

TCN: Scalable Hierarchical Hypercubes

Trong-Yen Lee
Department of Electronic

Engineering
National Taipei University of
Technology, Taipei, Taiwan,

R.O.C.
tylee@ntut.edu.tw

Pao-Ann Hsiung
Department of Computer Science

and Information Engineering
National Chung Cheng

University, Chia-yi, Taiwan,
R.O.C.

hpa@computer.org

Sao-Jie Chen

Department of Electrical
Engineering

National Taiwan University,
Taipei, Taiwan

R.O.C.
csj@cc.ee.ntu.edu.tw

Abstract

Hierarchical hypercubes, such as Extended Hypercube

(EH), Hyperweave (HW), and Extended Hypercube with

Cross Connections (EHC), have been proposed to

overcome the scalability limitation of conventional

hypercubes through the use of fixed dimension hypercubes

of processing elements (PEs) as basic modules

interconnected by network controllers (NC) which are

themselves interconnected into hypercubes. The scalability

of all these three hierarchical hypercube networks is still

limited, because the average network communication load

in each NC increases as the number of interconnected PEs

become very large. In this work, a generalization scheme is

proposed for improving network scalability, namely

Transformer Cube Network (TCN). For illustration

purpose, generalized TCN is presented only for EH, though

the same scheme can be applied to HW and EHC as well.

Several characteristics of TCN, such as topological

properties, message routing complexity, fault tolerance,

and scalability are analyzed. We present a communication

algorithm for one-to-one message passing in a fault-free

case. Further, the application of TCN to a class of

divide-and-conquer problems is shown to have a time

complexity of O(log2 N), where N is the total number of PEs.

1. Introduction

In recent years, the progress in VLSI technology has

made feasible the fabrication of massively parallel

computers. Factors that affect the performance of a parallel

system include the topology of interconnection among

processors, its scalability, and its fitting to the algorithms to

be executed on the system. The hypercube topology

proposed by Squire and Palais in 1963 [1] has been proved

to be a very powerful topology, in which many other

topologies, such as rings, trees, and meshes can be

embedded. Other topologies revolving around the basic

hypercube have also been proposed [2]-[4]; they are

hypercubes with a slight generalization or modification,

each attempting to improve some of the hypercube

properties. Of course, these improvements have to be

achieved at additional costs.

However, when hypercubes are used in large systems,

there exists some practical limitations. For example, since

the node degree reflects the number of I/O ports required

per node, the fact that the hypercube node degree grows

with its dimension size is difficult for VLSI

implementation. This is the most serious drawback of

hypercube and it is considered the main limiting factor for

the use of hypercube in large systems [5]. In summary, the

node degree should be kept as a constant, as small as

possible, because a small constant node-degree is very

much desirable to achieve modularity in building basic

modules for scalable systems [6]. Therefore, several new

multiprocessor architectures have been proposed in the

literature [7]-[17] to increase computing speed and to

complement the advances in VLSI design. Such related

networks will be discussed in Section 2.

Among the class of interconnection networks proposed

for overcoming the hypercube limitation of increasing node

degree, hierarchical hypercubes including Extended

Hypercube (EH), Hyperweave (HW), and Extended

Hypercube with Cross Connections (EHC) are the most

promising ones because of their high scalabilities and

fault-tolerance capabilities. Though it appears that these

networks have high scalabilities, yet there is an inherent

structural limitation that would inhibit total scalability when

the number of processors becomes very large. The main

observation is that the network communication load

increases with the total number of PEs. This is partly due to

the fact that the number of PEs increases at a much faster

rate than the number of NCs in a system. Increasing

network communication load implies an increased message

traffic at each NC, causing a slow-down in message routing.

This degrading factor will ultimately be a bottleneck in the

overall network throughput. At this stage, the network will

no longer be scalable.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

To achieve higher scalability, we propose a

generalization scheme for hierarchical hypercubes. The

concept is relatively simple. Instead of letting each NC be

connected to a fixed number 2r of PEs, where r is the

dimension of a basic hypercube module, each NC is now

allowed to connect to 2i PEs, where i is an integer from 1 to

r. In fact, we obtain a class of interconnection networks,

called Transformer Cube Network (TCN). As the total

number of PEs increases in a massively parallel computer

system, we can increase the number of NCs to decrease the

number of PEs connected to each NC. In such a way, the

network communication load is decreased and thus greater

scalability can be achieved.

Besides greater scalability, TCN has other advantages

also. When an EH is generalized using our TCN scheme, a

greater bisection-width, thus a greater fault-tolerance

capability, is achieved through the increased number of

links in a TCN. The NC degree is also reduced because we

have more NCs now in a TCN.

This paper is organized as follows. Hypercube related

networks are briefly described in Section 2. The method of

constructing TCNs will be discussed in Section 3. Some

important topological properties of the proposed TCN are

explored in Section 4. Message routing algorithm for

fault-free-NC networks is proposed in Section 5. In Section

6, we show how TCN can solve of a class of

divide-and-conquer problems as in a hypercube. Section 7

concludes the paper with some additional remarks.

2. Previous Work

Hwang and Ghosh proposed a class of modular networks

called Hypernets [9], which integrate the positive features

of a hypercube and a tree-based topologies, and maintain a

constant node degree when the network size increases.

Thus, hypernets are more efficient than hypercubes for very

large system sizes. Recently, Malluhi and Bayoumi

proposed a Hierarchical HyperCube (HHC) [8] that

combines hypercube and Cube-Connected Cycles (CCC)

[5] in a hierarchical form. The attraction of this

interconnection network emerges from the fact that it still

retains a good performance when it is implemented with

thousands of processors. The Hierarchical Cubic Network

(HCN), presented by Ghose and Desai in [14], is a

cube-based static interconnection network which provides

the same performance as a comparable hypercube, but with

only half as many links per node. In recent years, a new

class of Hierarchical Hypercubes with Network Controllers

(HHNC) has been proposed [11]-[13]. This class of

networks uses r-dimensional hypercubes as its basic

modules and hierarchically builds up another level of

hypercube with these basic modules. The nodes at the

lowest level, level 0, are processing elements (PEs) and the

nodes at level 1 to level l are network controllers (NCs).

These networks have the advantage of constant degree of

nodes, low diameter, and scalable hypercube-based basic

modules. This class of networks includes Extended

Hypercube (EH) [11], Hyperweave (HW) [12], and

Extended Hypercube with Cross Connections (EHC) [13]

interconnection networks.

The Extended Hypercube (EH) [11], proposed by Kumar

and Patnaik, is recursively built up with basic modules

which are interconnected as r-dimensional hypercubes. The

2r PEs within each building block of basic modules are all

connected to an NC. However, EH has a poor

fault-tolerance for communication from one level to

another, because all the nodes of each r-cube rely on only

one NC for their interaction with NCs at higher levels.

Thus, HW and EHC networks focus on improving the

fault-tolerance capability of EH. The Hyperweave (HW),

being an improvement over the EH topology, has a better

node fault-tolerance, because it has a greater number of

disjoint paths between any two nodes, and a larger bisection

width than EH. Later, a combination of the EH and HW

networks, the Extended Hypercube with Cross Connections

(EHC) [13], was proposed to overcome the poor

fault-tolerance characteristics of the EH architectures. In

these networks, an NC node always connects to a fixed

number of 2r PEs, where r is the dimension of a basic

hypercube module.

In this paper, we propose a new generalized

interconnection scheme called the Transformer Cube

Network (TCN), which can be applied to all the above three

hierarchical hypercubes. For a clearer illustration, we will

describe the application of TCN to EH in details. Briefly, in

a TCN, PEs are always interconnected into basic modules.

Each module TCN(r, i, 1) has an r-cube of processing

elements (PEs) and 2r-i network controllers (NCs) as shown

in Figure 1. The PEs in a basic module are responsible for

computation and the NCs for interblock communications,

such that if any one of the NCs is faulty, the r-cube

processing elements can still communicate through the

other 2r-i-1 NCs. When the system is scaled up, the

messages can be distributed through the 2r-i NCs connected

to other basic modules. Just like an EH, when a TCN is

scaled up, its structure grows hierarchically with the

number of basic modules, but the degree of PE nodes in

each basic module is kept constant; this constant

node-degree is necessary for scalable systems. Different

(a) i = 3 (b) i = 2 (c) i = 1

Figure 1 Interconnections of TCN(3, i, 1) where
 represent NC nodes and represent PE

nodes.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

from an EH, TCN has an average message traffic density

and NC communication load lower than its counterpart EH

structure.

3. Transformer Cube Network

The proposed cube-based network, called Transformer

Cube Network (TCN), is a hierarchical hypercube network

that uses hypercubes as its basic modules. We use TCN(r, i,

l) to denote a TCN network where r is the dimension of a

basic module, i is the dimension of a sub-cube of PE or NC

connected to a single NC, and l is the level of hierarchy.

A formal method for constructing TCN is as follows. A

basic single-level TCN is denoted as TCN(r, i, 1) which has

an r-dimensional hypercube of PE nodes at level 0 and an

(r i)-dimensional hypercube of NC nodes at level 1. An NC

node at level 1 connects to 2i PE nodes at level 0. For

example, a TCN(3, 2, 2) is shown in Figure 2. In general, a

TCN(r, i, l) has (l+1) levels, such that at level k, there are

2i(l k 1) r-dimensional hypercubes, where 0 k l 1 and at

level l there is an (r i)-dimension hypercube. For an

r-dimensional hypercube at level k, 2i nodes are connected

to a node at level (k+1).

A TCN(r, i, l) can be modeled by an undirected graph

G(V, E), where the set of vertices V represents P Q, P is

the set of PEs, and Q is the set of NCs. The nodes are

labeled as follows:

P = {Xl Xl-1 ... Xj ... X0 | 0 Xl 2r i, 0 Xj 2i, 0 j l 1}

Q = {Xl Xl-1 ... Xj | 0 Xl 2r i, 0 Xj 2i, 1 j l 1}.

Alternatively, the binary form for labeling a node is denoted

as follows:

Binary(Xl Xl-1 ... Xj ... X0) = bitsr i(Xl) bitsi(Xl-1) ... bitsi(X0),

where bitsr i(Xl) is the binary representation Xl in r i bits

and bitsi(Xj) is the binary representation of Xj in i bits, 0 j

l 1. Processing elements (PEs) and network controllers

(NCs) of the network plus the set of edges (links) E,

respectively serve as the computation and communication

links of a network. The set of vertices V includes 2i (l 1)

r-cubes of processing elements at level 0 and

2r-i(2i l 1)/(2i 1) network controllers at l levels (from level

1 to level l).

The set of edges E is the union of two sets E1 E2. E1

represents the links between PEs in each r-cube at level 0 or

the links between NCs in each r-cube at level 1 to level l,

these links are called hypercube links. E2 represents the

links connecting an NC node at a higher level to a set of NC

nodes at the next lower level or to PE nodes at level 0, these

links are called tree links. Let E(X, X) represent a link

between nodes X and X . The union of sets E1 and E2 is

defined as follows:

E1 = {(X, X) | X and X are neighboring nodes in the same

hypercube}

E2 = {(X, X) | X = Xl Xl-1 ... Xj Q, X = Xl Xl-1 ... Xj Xj 1 P

or Q, where 1 j l}

As an illustration, Figure 2 shows a TCN(3, 2, 2), which has

four basic 3-cube modules of PE nodes at level 0,

interconnected by 8 NC nodes at level 1 and 2 NC nodes at

level 2.

4. Topological Properties of Transformer

Cube Network

In this section, some important properties of TCN are

analyzed. Using the basic properties, we will derive the

average network communication load for each NC. We will

then deduce the fact that the NC load in a TCN(r, i, l)

becomes lower than that in an EH(r, l) as i is decreased, i <

r.

Figure 2 Interconnections in a TCN(3, 2, 2)

Level 2 --

Level 1-------

Level 0

Level 1 ------

Level 2 ---------------------------------------

0

1

10
11 13

12

00 01 02 03

000 001

002 003

100 101

102 103

011 021 031

113 123 133

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

4.1. Network Diameter

The diameter of a network is defined as the maximum

distance between any pair of processors. The distance

between a pair of processors is the smallest number of links

that have to be traversed from one processor to the other

[18]. The diameter of a TCN(r, i, l) is given as:

D = i + 2l, where l 1. (1)

4.2. Network Nodes and Link Complexity

A basic module TCN(r, i, 1) consists of 2r PE nodes and

2r-i NC nodes. If the parameters r and i of a basic module are

decided, then the number of PE and NC nodes in a TCN(r, i,

l) will grow with l only, a general expression is given as:

Number of PE nodes =) , ,(
PE

lirN = 2r+i (l-1),

where l 1, 1 i r. (2)

Number of NC nodes =) , ,(
NC

lirN = 2r-i
12

12
i

il

,

where l 1, 1 i r. (3)

The degree of an interconnection is defined as the

maximum node-degree [18]. The PE and NC node-degrees

in a TCN are respectively given as follows:

) , ,(
PE

lirDG = r + 1, (4)

) , ,(
NC

lirDG = 2i + r + 1, (5)

where l 1.

In a TCN network, since the degrees of PE and NC nodes

are different, the average node degree, denoted as ADG [11]

in Equation (6), will be used instead:

 ADG = (NPE DGPE + NNC DGNC)/(NPE + NNC). (6)

The total number of links L(r, i, l) in a TCN(r, i, l) is given

by

.1 and 1 where,
12

12
2

12

12
22)(22),,(

)1(

1

1)1(1

rilr

irrlirL

i

li

r

i

li

rirlir

 (7)

A multiprocessor system with a large diameter network

has a very low message passing bandwidth. Further, a

network with a high node degree is very expensive to build.

A multiprocessor system is often evaluated by the system

cost factor which is given by the product of diameter and

network node-degree. Hence, the system cost factor of

TCN, denoted as CF, is given by:

CF = D ADG (8)

4.3. Average Distance and Message Traffic Density

One important measure of merit of a multiprocessor

system is the average internode distance that messages must

travel in the interconnection network. It is advantageous to

make this parameter as low as possible, because it will not

only reduce message traveling time, but also minimize

message density in the link.

The average distance, denoted by P, is calculated as the

sum of the distance of a particular node to nodes within the

same basic module and to nodes in the other basic modules

divided by N-1, as shown below:

.2), , ,TCN(for

),1/()2(

);1 , ,TCN(for),1/()(

1 2

)1(2

12

)1(

1

llir

Ndqd
d

r

irNd
d

r

P r

d

l

j

jr

jd

ji

r

d

 (9)

The average message traffic density, denoted by , in a

TCN network is defined as:

LNP /
PE

 (10)

where P is given in Equation (9), NPE in Equation (2), and L

in Equation (7).

4.4. Connectivity Analysis

The node (link) connectivity of a network is the

minimum number of nodes (links) whose removal results in

a disconnected network [19]. If the node (link) connectivity

is k, then the network can tolerate the failure of at most (k

1) nodes (links), while maintaining its connectivity. In a

TCN, it is easy to observe that the PE node (or link)

connectivity is r+1 and the NC node (or link) connectivity is

(2i + r + 1). As for the basic module connectivity (BC), if the

2r-i NCs in any basic module are faulty, then this basic

module is disconnected from the other basic modules.

Therefore, the basic module node connectivity is 2r-i.

4.5. Network Communication Load

The average network communication load is the total

message traffic at each NC node. This can be obtained by

the product of the average message traffic density and the

NC degree.

LDNPDloadNC
NCNC

/_
PE

 (11)

As we can see from Equation (11), NC_load is directly

proportionate to the total number of PE nodes. Hence, on

scaling up the system, a large NPE would result in a high

communication load.

4.6. Typical Values of TCN and Comparision with

Other Networks

Some typical important properties of TCN are shown in

Table 1. Comparisions with other neworks are shown in

Table 2.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

Table 1 Summary of Topology Properties for a
TCN(r, i, l)

r i L NPE NNC DNC L P NC_load D Bc

1 4 2 5 9 1.33 0.59 2.05 3 2

2 8 6 5 25 2.57 0.82 4.10 5 2

3 16 14 5 57 4.13 1.16 5.80 7 2

4 32 30 5 121 5.87 1.55 7.75 9 2

1

5 64 62 5 249 7.71 1.98 9.90 11 2

1 4 1 7 8 1.33 0.67 4.69 4 1

2 16 5 7 40 2.93 1.17 8.19 6 1

3 64 21 7 168 4.76 1.81 12.67 8 1

4 256 85 7 680 6.70 2.52 17.64 10 1

2

2

5 1024 341 7 2728 8.68 3.26 22.82 12 1

1 8 4 6 24 1.71 0.57 3.42 4 4

2 16 12 6 64 2.93 0.32 1.92 6 4

3 32 28 6 144 4.52 1.00 6.00 8 4

4 64 60 6 304 6.29 1.32 7.92 10 4

1

5 128 124 6 624 8.16 1.67 10.02 12 4

1 8 2 8 21 1.71 0.65 5.20 4 2

2 32 10 8 101 3.35 1.06 8.48 6 2

3 128 42 8 421 5.23 1.59 12.72 8 2

4 512 170 8 1701 7.18 2.16 17.28 10 2

2

5 2048 682 8 6821 9.17 2.75 22.00 12 2

1 8 1 12 20 1.71 0.68 8.16 5 1

2 64 9 12 180 3.47 1.23 14.76 7 1

3 512 73 12 1460 5.44 1.91 22.92 9 1

4 4096 585 12 11700 7.43 2.60 31.20 11 1

3

3

5 32768 4681 12 93620 9.43 3.30 39.60 13 1

Table 2 Comparisions of TCN(r, i, l) with Other
Networks

 TCN(r, i, l) EH(r, l) EHC(r, l) HW(r, l)
Basic Module
Connectivity 2r-i 1 r+1 r

NC_load Low High Middle High

5. Message Routing in TCN

In this section, we will generalize fault-free message

routing algorithm for TCN. Routing is defined as the

passing of messages from a source node through a network

path to a destination node.

Suppose that all nodes are available, the procedure for

routing a message M from a source PE node S with label Sl

Sl-1 ... S0 to a destination PE node D with label Dl Dl-1 ... D0

in a TCN(r, i, l) involves the following two cases.

Case 1: Source and destination PE nodes are located within

the same basic module.

Case 2: The source node and the destination nodes are

located in two different basic modules.

The routing algorithm is given in Algorithm 1. As an

illustration, let us consider the topology of a TCN(3, 2, 2) in

Figure 2. Assume that the source node has label “000” and

the destination node has label “011”. The source node and

destination node are located in difference basic modules.

The value of (r i) is 1; therefore, the value of j is (l 1), i.e.

2. So, the message is routed from the source PE node “000”

to the NC node “00” through tree links. Using a hypercube

self-routing algorithm, the message is routed from NC

nodes “00” to “01”. Finally, the message is routed from the

NC node “01” to to the destination node “011” through tree

links.

Algorithm 1 Fault-Free Message Routing on a

TCN(r, i, l)
procedure fault-free-node-to-node-routing (S, D, M)
{Route message M from source S, labeled by Sl Sl-1 ... S0, to

destination D, labeled by Dl Dl-1 ... D0 in TCN(r, i, l)}
begin
 if A = B then {Source and destination are the same node}

Terminate;
 end;{if}
 if Sl Sl-1 Sl-2 ... S1 = Dl Dl-1 Dl-2 ... D1 && (r i) < 2 then

{Case 1: S and D are located within the same basic module}
 route message M from S to D using a hypercube self-routing

algorithm;
 else begin{Case 2: S and D are located in different basic

modules}
if Sl-1 Sl-2 ... Sr i = Dl-1 Dl-2 ... Dr i && (r i) 2 then

 for k = 0 to (r i 2) do
if bitk(Sl) bitk(Dl); break;{exit if S and D are in
different basic modules}
end;{if}

end;{for}
 route message M from S to D using a hypercube

self-routing algorithm
else begin

if (r i) 2 then
for k = 0 to (r i 2) do

if bitk(Sl) bitk(Dl) then j = l 1; break; end;{if}
end;{for}

end;{if}
if (r i) 2 || j l 1 then

for = (l 1) down to (r i 2) do
if Sk Dk then j = k; break; end;{if}

end;{for}
end;{if}
shift message M from NC node Sl Sl-1 ... S0 to NC node
Sl Sl-1 ... Sj through tree links
route message M from NC node Sl Sl-1 ... Sj to NC node
Dl Dl-1 Dl-2 ... Dj using a hypercube self-routing
algorithm
shift message M from NC node Dl Dl-1 Dl-2 ... Dj to PE
node Dl Dl-1 Dl-2 ... D1D0

end;{begin}
end;{if}

end;{begin}
end;{if}

end;{begin}

6. Embedding TCN for the Class of
Divide-and-Conquer Algorithms

In this section, we demonstrate how the TCN topology

can be employed to solve the divide-and-conquer (D&Q)

class of problems. The three steps involved in a

divide-and-conquer paradigm were described in [8]

including divide, conquer, and combine.

Assume that the input U consists of n = 2k values U(0),

U(1), ..., U(n-1). Each basic operation OP(U[m], U[m+2m])

modifies the two data items presented in storage locations

U[m] and U[m+2m]; the computation performed affects only

the contents of locations U[m] and U[m+2m]. The class of

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

algorithms described above is similar to the ascent class [2].

In the following, we explain how TCN can be used to

execute the parallel_D&Q algorithm.

Suppose we have 32 data to store in the PEs of a TCN(3,

2, 2) and each PE holds one data. For example, input data

U(0), U(1), ..., U(7) are stored in 000, 001, ..., 103 PE nodes

of the left-most basic module, and others data are stored

similarly in PE nodes of other basic modules. Applying the

D&Q algorithm to the TCN(r, i, l), for 0 j < r, each

operation OP(U[m], U[m+2m]) is separated by a single link

of the r-dimensional hypercube, whereas for r j < q, each

operation OP(U[m], U[m+2m]) is separated by external links

(tree links) and links passing through NC nodes. The

implementation of the D&Q on a TCN(r, i, l) is shown in

Algorithm 2. The D&Q algorithm can be implemented in

O(log2 N) steps.

Algorithm 2 Divide-and-Conquer Algorithm in a
TCN(r, i, l)

procedure TCN_D&Q(U)
 for j = 0 to q-1 do{where q = r + i(l-1); r, i and l represent the

dimension of a basic module, the dimension
of PEs or NCs connected by a NC, and the
network level, respectively.}

 for each m| 0 m N do
 cobegin
 if bitj (m) = 0 then
 OP(U[m], U[m+2m]);
 coend
end{end of TCN_D&Q}

7. Conclusion

We have presented a scheme called the Transformer

Cube Network (TCN) to generalize hierarchical hypercube

networks, such as Extended Hypercube (EH), Hyperweave

(HW), and Extended Hypercube with Cross Connections

(EHC). Just like its predecessors, TCN can be used to

interconnect massively parallel systems but owns a greater

scalability, because the number of processing elements

connected to a single network controller in TCN is flexible.

Other attractive properties of TCN are its higher bisection

width and its greater fault-tolerance capability. We have

shown that the cost factor of a TCN, given by (degree of

node diameter), is less than that of a hypercube. We have

also presented one-to-one message routing algorithm

dealing with fault-free-NC. Lastly, the paper described how

TCN can be efficiently used to execute a large class of

algorithms, the divide-and-conquer (D&Q) class. These

versatile properties of TCN make it an attractive candidate

for practical multiprocessor and distributed computing

systems.

References

[1] S. Sqire and S. M. Palais, “Programming and design

consideration for a highly parallel computer,” in Proc. AFIP

Spring Joint Comp. Conf., vol. 23, pp. 395-400, 1963.

[2] E1-Amawy and S. Latifi, “Properties and performance of

folded hypercubes,” IEEE Trans. on Parallel and

Distributed Systems, vol. 2, no. 1, pp. 31-42, January 1991.

[3] H. P. Katseff, “Incomplete hypercubes,” IEEE Trans. on

Computers, vol. C-37, no. 5, pp. 604-608, April 1988.

[4] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube

and hyperbus structures for a computer network,” IEEE

Trans. on Computers, vol. C-33, no. 4, pp. 323-333, April

1984.

[5] F. P. Preparata and J. E. Vuillemin, “The cube-connected

cycles: A versatile network for parallel computation,”

Commun. ACM, vol. 24, no. 5, pp. 300-309, May 1981.

[6] K. Hwang, Advanced Computer Architecture: Parallelism,

Scalability, Programmability, McGraw-Hill Inc. 1993.

[7] E. Ganesan and D. K. Pradhan, “The hyper-deBruijn

networks: Scalable versatile architecture,” IEEE Trans. on

Parallel and Distributed Systems, vol. 4, no. 9, pp. 962-978,

September 1993.

[8] Q. M. Malluhi and M. A. Bayoumi, “The hierarchical

hypercube: A new interconnection topology for massively

parallel systems,” IEEE Trans. on Parallel and Distributed

Systems, vol. 5, no. 1, pp. 17-30, January 1994.

[9] K. Hwang and J. Ghosh, “Hypernet: A

communication-efficient architecture for constructing

massively parallel computers,” IEEE Trans. on Computers,

vol. C-36, no. 12, pp. 1450-1466, December 1987.

[10] S. Lakshmivarahan and S. K. Dhall, “A new hierarchy of

hypercube interconnection schemes for parallel computers,”

Journal of Supercomputing, vol. 2, pp. 81-108, 1988.

[11] J. M. Kumar and L. M. Patnaik, “Extended hypercube: A

hierarchical interconnection network of hypercubes,” IEEE

Trans. on Parallel and Distributed Systems, vol. 3, no. 1, pp.

45-57, January 1992.

[12] G. Rarnanathan, M. Clement and P. Crandall, “Hyperweave:

A fault-tolerant expandable interconnection network,” in

IEEE Symposium on Parallel and Distributed Processing,

Dallas, USA, pp. 479-482, Dec. 1992.

[13] J. M. Kumar, “Fault-tolerant hierarchical network of

hypercubes,” in Proc. of the First International Workshop

on Parallel Processing. Bangalore, India, pp. 29-34, Dec.

1994.

[14] K. Ghose and K. R. Desai, “Hierarchical cubic networks,”

IEEE Trans. on Parallel and Distributed Systems, vol. 6, no.

4, pp. 427-435, April 1995.

[15] S. P. Dandamudi and D. L. Eager, “Hierarchical

interconnection networks for multicomputer systems,” IEEE

Trans. on Computers, vol. 39, no. 6, pp. 786-797, June 1990.

[16] S. P. Dandamudi and D. L. Eager, “On hypercube-based

hierarchical interconnection network design,” Journal of

Parallel and Distributed Computing, vol.12, pp. 283-289,

1991.

[17] M. A. Aboelaze, “MLH: A hierarchical hypercube

network,” Networks, vol. 28, pp. 157-165, 1996.

[18] F. T. Leighton, Introduction to Parallel Algorithms and

Architectures: Arrays, Trees, Hypercubes, Morgan

Kaufmann, SanMateo, Calif., 1992.

[19] D. Z. Du and F. K. Hwang, “Generalized deBruijn

digraphs,” Networks, vol. 18, no. 1, pp. 27-38, 1988.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

