A State Graph Manipulator Tool for Real-Time System
Specification and Verification

Pao-Ann Hsiung and Farn Wang
Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
{eric,farn} @iis.sinica.edu.tw

Abstract

The current technology of verification engineering re-
quires well-trained personnels in logics and automaton the-
ory, who carefully tune their verification packages, to tame
the well-known state-space explosion problem. Several re-
searches have resulted in a large number of techniques for
reducing the system state-space, such as symmetry-based
reductions, partial-order semantics, bisimulation equiva-
lences, etc. To let more people benefit from the technology of
computer-aided verification even with little training in the
related theories, a new tool called State-Graph Manipula-
tor (SGM) was developed to package various sophisticated
verification techniques as manipulators on state-graphs as
high-level data-objects. An example user session of SGM is
discussed and the results presented. Experiments conducted
using SGM show how the tool, when used by a system de-
signer, can increase verification efficiency and scalability.

1. Introduction

In the recent few years due to several breakthroughs,
model-checking [3, 8], an algorithmic approach to the for-
mal verification of concurrent systems, has become more
and more popular. Model-checking has also been used
to verify real-time systems. Timed automata [5] has
been widely used as the system model for verifying real-
time properties specified in Timed Computation Tree Logic
(TCTL) [9, 16]. Concurrency is generally modeled as the
interleaving of computation sequences [22]. This causes
state-space explosions [23] and the large sizes of the state-
spaces become unmanageable, thus hindering verification.
As a result, both the degree of concurrency and the com-
plexity of systems verifiable are limited. Several tech-
niques have been proposed in the literature for reduc-
ing the state-space size. Some of the techniques include
symmetry-based reductions [9, 12, 11], partial-order reduc-
tions [25, 14, 22, 26, 23, 15], bisimulation equivalences

0-8186-9209-X/98 $10.00 © 1998 IEEE

[24], minimization techniques [4, 7], etc, which will be dis-
cussed in more details in Section 2.

Such reduction techniques usually require years of
studying to master and are typically implemented with so-
phisticated data-structures for state-graphs. Moreover, since
different verification tasks may need different ways of at-
tacking the state-explosion problem, for each specific ver-
ification task the optimal combination of reduction tech-
niques that reduces the state-spaces most and in the least
time might be different. Even for a verification engineer
properly knowledgeable of verification theory, to experi-
ment with different combinations of the various reduction
techniques may painfully take too much time and resources
a project can sustain. This need for experimentation neces-
sitates an environment where a designer can easily change
the combination of reduction techniques applied to a given
verification task. For this purpose, we have developed a
new tool called the State-Graph Manipulator (SGM) which
packages various verification techniques as manipulators on
state-graphs as high-level data-objects.

The rest of the paper is organized as follows. Section
2 describes the verification framework of SGM and some
potential state-space reduction manipulators. Section 3 de-
scribes the verification procedure language of SGM and its
relationship to timed automata and TCTL. Section 4 shows
how an SGM session can be conducted in batch and inter-
active modes. The experimental results of Fischer’s mutual
exclusion protocol are also given. Section 5 gives the final
conclusion.

2. Verification Framework

We adopt the framework of model-checking in which
a system is described by a set of concurrent timed
automata[3] with dense-time semantics and a timing
property is specified in TCTL (Timed Computation Tree
Logic)[3. 16] extended from CTL. A system consists of a set
of similar timed automata, which differ at most in their in-
dices (a distinguishing label). To compute the global state-
space representations (i.e. state-graphs), first, the set of

timed automata are merged, two at a time. Second, dur-
ing each merge iteration different sequences of reduction
techniques may be applied to the intermediate state-spaces.
Finally, the system is verified by model-checking the global
state-graph against the given TCTL specification.

SGM allows a user to describe his/her system of timed
automata, the property to be verified, and the actions to be
performed on state-graphs, which are compact representa-
tions of state-spaces. SGM helps the designer in experi-
menting, online or offline, with the application of different
sequences of reduction techniques to the intermediate state-
graphs during the composition of a global state-graph. Fora
given verification task, this helps in finding a good sequence
of manipulators (proven and implemented reduction tech-
niques), which reduces the state-graphs and increases veri-
fication scalability.

The state-graphs manipulation approach adopted in
SGM differs from conventional approaches including
global state-graph reduction, such as global symmetry-
based reduction [9, 11] and bisimulation equivalence-based
minimization technique [4], and on-the-fly reduction such
as on-the-fly symmetry reduction [17] and on-the-fly bisim-
ulation equivalence [13]. Global state-graph reduction ex-
plicitly constructs the complete state-graph of the system
and then tries to use different techniques to reduce the
global state-graph size. This approach does not scale well
because the global state-graph is often so large that its con-
struction itself would blow up the available memory space.
On-the-fly reduction approach applies reduction techniques
to partially-composed global state-graphs. Not all reduction
techniques are simultaneously compatible, that is they can-
not be applied concurrently at the same time, they may be
applied one after the other. Further, even the partial global
state-graphs have large sizes, so on-the-fly techniques also
fail at times. Hence, in order to avoid constructing a large
global state-graph, we adopt the compositional approach,
where the intermediate state-graphs obtained during each it-
eration of merging two component state-graphs are reduced
as soon as they are constructed. The reduction obtained is
thus accumulated over the iterations and thus allows the ver-
ification of systems with higher concurrency or more com-
plex behavior.

2.1. Potential and Implemented State-Graph Ma-
nipulators ,

In the recent few years since 1992, how to reduce the
state-graph size has been a hot research topic for formal ver-
ification researchers. This is because if formal verification
is to be applied to industry its scalability must be improved,
otherwise large complex systems can never be formally ver-
ified. This has resulted in a large number of techniques,
some timed and some non-timed, in the literature and veri-

182

fication tools. Some of them are cited as follows:

symmetry-based reduction: process indices, invari-
ants, etc. are all permuted using some normaliza-
tion scheme so that a normal form would represent
the class of symmetrical modes/transitions [17, 9, 11,
27],

time-abstracting bisimulation: equivalence classes
are induced by abstracting away from the exact
amount of time elapsed [24, 19],

minimization techniques for minimal state-graph
generation {4, 7],

quotient construction by moving parts of a parallel
system into the formula to be verified {20],

equivalence reduction of identifiers: that is, two iden-
tifiers that are semantically equivalent are collapsed
(201,

partial order reductions: equivalent interleavings of
concurrent events are grouped into traces and it suf-
fices to explore just one representative interleaving
from each trace for verifying temporal logic proper-
ties [23],

partial order reductions in symbolic state-space ex-
ploration: an integration of partial order reduction
techniques and symbolic state-space exploration [2],

o partial order reductions for timed systems: the prob-
lem of clock synchronizations causing partial order
reductions to be less efficient in timed systems is
overcome [6], and

reducing the number of clock variables: active clocks
are first detected and then clocks that are always equal
are reduced into one [10].

Besides the above implementable manipulators, we have
developed our own manipulators, namely read-write reduc-
tion, clock-shielding, and timed symmetry-reduction [27].
All of these manipulators were theoretically proved for its
soundness and implemented within our SGM tool. Other
reduction techniques can be easily hooked into our tool
as a new manipulator. Thus, researchers can take advan-
tage of the state-graph manipulation framework provided by
SGM to experiment with how his/her reduction technique
works in collaboration with other existing techniques. In
the following, we briefly describe how each currently im-
plemented manipulator works in our tool. For further de-
tailed information, the reader is advised to refer to the re-
lated work in [27].

¢ Read-Write Reduction: This manipulator is basi-
cally an analysis of the interactive behavior between
the current partially-composed subsystem and that of
the yet-to-be-composed partial system. The analysis
mainly takes into account the values read and written
by each transition from and to each discrete variable
of the system. The read-write analysis deducts what
literals, appearing in the system description and the
specification, are invariably true in each mode. After
associating each mode with an invariably true literal
set, the manipulator eliminates transitions that are
bound not to trigger in the global state-graph. Such
transition eliminations result in some modes becom-
ing irreachable, thus all irreachable modes are then
detected and deleted.

Shield-Clock Reduction: This manipulator tries to
shield clocks from observation by external processes
(that is the processes that have not yet been merged
into the system under composition). The analysis
works on clocks only and tries to detect all the clocks
in a mode that are simply not read any more in the fu-
ture or before a reset action on some future transition.
Such clocks can in fact be ignored in that particular
mode. A mode here means a collection of states that
satisfy the same invariant condition. This shielding of
clocks often results in some modes becoming identi-
cal or symmetrical. Further reduction is thus possible
by merging identical modes and by normalizing sym-
metrical modes.

Normalize-Region (Symmetry) Reduction: This
manipulator takes advantage of the symmetry inher-
ent in the system. Several symmetrical sets of states
(called modes) can be represented by a single mode
after associating a permutation label with each of the
incoming transitions of the representative mode. This
manipulator extends the recent work of Emerson and
Sistla [11] to the timed systems. We use a normal-
ization procedure on all components of a mode rep-
resentation based on a sorting scheme that assigns a
sequential order to each component. Here, by mode
components we mean all the data structures required
for representing a mode, for example, zone (a dif-
ference matrix representing timing constraints), lit-
eral set (all literals appearing in the system descrip-
tion and specification that are true in a mode), and
mode-vector (the label of a mode in the form of a
vector where each component is the mode of a sys-
tem process automaton). After grouping symmetrical
modes, the group is normalized into a single mode.
This results in a multigraph, and thus some further
reduction is possible whereby redundant transitions
between two modes are deleted.

183

The above three manipulators have been successfully im-
plemented in SGM and experimental results show signifi-
cant reductions that help increase vérification scalability.

3. Verification Procedure Language

For the ease of system description, specification, and
state-graph manipulation, our State-Graph Manipulator tool
provides the user with an interface language called Verifi-
cation Procedure Language. As illustrated below, the lan-
guage consists of three parts: system description, specifica-
tion, and manipulation. All three parts are mandatory for a
complete input to SGM.

(1) System Description Part
total_automata 10;

clock ...;

register ...;

automaton

(2) TCTL Specification Part
verify
(3) Manipulation Part
manipulation

graph

3.1. System description

A very flexible way of input is provided by SGM in the
form of a parametric description. Since our system model
consists of a set of similar timed automata that differ only in
their indices, we need to specify only ONE timed automata
that has index ¢, a parameter. The parameter ¢ will represent
the index of a generic automata, so that all mode predicates,
transition triggering conditions, and transition assignments
can be expressed using 1.

Fischer’s Mutual Exclusion Protocol (FMEP) is a bench-
mark example that has been used for state-graph reduction
technique evaluation in several literatures [18, 1, 21]. A
generic timed automaton for this example is shown graphi-
cally in Figure 1 and the corresponding SGM input for a 10
processes system obeying FMEP is given below.

total_automata 10;
clock x[1..total_automatal;
register lock;

automaton A[1] {
initially M1 and lock = 0 and x[i]
mode M1 {

0;

Figure 1. Fischer’s Mutual Exclusion Protocol
(:th automaton)

invariant True;
when lock 0 may goto M2;
x[i] 0;1}

mode M2 {
invariant x[i] < 1;
when x[i] < 1 may goto M3;

x[i] := 0; lock := 1i;}

mode M3 {

invariant True;

when x[i] >= 1 and lock = i

may goto M4;

when ~“(lock = i) may goto Ml;}
mode M4 {

invariant True;

when True may goto M1l; lock := 0;}

The above description also allows easy change of
the degree of concurrency by simply changing the
total_automata value in the first line.

Theoretically, this part of the input corresponds to the
timed automata model of a real-time system. A timed au-
tomaton (TA) is composed of various modes interconnected
by transitions. Variables are distinguished into clock and
discrete, where the former increments at a uniform rate and
can be reset on a transition, while the latter change values
only when assigned a new value on a transition. A TA
remains in a particular mode as long as the values of all
its variables, including clock and discrete, satisfy a mode
predicate, which is a conjunction of clock constraints and
boolean propositions. In the following, A" and R represent
the sets of non-negative integers and non-negative real num-
bers, respectively.

184

Definition 1 : Mode Predicate

Given a set C of clock variables and a set D of discrete
variables, the syntax of a mode predicate n of C and D is
defined as follows: 1 :=false |z ~c|z—y~c|d~
¢ l m AN | -, where z,y € C, ~€ {Sa<>=a27 >}’
c € N,d € D, and n1, 7, are mode predicates.

Let B(C, D) be the set of all mode predicates over C
and D. A TA may go from a mode to another mode, that
is perform a transition, when the triggering condition (also
specified as a mode predicate) is satisfied by the current val-
uation of the clock and discrete variables. On a transition
from one mode to another, some actions are taken such as
some clocks may be reset to zero and some discrete vari-
ables may be assigned new integer values.

Definition 2 : Timed Automaton
A Timed Automaton (TA)
(M, mg,C, D, x, E, T, p) such that:

is a tuple

e M is a finite set of modes,

e mg € M is the initial mode,

e (' is a set of clock variables,

D is a set of discrete variables,

X : M — B(C,D) is an invariance function that
labels each mode with a condition true in that mode,

E C M x M is a set of transitions,

7 : E — B(C, D) defines the transition triggering
conditions, and

p : E — 209XN) is an assignment function that
maps each transition to a set of assignments such as
resetting some clock variables and setting some dis-
crete variables to specific integer values. I

3.2. TCTL Specification

A TCTL formula has the following syntax.

¢ = n|30¢'|3¢'Uncd"|¢'|¢ v ¢ »

Here, 7 is a state predicate in B(C, D), ¢', ¢ are TCTL
formulae, ~€ {<,<,=,>,>}, and and ¢ € N. Due to
page-limit, we do not elaborate on the semantics of a TCTL
formula, details can be found in [16].

The full syntax of TCTL specifications is supported by
SGM. The specification begins with the keyword verify.
The meanings of the keywords are obvious as they are just
English words for the specific meanings that they represent
such as all.paths means for all paths in the state-graph
starting from the initial mode.

An example TCTL specification for a 3-automata Fis-
cher’s mutual exclusion protocol is given below.

verify all_paths (henceforth
not{ (mode (A[1])=M4) and
(mode (A[2])=M4) }
and not{ (mode(A[1l])=M4)
(mode (A[3])=M4)}
and not{ (mode(A[2])=M4) and
(mode (A[3])=M4)}

and

)i
3.3. State-Graph Manipulation

The last part of an input for the SGM tool is the most
important part as it allows the user flexibility in choosing
what to do, when to do, and how to do state-graph manipu-
lation actions. Here, state-graphs are variables which have
to be declared first. Then, a list of actions follows the decla-
ration. A simple action can be either the merging of two
state-graphs such as g[3] merge.graph(g(1l],
g[21) ;,orthe application of a single manipulator on some
state-graph such as shield clock(g[3]) ;, or model-
checking a state-graph such as model_check(g[31);,
or printing a state-graph such as print_graph(g[(31) ;,
whereg[1], gl[2], gl[3] areall state-graph variables.
More complex programming constructs are also provided,
such as for-loops, and if-then-else statements. The for-loops
iterate on the indices of the declared state-graphs and the if-
then-else statements compare state-graph sizes in terms of
the number of modes and the number of transitions. Such
comparisons allow users to dynamically change the choice
of manipulator sequences. Some default merging and ap-
plication of manipulators are also provided for users who
prefer not to handle the details of each iteration. These
include sequential merge () (the next intermediate
state-graph is always the result of merging the current inter-
mediate state-graph and the next automaton in sequence),
and all the manipulators without an input parameter such as
shield clock(), this means that the manipulators are
to be applied to each merged intermediate state-graph in the
sequence they are declared.

Continuing with the Fischer’s mutual exclusion protocol
example, two different ways of state-graph manipulation are
as follows. The left one is a user-defined one and the right
one is a default one.

manipulation
graph g[l..total_automata-1];

for(i:=1; i<total_automata; i++) {
if(i = 1) {
gl[l]:=merge_graph(A(l], A[2]);
}
else {

185

gli]:=merge_graph(gl[i-1]1,A[i+1]);
}
shield_clock(glil);
normalize_region(glil);
}
model_check(g[total_automata-11);
print_graph(g{total_automata-11);

manipulation
sequential_merge () ;
normalize_region();
shield_clock{();
model_check() ;
print_graph();

Semantically, the above two methods of manipula-
tion differ only in the order in which the manipulators
shield clock() and normalize region() are ap-
plied.

4. An SGM Session

SGM supports two different modes of execution: a batch
mode and an interactive mode. The batch mode needs an
input file consisting of the three parts as described in Sec-
tion 3, whereas the interactive mode only requires the first
two parts to be stored in an input file. Users can input com-
mands one at a time to SGM in the interactive mode.

4.1. Batch Mode

The SGM input described for Fischer’s mutual exclu-
sion protocol example in the previous section must be
stored in a file with a “.s” extension, e.g., fischer.s.
The executable binary file of the SGM tool reads the in-
put file and starts performing all the actions listed in the
manipulation section of the input.

A part of a particular session of SGM is as follows. Sizes
of intermediate state-graphs are all reported after the appli-

cation of each manipulator.

Merging A[l] & A[2] into gl[1]
...... 70 modes, 160 transitions
Shielding clocks in g[1l].
Merging identical modes in gl[1l].
31 modes, 160 transitions
Reducing multigraph gl[1l].
31 modes, 70 transitions

Normalizing regions in gl[l].

31 modes,

70 transitions

Removing irreachable modes in gl[l].

16

modes, 70 transitions

Reducing multigraph g[1].

16

modes, 35 transitions

4.2. Interactive Mode

A user-interface is provided by SGM, which interprets
commands input by the user. A user can change his/her
actions (manipulation sequence) based on the prelimi-
nary experimental results obtained (by print_graph(),
print_size(),print_time () commands). Anexam-
ple interactive session of SGM is as follows.

sgm>

sgm>
sgm>

sgm>
sgm>

sgm>

sgm>

sgm>

sgm>

sgm>

load fischer.s;

A[l], Af2], A[3]

graph g[l], gl2];

merge_graph(A[1l], A[2],

Merging A[l] & A[2] into g[1]
.......... 70 modes, 160 transitions

copy_graph(gl[l], gl[2])};

shield_clock(g[l]);

Shielding clocks in graph gll].
Merging identical modes in gl1].
31 modes, 160 transitions
Reducing multigraph gll].

31 modes, 70 transitions
normalize_region(gl[l]);

Normalizing regions in graph g[1l].

31 modes, 70 transitions

declared.

glll);

Removing irreachable modes in gl[1].

16 modes, 70 transitions

Reducing multigraph gl1].

16 modes, 35 transitions
normalize_region(g(2]);
Normalizing regions in graph g[2].
70 modes, 160 transitions

Removing irreachable modes in g[2].

36 modes, 160 transitions
Reducing multigraph g[2].
36 modes, 80 transitions
shield_clock(g[2]);

Shielding clocks in graph g(2].
Merging identical modes in gf{2].
16 modes, 80 transitions
Reducing multigraph g[2].

16 modes, 35 transitions
print_size(g[1l]);

Graph A[l]: 16 modes, 35 transitions.
print_size(gl[2]1);

Graph A[l]: 16 modes, 35 transitions.

print_time(gll]);

0.07 second

print_time(gl[2]);

0.08 second

-- manipulator sequence for gl[l]

-- is better, g([2] is freed

free_graph(gl2]);

model_check(g([1]);

-- an illegal action

WARNING: g[l] is not a

global state-graph

sgm> merge_graph(gl[l], A[31, gl2]);

Merging gl[1l] & A[3] into g[2]
....... 86 modes, 191 transitions

shield_clock(gl2]);

Shielding clocks in graph gl2].
Merging identical modes in g[2].
57 modes, 191 transitions
Reducing multigraph gl[2].

57 modes, 130 transitions
normalize_region(gl2]1);
Normalizing regions in graph g[2].
57 modes, 130 transitions

Removing irreachable modes in gl2].

23 modes, 130 transitions

Reducing multigraph gl[2].

23 modes, 47 transitions
model_check(g[21);
Specification satisfied!
quit

sgm>

sgm>

sgm>
sgm>

sgm>

sgm>

sgm>
sgm>

SGM warns the user if he/she tries to perform some il-
legal actions such as model checking a non-global (inter-
mediate) state-graph. Based on the higher state-graph size
decrease rate and smaller construction time, the user opts
forthe {shield.clock(), normalize_region()}
manipulator sequence for all future reductions.

4.3. Experimental Results

As shown in Table 1, after experimenting with dif-
ferent sequences of the manipulators currently imple-
mented in SGM we notice that for the Fischer’s mu-
tual exclusion protocol example, although both the se-
quences {read.write(),shield(),normalize()}
and {readwrite(), normalize(), shield()}
have the same final effect, that is, they reduce the intermedi-
ate state-graphs to the same size, yet the decrease rate is not
the same. The first sequence decreases the state-graph sizes
more quickly than the second sequence. This is observable
from Figures 2 and 3. Further, comparing the time taken by
the two sequences for state-graph reductions, we see from
Figure 4 it is also the first sequence that uses a shorter time.

Table 1. Fischer’s Mutual Exclusion Protocol

#modes/#transitions
n 2 | 3] 4 | 5] 6 | 7 | 8
read_write() | 70/160 | 220/693 | 541/1990 | 1071/4469 | 1947/9104 | 3355/17393 | 5171/29001
shield() 31/70 | 100/303 | 231/824 | 444/1797 | 766/3462 | 1241/6164 | 1874/10012
normalize() | 16/35 | 39/109 761247 130/472 204/810 301/1290 424/1944
time (sec) 0.07 0.61 2.92 10.69 35.25 107.84 275.61
read_write() | 70/160 | 220/693 | 541/1990 | 1071/4469 | 1947/9104 | 3355/17393 | 5171/29001
normalize() 36/80 | 182/617 | 465/1826 | 928/4074 | 1697/8291 | 2927/15707 | 4520/26166
shield() 16/35 | 39/109 761247 130/472 204/810 301/1290 424/1944
time (sec) 0.08 0.89 4.66 17.87 61.19 212.40 486.67
Thus, we conclude the first sequence is a better manipula- 5210 ,
tion of the state-graphs. Several other examples were ex- :223 mgg zglrenllcla .z2°ms1ﬁ."ez|§8

perimented using SGM, but due to page-limit we have only
presented one. For another mutual exclusion example, the
sequence does not remain the same [27]. An automatic se-
lection procedure for the best sequence of manipulators has
been proposed by the authors in another related work [27].
Since this article is mainly an introduction to our tool, we
have not described our manipulators in detail and the com-
parison of the reduction effects of our manipulators with
other existing tools. Interested readers may refer to [28] for
further information.

The first version of the SGM tool can currently be li-
censed for personal use. For further information on tool
retrieval please refer to the following URL:

“http://www.lis.sinica.edu.tw/~eric/sgm/”.

6000 T T

—o—
—a

read_write(), shle!d? normalize()
read_write(), iz

normalize(), shield()

5000

Number of modes
g g
g g
T

8

P 2 1 " 1 1
0 5 10 15 20 25
Iteration Steps after applying each manipulator

Figure 2. FMEP example (modes comparison)

187

25}

5r

Number of transitions

05

OM.»N

:)
0 5 10 15 20 25
teration Steps: after applying each manipulator

Figure 3. FMEP example (transitions compar-
ison)

5. Conclusion

We have successfully developed a state-graph manipu-
lation tool called State-Graph Manipulator (SGM) for the
specification and verification of real-time systems which
are modeled as timed automata and model-checked against
TCTL specifications. SGM allows system designers to ex-
periment with different sequences of manipulators that best
fit a particular verification task at hand. At the same time,
SGM allows verification researchers to experiment with
how a new reduction technique developed by him/her would
collaborate with other existing techniques. We expect that
SGM would be a useful tool to both the verification expert
as well as the verification layman (one who just wants to see
how much his/her verification task could be best reduced).

500 T T L

g

100

Time (second)
N
i
f=d

read_write(); shield(), normalize(
read_write(), normalize(), shield(

w

4 5
Number of automata

Figure 4. FMEP example (time comparison)

References

{1]

(2]

[3

—

[4

—

[5

[t}

[6

—

{7

—

(8]

(9]

[10]

M. Abadi and L. Lamport. An old-fashioned recipe for real
time. In REX Workshop, Real-Time Theory in Practice, Lec-
ture Notes in Computer Science, volume 600, pages 1-27,
June 1991.

R. Alur, R. Brayton, T. Henzinger, S. Qadeer, and S. Raja-
mani. Partial-order reduction in symbolic state-space explo-
ration. In Proc. Intl. Conf. CAV’97, 1997.

R. Alur, C. Courcoubetis, N. Halbwachs, and D. Dill. Mod-
eling checking for real-time systems. In Proc. IEEE Logics
in Computer Science, 1990.

R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and
H. Wong-Toi. Minimization of timed transition systems. In
Proc. Intl. Conf. CONCUR’92, LNCS, volume 630, pages
340-354, August 1992.

R. Alur and D. Dill. Automata for modeling real-time sys-
tems. Theoretical Computer Science, 126(2):183-236, April
1994.

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order
reductions for timed systems. In to appear in Procs. CON-
CUR’98, 1998.

A. Bouajjani, J.-C. Fernandez, N. Halbwachs, and P. Ray-
mond. Minimal state graph generation. Science of Computer
Programming, 18(3):247-269, 1992.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L.J. Hwang. Symbolic model checking: 10%° states and be-
yond. In Proc. 5th Annual Symposium on Logic in Computer
Science, June 1990.

E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symme-
try in temporal logic model checking. In Lecture Notes in
Computer Science, volume 697, 1993.

C. Daws and S. Yovine. Reducing the number of clock vari-
ables of timed automata. In Proc. Real-Time Systems Sym-
posium, pages 73-81, December 1996.

188

(1]

[12]

[13]

[14]

{15]

[16]

[17]
[18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

E. Emerson and A. Sistla. Utilizing symmetry when
model-checking under fairness assumptions: An automata-
theoretic approach. ACM Transactions on Programming
Languages and Systems, 19(4):617-638, July 1997.

E. A. Emerson and C. S. Jutla. Symmetry and model check-
ing. In Lecture Notes in Computer Science, volume 697,
1993.

J.-C. Fernandez and L. Mounier. On the fly verification of
behavioral equivalences and preorders. In Proc. 3rd Intl.
Workshop on Computer-Aided Verification, LNCS, volume
575, July 1991.

P. Godefroid and P. Wolper. A partial approach to model
checking. In Proc. 6th Annual Symposium on Logic in Com-
puter Science, pages 406415, July 1991.

P. Godefroid and P. Wolper. A partial approach to model
checking. Information and Computation, 110:305-326,
1994.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems. In Proc. IEEE
Logics in Computer Science, 1992.

C. Ipand D. Dill. Better verification through symmetry. For-
mal Methods in System Design, 9(1/2), 1996.

L. Lamport. A fast mutual exclusion algorithm. ACM Trans.
on Computer Systems, 5(1):1-11, February 1987.

K. Larsen and W. Yi. Time abstracted bisimulation: Implicit
specifications and decidability. In Proc. Intl. Conf. Math-
ematical Foundations of Programming Semantics, LNCS,
volume 802, April 1993.

K. G. Larsen, P. Petterson, and W. Yi. Compositional and
symbolic model-checking of real-time systems. In Proc.
16th IEEE Real-Time Systems Symposium, pages 76-87, De-
cember 1995.

K. G. Larsen, B. Steffen, and C. Weise. Fischer’s protocol
revisited: A simple proof using modal constraints. In Hy-
brid System III, Lecture Notes in Computer Science, volume
1066, pages 604615, 1996.

A. Mazurkiewicz. Basic notions of trace theory. In Work-
shop on Linear Time, Branching Time, and Partial Order in
Logics and Models for Concurrency, Lecture Notes in Com-
puter Science, volume 354, pages 285-363, 1988.

D. Peled. All from one, one for all: On model checking us-
ing representatives. In Proc. of the Sth International Con-
ference on Computer-Aided Verification, Lecture Notes in
Computer Science, volume 697, pages 409—423, 1993,

S. Tripakis and S. Yovine. Analysis of timed systems based
on time-abstracting bisimulations. In CAV’96, Lecture Notes
in Computer Science, volume 1102, 1996.

A. Valmari. A stubborn attack on state explosion. In Proc.

Workshop on Computer Aided Verification, June 1990.

A. Valmari. Stubborn sets for reduced state space genera-
tion. In Advances in Petri Nets, Lecture Notes in Computer
Science, volume 483, pages 491-515, 1991.

F. Wang and P.-A. Hsiung. Automatic verification on the
large. In Proc. 3rd IEEE High-Assurance Systems Engineer-
ing Symposium (HASE’98), November 1998.

F. Wang and P.-A. Hsiung. Iterative refinement and con-
densation for state-graph construction. Technical Report
TR-IIS-98-009, Insitute of Information Science, Academia
Sinica, Taiwan, R.0.C., 1998.

