 4
Memory Read READ STATE VCC,

READ OUT QUID,
READ MAX QLENGTH,
CHECK QLENGTH,
READ THRESHOLD, READ LAST,
READ BW, READ SORTER,
CHECK QLENGTH

3 4

Memory Write UPDATE STATE INIT,
UPDATE STATE REJ,
UPDATE STATE ACC,
INSERT CELL, I=I+1, I=0

6 4

Synchronization t1, t2, t7, t8, t13 1 4
Push Queue PUSH 9 8
Event Triggers t3, t4, t5, t9, t10, t11, t14, t15, WFQ,

t16, t18
1 4

Sink (No-Op) t6, t12, t17, t19 1 4
Computation COMPUTE OUT TIME, POP 10 8

T (Time) is in number of instructions, M (Memory) is in number of bytes

On applying our proposed time-memory scheduling al-
gorithm (Table 1), to the given CTPNs in Figure 3, we ob-
tain three reachability trees, which are omitted due to page-
limits. In the reachability tree for the MSD algorithm, there
are 49 nodes (reachable markings) and 14 different compu-
tation runs (schedules). For WFQ, there are 9 markings and
2 schedules. For TICK, there are 13 markings and 4 sched-
ules. Though there are three CTPNs in the ATM model
(Figure 3) and three corresponding reachability trees, there
are actually only two independent tasks corresponding to
the independently firing CID/PTI pair and TICK source
transitions. In the model and trees, WFQ is not an indepen-
dent task, it is invoked by either of the two tasks and hence
the notation *SCHEDULE WFQ (invocation of one of the
two WFQ schedules in the tree). Thus, for the CID/PTI
task, there are totally �� � � � � schedules, and for the
TICK task, there are totally �� � �  schedules.

Table 4 shows the computation runs in the ATM-VPN
server model. The estimates for execution time and mem-
ory usage for each computation run are also given. The
maximum of those estimates are reported as system execu-
tion time (66 instructions) and memory usage (12 bytes).
For simplicity, we only consider buffer memory space size
estimation in this example. The actual memory usage will
be larger than 12 bytes because there will be global mem-
ory and local memory usages.

Upon execution of transition t11, there are tokens in
places p21, p22, and p23, which concurrently enables tran-
sitions PUSH, UPDATE STATE ACC, and t12 or COM-
PUTE OUT TIME. During time-memory scheduling, we
have a choice here to select one of the child nodes as the
next marking. As described in Section 3.3.1, we use earli-
est deadline first (EDF) as our selection policy. Here, the
deadlines are, respectively, 9, 15, 16, and 25, which is also

the order for selecting them as next markings (see Table 4).
Software code was then generated for the ATM VPN

server using our code generation procedure. Since the code
is a straightforward mapping of the reachability tree to a C
procedure, we have omitted it here. Branching constructs
such as if-then-else or switch-case are inserted at branching
nodes of the tree. Nodes are then replaced by actual user-
given codes.

5 Conclusion and Future Work
A formal automatic method for the synthesis of Real-

Time Embedded Software (RTES) was proposed, including
a time-memory scheduling algorithm and a code genera-
tion procedure. The resulting program code not only satis-
fied all user specified real-time and memory constraints,
but also consisted of a minimum number of scheduled
tasks, which minimized both memory usage and execution
time. The proposed method was applied to a real-world
ATM Virtual Private Network example to illustrate its fea-
sibility and advantages. Future work consists of installing
our small synthesis program into an embedded system and
into a prototyping platform for on-the-fly synthesis and
code-generation of real-time embedded software. Future
research directions include the development of methods for
automatic code generation and code modifications based
on the frequently changing dynamic needs of users, such
as web computations.
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