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Abstract 
 
Hierarchical hypercubes, such as Extended Hypercube 

(EH), Hyperweave (HW), and Extended Hypercube with 

Cross Connections (EHC), have been proposed to 

overcome the scalability limitation of conventional 

hypercubes through the use of fixed dimension hypercubes 

of processing elements (PEs) as basic modules 

interconnected by network controllers (NC) which are 

themselves interconnected into hypercubes. The scalability 

of all these three hierarchical hypercube networks is still 

limited, because the average network communication load 

in each NC increases as the number of interconnected PEs 

become very large. In this work, a generalization scheme is 

proposed for improving network scalability, namely 

Transformer Cube Network (TCN). For illustration 

purpose, generalized TCN is presented only for EH, though 

the same scheme can be applied to HW and EHC as well. 

Several characteristics of TCN, such as topological 

properties, message routing complexity, fault tolerance, 

and scalability are analyzed. We present a communication 

algorithm for one-to-one message passing in a fault-free 

case. Further, the application of TCN to a class of 

divide-and-conquer problems is shown to have a time 

complexity of O(log2 N), where N is the total number of PEs. 

 

 

1. Introduction 
 

In recent years, the progress in VLSI technology has 

made feasible the fabrication of massively parallel 

computers. Factors that affect the performance of a parallel 

system include the topology of interconnection among 

processors, its scalability, and its fitting to the algorithms to 

be executed on the system. The hypercube topology 

proposed by Squire and Palais in 1963 [1] has been proved 

to be a very powerful topology, in which many other 

topologies, such as rings, trees, and meshes can be 

embedded. Other topologies revolving around the basic 

hypercube have also been proposed [2]-[4]; they are 

hypercubes with a slight generalization or modification, 

each attempting to improve some of the hypercube 

properties. Of course, these improvements have to be 

achieved at additional costs. 

However, when hypercubes are used in large systems, 

there exists some practical limitations. For example, since 

the node degree reflects the number of I/O ports required 

per node, the fact that the hypercube node degree grows 

with its dimension size is difficult for VLSI 

implementation. This is the most serious drawback of 

hypercube and it is considered the main limiting factor for 

the use of hypercube in large systems [5]. In summary, the 

node degree should be kept as a constant, as small as 

possible, because a small constant node-degree is very 

much desirable to achieve modularity in building basic 

modules for scalable systems [6]. Therefore, several new 

multiprocessor architectures have been proposed in the 

literature [7]-[17] to increase computing speed and to 

complement the advances in VLSI design. Such related 

networks will be discussed in Section 2. 

Among the class of interconnection networks proposed 

for overcoming the hypercube limitation of increasing node 

degree, hierarchical hypercubes including Extended 

Hypercube (EH), Hyperweave (HW), and Extended 

Hypercube with Cross Connections (EHC) are the most 

promising ones because of their high scalabilities and 

fault-tolerance capabilities. Though it appears that these 

networks have high scalabilities, yet there is an inherent 

structural limitation that would inhibit total scalability when 

the number of processors becomes very large. The main 

observation is that the network communication load 

increases with the total number of PEs. This is partly due to 

the fact that the number of PEs increases at a much faster 

rate than the number of NCs in a system. Increasing 

network communication load implies an increased message 

traffic at each NC, causing a slow-down in message routing. 

This degrading factor will ultimately be a bottleneck in the 

overall network throughput. At this stage, the network will 

no longer be scalable. 
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To achieve higher scalability, we propose a 

generalization scheme for hierarchical hypercubes. The 

concept is relatively simple. Instead of letting each NC be 

connected to a fixed number 2r of PEs, where r is the 

dimension of a basic hypercube module, each NC is now 

allowed to connect to 2i PEs, where i is an integer from 1 to 

r. In fact, we obtain a class of interconnection networks, 

called Transformer Cube Network (TCN). As the total 

number of PEs increases in a massively parallel computer 

system, we can increase the number of NCs to decrease the 

number of PEs connected to each NC. In such a way, the 

network communication load is decreased and thus greater 

scalability can be achieved. 

Besides greater scalability, TCN has other advantages 

also. When an EH is generalized using our  TCN scheme,  a 

greater bisection-width, thus a greater fault-tolerance 

capability, is achieved through the increased number of 

links in a TCN. The NC degree is also reduced because we 

have more NCs now in a TCN. 

This paper is organized as follows. Hypercube related 

networks are briefly described in Section 2. The method of 

constructing TCNs will be discussed in Section 3. Some 

important topological properties of the proposed TCN are 

explored in Section 4. Message routing algorithm for 

fault-free-NC networks is proposed in Section 5. In Section 

6, we show how TCN can solve of a class of 

divide-and-conquer problems as in a hypercube. Section 7 

concludes the paper with some additional remarks. 

 

2. Previous Work 
 

Hwang and Ghosh proposed a class of modular networks 

called Hypernets [9], which integrate the positive features 

of a hypercube and a tree-based topologies, and maintain a 

constant node degree when the network size increases. 

Thus, hypernets are more efficient than hypercubes for very 

large system sizes. Recently, Malluhi and Bayoumi 

proposed a Hierarchical HyperCube (HHC) [8] that 

combines hypercube and Cube-Connected Cycles (CCC) 

[5] in a hierarchical form. The attraction of this 

interconnection network emerges from the fact that it still 

retains a good performance when it is implemented with 

thousands of processors. The Hierarchical Cubic Network 

(HCN), presented by Ghose and Desai in [14], is a 

cube-based static interconnection network which provides 

the same performance as a comparable hypercube, but with 

only half as many links per node. In recent years, a new 

class of Hierarchical Hypercubes with Network Controllers 

(HHNC) has been proposed [11]-[13]. This class of 

networks uses r-dimensional hypercubes as its basic 

modules and hierarchically builds up another level of 

hypercube with these basic modules. The nodes at the 

lowest level, level 0, are processing elements (PEs) and the 

nodes at level 1 to level l are network controllers (NCs). 

These networks have the advantage of constant degree of 

nodes, low diameter, and scalable hypercube-based basic 

modules. This class of networks includes Extended 

Hypercube (EH) [11], Hyperweave (HW) [12], and 

Extended Hypercube with Cross Connections (EHC) [13] 

interconnection networks.  

The Extended Hypercube (EH) [11], proposed by Kumar 

and Patnaik, is recursively built up with basic modules 

which are interconnected as r-dimensional hypercubes. The 

2r PEs within each building block of basic modules are all 

connected to an NC. However, EH has a poor 

fault-tolerance for communication from one level to 

another, because all the nodes of each r-cube rely on only 

one NC for their interaction with NCs at higher levels. 

Thus, HW and EHC networks focus on improving the 

fault-tolerance capability of EH. The Hyperweave (HW), 

being an improvement over the EH topology, has a better 

node fault-tolerance, because it has a greater number of 

disjoint paths between any two nodes, and a larger bisection 

width than EH. Later, a combination of the EH and HW 

networks, the Extended Hypercube with Cross Connections 

(EHC) [13], was proposed to overcome the poor 

fault-tolerance characteristics of the EH architectures. In 

these networks, an NC node always connects to a fixed 

number of 2r PEs, where r is the dimension of a basic 

hypercube module. 

In this paper, we propose a new generalized 

interconnection scheme called the Transformer Cube 

Network (TCN), which can be applied to all the above three 

hierarchical hypercubes. For a clearer illustration, we will 

describe the application of TCN to EH in details. Briefly, in 

a TCN, PEs are always interconnected into basic modules. 

Each module TCN(r, i, 1) has an r-cube of processing 

elements (PEs) and 2r-i network controllers (NCs) as shown 

in Figure 1. The PEs in a basic module are responsible for 

computation and the NCs for interblock communications, 

such that if any one of the NCs is faulty, the r-cube 

processing elements can still communicate through the 

other 2r-i-1 NCs. When the system is scaled up, the 

messages can be distributed through the 2r-i NCs connected 

to other basic modules. Just like an EH, when a TCN is 

scaled up, its structure grows hierarchically with the 

number of basic modules, but the degree of PE nodes in 

each basic module is kept constant; this constant 

node-degree is necessary for scalable systems. Different 

 

(a) i = 3          (b) i = 2              (c) i = 1 

Figure 1 Interconnections of TCN(3, i, 1) where 
 represent NC nodes and  represent  PE

nodes.
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from an EH, TCN has an average message traffic density 

and NC communication load lower than its counterpart EH 

structure. 

 

3. Transformer Cube Network 
 

The proposed cube-based network, called Transformer 

Cube Network (TCN), is a hierarchical hypercube network 

that uses hypercubes as its basic modules. We use TCN(r, i, 

l) to denote a TCN network where r is the dimension of a 

basic module, i is the dimension of a sub-cube of PE or NC 

connected to a single NC, and l is the level of hierarchy. 

A formal method for constructing TCN is as follows. A 

basic single-level TCN is denoted as TCN(r, i, 1) which has 

an r-dimensional hypercube of PE nodes at level 0 and an 

(r i)-dimensional hypercube of NC nodes at level 1. An NC 

node at level 1 connects to 2i PE nodes at level 0. For 

example, a TCN(3, 2, 2) is shown in Figure 2. In general, a 

TCN(r, i, l) has (l+1) levels, such that at level k, there are 

2i(l k 1) r-dimensional hypercubes, where 0  k  l 1 and at 

level l there is an (r i)-dimension hypercube. For an 

r-dimensional hypercube at level k, 2i nodes are connected 

to a node at level (k+1). 

A TCN(r, i, l) can be modeled by an undirected graph 

G(V, E), where the set of vertices V represents P  Q, P is 

the set of PEs, and Q is the set of NCs. The nodes are 

labeled as follows: 

P = {Xl Xl-1 ... Xj ... X0 | 0  Xl  2r i, 0  Xj  2i, 0  j  l  1} 

Q = {Xl Xl-1 ... Xj  | 0  Xl  2r i, 0  Xj  2i, 1  j  l  1}. 

Alternatively, the binary form for labeling a node is denoted 

as follows: 

Binary(Xl Xl-1 ... Xj ... X0) = bitsr i(Xl) bitsi(Xl-1) ... bitsi(X0), 

where bitsr i(Xl) is the binary representation Xl in r i bits 

and bitsi(Xj) is the binary representation of Xj in i bits, 0  j  

l  1. Processing elements (PEs) and network controllers 

(NCs) of the network plus the set of edges (links) E, 

respectively serve as the computation and communication 

links of a network. The set of vertices V includes 2i (l 1) 

r-cubes of processing elements at level 0 and 

2r-i(2i l 1)/(2i 1) network controllers at l levels (from level 

1 to level l). 

The set of edges E is the union of two sets E1  E2. E1 

represents the links between PEs in each r-cube at level 0 or 

the links between NCs in each r-cube at level 1 to level l, 

these links are called hypercube links. E2 represents the 

links connecting an NC node at a higher level to a set of NC 

nodes at the next lower level or to PE nodes at level 0, these 

links are called tree links. Let E(X, X ) represent a link 

between nodes X and X . The union of sets E1 and E2 is 

defined as follows: 

E1 = {(X, X ) | X and X  are neighboring nodes in the same 

hypercube} 

E2 = {(X, X ) | X = Xl Xl-1 ... Xj  Q, X  = Xl Xl-1 ... Xj Xj 1  P 

or Q, where 1  j  l} 

As an illustration, Figure 2 shows a TCN(3, 2, 2), which has 

four basic 3-cube modules of PE nodes at level 0, 

interconnected by 8 NC nodes at level 1 and 2 NC nodes at 

level 2. 

 

4. Topological Properties of Transformer 

Cube Network 
 

In this section, some important properties of TCN are 

analyzed. Using the basic properties, we will derive the 

average network communication load for each NC. We will 

then deduce the fact that the NC load in a TCN(r, i, l) 

becomes lower than that in an EH(r, l) as i is decreased, i < 

r. 

Figure 2   Interconnections in a TCN(3, 2, 2) 
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4.1. Network Diameter 
 

The diameter of a network is defined as the maximum 

distance between any pair of processors. The distance 

between a pair of processors is the smallest number of links 

that have to be traversed from one processor to the other 

[18]. The diameter of a TCN(r, i, l) is given as: 

D = i + 2l, where l  1.  (1) 

 

4.2. Network Nodes and Link Complexity 
 

A basic module TCN(r, i, 1) consists of 2r PE nodes and 

2r-i NC nodes. If the parameters r and i of a basic module are 

decided, then the number of PE and NC nodes in a TCN(r, i, 

l) will grow with l only, a general expression is given as: 

Number of PE nodes = ) , ,(
PE

lirN  = 2r+i (l-1), 

where l  1, 1  i  r.  (2) 

Number of NC nodes = ) , ,(
NC

lirN  = 2r-i 
12

12
i

il

, 

where l  1, 1  i  r. (3) 

The degree of an interconnection is defined as the 

maximum node-degree [18]. The PE and NC node-degrees 

in a TCN are respectively given as follows: 

) , ,(
PE

lirDG = r + 1, (4) 

) , ,(
NC

lirDG = 2i + r + 1,  (5) 

where l  1. 

In a TCN network, since the degrees of PE and NC nodes 

are different, the average node degree, denoted as ADG [11] 

in Equation (6), will be used instead:  

    ADG = (NPE  DGPE + NNC  DGNC)/(NPE + NNC). (6) 

The total number of links L(r, i, l) in a TCN(r, i, l) is given 

by 

.1 and 1  where,
12

12
2               

12

12
22)(22),,(

)1(

1

1)1(1

rilr

irrlirL

i

li

r

i

li

rirlir

 (7) 

A multiprocessor system with a large diameter network 

has a very low message passing bandwidth. Further, a 

network with a high node degree is very expensive to build. 

A multiprocessor system is often evaluated by the system 

cost factor which is given by the product of diameter and 

network node-degree. Hence, the system cost factor of 

TCN, denoted as CF, is given by:  

CF = D  ADG   (8) 

 

4.3. Average Distance and Message Traffic Density 
 

One important measure of merit of a multiprocessor 

system is the average internode distance that messages must 

travel in the interconnection network. It is advantageous to 

make this parameter as low as possible, because it will not 

only reduce message traveling time, but also minimize 

message density in the link. 

The average distance, denoted by P, is calculated as the 

sum of the distance of a particular node to nodes within the 

same basic module and to nodes in the other basic modules 

divided by N-1, as shown below: 

.2 ), , ,TCN(for                                      

   ),1/(  )2(

        );1 , ,TCN(for        ),1/()(

1 2

)1(2

12

)1(

1

llir

Ndqd
d

r

irNd
d

r

P r

d

l

j

jr

jd

ji

r

d

 (9) 

The average message traffic density, denoted by , in a 

TCN network is defined as:  

LNP /
PE

  (10) 

where P is given in Equation (9), NPE in Equation (2), and L 

in Equation (7). 

 
4.4. Connectivity Analysis 
 

The node (link) connectivity of a network is the 

minimum number of nodes (links) whose removal results in 

a disconnected network [19]. If the node (link) connectivity 

is k, then the network can tolerate the failure of at most (k  

1) nodes (links), while maintaining its connectivity. In a 

TCN, it is easy to observe that the PE node (or link) 

connectivity is r+1 and the NC node (or link) connectivity is 

(2i + r + 1). As for the basic module connectivity (BC), if the 

2r-i NCs in any basic module are faulty, then this basic 

module is disconnected from the other basic modules. 

Therefore, the basic module node connectivity is 2r-i. 

 

4.5. Network Communication Load 
 

The average network communication load is the total 

message traffic at each NC node. This can be obtained by 

the product of the average message traffic density and the 

NC degree. 

LDNPDloadNC
NCNC

/_
PE

 (11) 

As we can see from Equation (11), NC_load is directly 

proportionate to the total number of PE nodes. Hence, on 

scaling up the system, a large NPE would result in a high 

communication load. 

 

4.6. Typical Values of TCN and Comparision with 

Other Networks 
 

Some typical important properties of TCN are shown in 

Table 1. Comparisions with other neworks are shown in 

Table 2. 
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Table 1 Summary of Topology Properties for a 
TCN(r, i, l) 

r i L NPE NNC DNC L P  NC_load D Bc

1 4 2 5 9 1.33 0.59 2.05 3 2

2 8 6 5 25 2.57 0.82 4.10 5 2

3 16 14 5 57 4.13 1.16 5.80 7 2

4 32 30 5 121 5.87 1.55 7.75 9 2

1 

5 64 62 5 249 7.71 1.98 9.90 11 2

1 4 1 7 8 1.33 0.67 4.69 4 1

2 16 5 7 40 2.93 1.17 8.19 6 1

3 64 21 7 168 4.76 1.81 12.67 8 1

4 256 85 7 680 6.70 2.52 17.64 10 1

2 

2 

5 1024 341 7 2728 8.68 3.26 22.82 12 1

1 8 4 6 24 1.71 0.57 3.42 4 4

2 16 12 6 64 2.93 0.32 1.92 6 4

3 32 28 6 144 4.52 1.00 6.00 8 4

4 64 60 6 304 6.29 1.32 7.92 10 4

1 

5 128 124 6 624 8.16 1.67 10.02 12 4

1 8 2 8 21 1.71 0.65 5.20 4 2

2 32 10 8 101 3.35 1.06 8.48 6 2

3 128 42 8 421 5.23 1.59 12.72 8 2

4 512 170 8 1701 7.18 2.16 17.28 10 2

2 

5 2048 682 8 6821 9.17 2.75 22.00 12 2

1 8 1 12 20 1.71 0.68 8.16 5 1

2 64 9 12 180 3.47 1.23 14.76 7 1

3 512 73 12 1460 5.44 1.91 22.92 9 1

4 4096 585 12 11700 7.43 2.60 31.20 11 1

3 

3 

5 32768 4681 12 93620 9.43 3.30 39.60 13 1

 

Table 2 Comparisions of TCN(r, i, l) with Other 
Networks 

 TCN(r, i, l) EH(r, l) EHC(r, l) HW(r, l)
Basic Module 
Connectivity 2r-i 1 r+1 r 

NC_load Low High Middle High

 

5. Message Routing in TCN
 

In this section, we will generalize fault-free message 

routing algorithm for TCN. Routing is defined as the 

passing of messages from a source node through a network 

path to a destination node. 

Suppose that all nodes are available, the procedure for 

routing a message M from a source PE node S with label Sl 

Sl-1 ... S0 to a destination PE node D with label Dl Dl-1 ... D0 

in a TCN(r, i, l) involves the following two cases. 

Case 1: Source and destination PE nodes are located within 

the same basic module. 

Case 2: The source node and the destination nodes are 

located in two different basic modules. 

The routing algorithm is given in Algorithm 1. As an 

illustration, let us consider the topology of a TCN(3, 2, 2) in 

Figure 2. Assume that the source node has label “000” and 

the destination node has label “011”. The source node and 

destination node are located in difference basic modules. 

The value of (r i) is 1; therefore, the value of j is (l 1), i.e. 

2. So, the message is routed from the source PE node “000” 

to the NC node “00” through tree links. Using a hypercube 

self-routing algorithm, the message is routed from NC 

nodes “00” to “01”. Finally, the message is routed from the 

NC node “01” to to the destination node “011” through tree 

links. 

 
Algorithm 1 Fault-Free Message Routing on a 

TCN(r, i, l) 
procedure fault-free-node-to-node-routing (S, D, M) 
{Route message M from source S, labeled by Sl Sl-1 ... S0, to 

destination D, labeled by Dl Dl-1 ... D0 in TCN(r, i, l)} 
begin  
    if A = B then {Source and destination are the same node} 

Terminate; 
    end;{if} 
    if  Sl Sl-1 Sl-2 ... S1 = Dl Dl-1 Dl-2 ... D1 && (r  i) < 2 then  

{Case 1: S and D are located within the same basic module} 
 route message M from S to D using a hypercube self-routing 

algorithm; 
    else begin{Case 2: S and D are located in different basic 

modules} 
if  Sl-1 Sl-2 ... Sr i = Dl-1 Dl-2 ... Dr i && (r  i)  2 then 

    for  k = 0 to (r  i  2) do 
if  bitk(Sl)  bitk(Dl); break;{exit if S and D are in  
different basic modules} 
end;{if} 

end;{for} 
 route message M from S to D using a hypercube 

self-routing algorithm 
else begin 

if (r  i)  2 then 
for k = 0 to (r  i  2) do 

if bitk(Sl)  bitk(Dl) then j = l  1; break; end;{if} 
end;{for} 

end;{if} 
if (r  i)  2 || j  l  1 then 

for = (l  1) down to (r  i  2) do 
if Sk  Dk then j = k; break; end;{if} 

end;{for} 
end;{if} 
shift message M  from NC node Sl Sl-1 ... S0 to NC node  
Sl Sl-1 ... Sj through tree links 
route message M from NC node Sl Sl-1 ... Sj to NC node  
Dl Dl-1 Dl-2 ... Dj using a hypercube self-routing  
algorithm 
shift message M from NC node Dl Dl-1 Dl-2 ... Dj to PE  
node Dl Dl-1 Dl-2 ... D1D0 

end;{begin} 
end;{if} 

end;{begin} 
end;{if} 

end;{begin}

 

6. Embedding TCN for the Class of 
Divide-and-Conquer Algorithms 

 

In this section, we demonstrate how the TCN topology 

can be employed to solve the divide-and-conquer (D&Q) 

class of problems. The three steps involved in a 

divide-and-conquer paradigm were described in [8] 

including divide, conquer, and combine. 

Assume that the input U consists of n = 2k values U(0), 

U(1), ..., U(n-1). Each basic operation OP(U[m], U[m+2m]) 

modifies the two data items presented in storage locations 

U[m] and U[m+2m]; the computation performed affects only 

the contents of locations U[m] and U[m+2m]. The class of 
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algorithms described above is similar to the ascent class [2]. 

In the following, we explain how TCN can be used to 

execute the parallel_D&Q algorithm. 

Suppose we have 32 data to store in the PEs of a TCN(3, 

2, 2) and each PE holds one data. For example, input data 

U(0), U(1), ..., U(7) are stored in 000, 001, ..., 103 PE nodes 

of the left-most basic module, and others data are stored 

similarly in PE nodes of other basic modules. Applying the 

D&Q algorithm to the TCN(r, i, l), for 0  j < r, each 

operation OP(U[m], U[m+2m]) is separated by a single link 

of the r-dimensional hypercube, whereas for r  j < q, each 

operation OP(U[m], U[m+2m]) is separated by external links 

(tree links) and links passing through NC nodes. The 

implementation of the D&Q on a TCN(r, i, l) is shown in 

Algorithm 2. The D&Q algorithm can be implemented in 

O(log2 N) steps. 

 

Algorithm 2 Divide-and-Conquer Algorithm in a 
TCN(r, i, l) 

procedure TCN_D&Q(U) 
   for j = 0 to q-1 do{where q = r + i(l-1); r, i and l represent the 

dimension of a basic module, the dimension 
of PEs or NCs connected by a NC,  and the 
network level, respectively.} 

   for each m| 0  m  N do 
      cobegin 
          if bitj (m) = 0 then 
             OP(U[m], U[m+2m]); 
      coend 
end{end of TCN_D&Q} 

 

7. Conclusion 
 

We have presented a scheme called the Transformer 

Cube Network (TCN) to generalize hierarchical hypercube 

networks, such as Extended Hypercube (EH), Hyperweave 

(HW), and Extended Hypercube with Cross Connections 

(EHC). Just like its predecessors, TCN can be used to 

interconnect massively parallel systems but owns a greater 

scalability, because the number of processing elements 

connected to a single network controller in TCN is flexible. 

Other attractive properties of TCN are its higher bisection 

width and its greater fault-tolerance capability. We have 

shown that the cost factor of a TCN, given by (degree of 

node  diameter), is less than that of a hypercube. We have 

also presented one-to-one message routing algorithm 

dealing with fault-free-NC. Lastly, the paper described how 

TCN can be efficiently used to execute a large class of 

algorithms, the divide-and-conquer (D&Q) class. These 

versatile properties of TCN make it an attractive candidate 

for practical multiprocessor and distributed computing 

systems. 
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