On the Verification of Wireless Transaction Protocol
Using SGM and RED

Pao-Ann Hsiung, Farn Wang, and Ruey-Cheng Chen
Institute of Information Science, Academia Sinica, Taipei 115, Taiwan, ROC
E-mails: hpa@computer.org, farn@iis.sinica.edu.tw

Abstract

The exponentially large sizes of state-spaces have been
a major obstacle in formal verification, which are due to
high process concurrency, and large constants that are com-
pared to clock variables and to discrete variables. We show
how an intelligent permutation of reduction techniques and
a good selection of data-structures can be used to decrease

the effect of the above explosion factors. First, a well-

accepted experiment platform for the scalable verification
of real-time systems, called State-Graph Manipulators, is
used to verify Wireless Transaction Protocol (WTP), which
is a part of a fast-permeating world standard, Wireless
Application Protocol (WAP). Application results show how
SGM handles large clock constants and large discrete con-
stants efficiently. Second, a recently proposed Region En-
coding Diagram (RED) technology is used to show how
state-space size explosions due to high concurrency can be
efficiently handled in WTP verification.

1. Introduction

Formal verification is often hindered by exponentially
large sizes of state-spaces, which can be accounted to three
factors: a high degree of system concurrency, large con-
stants that are compared to clock variables, and large con-
stants that are compared to discrete variables. To overcome
the problem of size explosions of state-spaces, several re-
duction techniques and data-structures have been proposed
in the literatures [3, 5, 7, 12, 13, 14, 15, 16] and imple-
mented in various verification tools [2,4, 6, 8,9, 12, 16, 13].
A state-space reduction technique tries to decrease the ef-
fect of only one of the above three explosion factors. In
general, a combination of reduction techniques must be ap-
plied to successfully verify a real-time system. We will
show how the compositional model-checking framework in
State-Graph Manipulators (SGM) [12, 13, 16] tool allows
experimentations with different combinations of reduction

1530-1427/00 $10.00 © 2000 IEEE

techniques. Our target application is a transaction layer pro-
tocol, called Wireless Transaction Protocol (WTP), which
is a part of the Wireless Application Protocol (WAP) [10].
We will also show how the application of Region Encoding
Diagrams (RED) [8, 9] to WTP verification can efficiently
reduce state-space explosions caused by concurrency.

SGM is a high-level real-time system verification tool. It
provides a flexible experiment platform for applying differ-
ent sequences of reduction techniques to a real-time system
state-space. In SGM, the verification framework is model-
checking and the state-space generation is compositional.
Each reduction and composition technique is modularized
into a re-usable manipulator that acts on state-graphs, a
high-level representation of state-space. SGM is further de-
scribed in Section 3.

RED is a recently proposed BDD-like data-structure for
the fully symbolic verification of real-time systems. Un-
like in DBM (Difference-Bound Matrix) [1] which records
differences between pairs of clock readings, RED records
the ordering among fractional parts of clock readings into
encoded integer sequences. Like in DBM, RED has a min-
imal canonical form and is efficient. Several experiments
carried out using the RED tool [9], based on the RED data-
structure, show how RED can efficiently handle state-space
explosions due to concurrency. RED is further described in
Section 4.

Using the experiment platform provided by SGM, we
show how the state-space size of a system executing WTP
is affected by two discrete parameters, namely, a maximum
retransmission counter and a maximum re-acknowledgment
counter. Further, we also show that different sequences of
manipulators reduce a space-space to different extents and
hence we can select an optimal sequence for WIP. SGM
can handle large constants efficiently, but not high concur-
rency. We also show how concurrency in WTP can be effi-
ciently handled by the use of RED technology.

This paper is organized as follows. Section 2 describes
Wireless Application Protocol, including details on the
specification of Wireless Transaction Protocol. Section 3
introduces State-Graph Manipulators. Section 4 introduces

Wireless Application Protocol

Wireless Application
Envir t (WAE)

Other Services and
Applications

Session Layer (WSP)

Transaction Layer (WTP)

Security Layer (WTLS)

Transport Layer (WDP)

Bearers:

TCP/IP
UDP/IP

Figure 1. WAP Protocol Stack [10]

Region-Encoding Diagrams. Section 5 gives results on the
verification of WTP and shows how SGM and RED allow
highly scalable verification of WTP, in terms of efficient
handling of large constants and high concurrency, respec-
tively. Section 6 concludes the article.

2. Wireless Transaction Protocol

The WAP protocol stack consists of six layers: appli-
cation, session, transaction, security, transport, and net-
work. Wireless Application Environment (WAE), Wire-
less Session Protocol (WSP), Wireless Transaction Pro-
tocol (WTP), Wireless Transport Layer Security (WTLS),
Datagrams (UDP/IP), and Wireless Bearers such as GSM,
CDMA, etc. correspond to the protocols, functions, or me-
dia used in the six layers, respectively, as shown in Fig. 1.

We will concentrate on WTP as our verification target.
WTP is a protocol defined to provide the services necessary
for interactive “browsing” (request/response) applications.
WTP runs on top of a datagram service and optionally a
security service. Three classes of transaction services are
defined: Class 0: Unreliable invoke message with no result
message, Class 1: Reliable invoke message with no result
message, and Class 2: Reliable invoke message with exactly
one reliable result message.

For illustration purposes, we will concentrate on Class 1
transactions. In WTP terminology, a WTP provider that in-
vokes a message is called an Initiator and a WTP provider

380

that receives a message is called a Responder. A WTP
provider may sometimes act as an initiator and sometimes
as a responder. Besides initiator and responder, we add a
network entity that synchronizes the two WTP providers.
Thus, three timed automata (see Section 3) are specified for
modeling a WTP transaction instance.

Basically, one invoke message is sent from the Initiator
to the Responder. The invoke message is acknowledged by
the Responder. The Responder maintains state information
for some time after the acknowledgement has been sent to
handle possible re-transmissions of the acknowledgment if
it gets lost and/or the Initiator re-transmits the invoke mes-
sage. At the Initiator, the transaction ends when the ac-
knowledgement has been recieved. The transaction can be
aborted at any time.

Each transaction has an identifier assigned as soon as it
is invoked by the Initiator. At the Responder, when a re-
ceived transaction identifier is not a valid one as compared
to that in the buffer, then verification of transaction identifier
is requested by the Responder. This is done by sending an
acknowledgment message to the Initiator. If the transaction
identifier is valid, then the Initiator sends an acknowledg-
ment back to the Responder, otherwise the Initiator aborts
the message.

3. State-Graph Manipulators

State-Graph Manipulators (SGM URL:
http://www.iis.sinica.edu.tw/~eric/sgm/)
was created because most existing tools and methodologies
do not provide flexibility in manipulating state-spaces and
in applying reduction techniques to a specific real-time
system verification instance. SGM has been applied to var-
ious benchmarks such as Fischer’s timed mutual explosion
protocol, CSMA/CD protocol, token ring protocol, etc. The
compositional approach adopted in SGM allows scalable
verification of real-time systems.

SGM adopts and presents a high-level view of all ver-
ification intricacies. Various different sophisticated verifi-
cation technologies are packed into efficient manipulators
that act on high-level data-objects representing state-spaces.
These data-objects are called state-graphs. With a friendly
graphical user interface, users can choose manipulators dur-
ing state-graph constructions and compare the effects of ap-
plying different sequences of manipulators to state-graphs.
As aresult, users have full flexibility in controlling the sizes
of state-graphs and thus verification scalability.

In the rest of this section, we will give some informal
definitions and introduce the reduction techniques imple-
mented as manipulators in SGM.

A timed automaton (TA) is composed of various modes
interconnected by transitions. Variables are distinguished
into clock and discrete, where variables of the former type

increment at a uniform rate and can be reset on a transition,
while variables of the latter type change values only when
assigned a new value on a transition. A TA may remain in
a particular mode as long as the values of all its variables
satisfy a mode predicate, which is a conjunction of clock
constraints and boolean propositions.

As far as temporal property specification is concerned,
SGM uses TCTL. A TCTL formula has the following syn-
tax ¢ == n|30¢'|FP'Ucd""|-d'|¢' V ¢". Here, 1 is a
mode predicate in B(C, D), ¢', ¢" are TCTL formulae,
~€ {<,<,=,>,>},and ¢ € N. Due to page-limit, we do
not elaborate on the semantics of a TCTL formula. Details
can be found in [11].

A region is a collection of states such that: (1) they
have the same mode-vector label (1), which gives the mode
names that each process timed automata is in, (2) they sat-
isfy the same timing constraint in the form of a zone (¢),
which is a Difference-Bound Matrix (DBM) [1], and (3)
they have the same set of literals (L), representing the dis-
crete variables’ valuation. Thus, a region can be uniquely
represented by a triple (u, ¢, L).

A manipulator checks the characteristics of each re-
gion in a state-graph, performs some comparisons be-
tween region characteristics or between regions themselves,
merges identical regions/transitions, removes redundant re-
gions/transitions, etc. In the following, we mention five
manipulators, of which only the timed symmetry reduction
is not applicable in WTP verification because the three au-
tomata are independent and asymmetric.

o State-Graph Merging: The merge_graph() manip-
ulator is a construction technique for composing two
state-graphs into a single state-graph that represents
the concurrent behaviors of the two components.

Timed Symmetry Reduction: This is an extension of
the untimed symmetry-based reduction technique pro-
posed by Emerson and Sistla [7], such that clocks and
their readings are also considered for symmetry reduc-
tions. We have implemented our timed-symmetry re-
duction technique using a normalization scheme in the
form of a manipulator called normalize_region().

Clock Shielding: The shield_clock() manipulator
works as follows: if a clock is not in a TCTL specifica-
tion and if it is never read before it is reset, or will never
ever be read again, then the clock can be shielded.

Read-Write Analysis: By analyzing all the possible
values that a process automaton writes to, or does not
write to a global discrete variable, this manipulator,
called read._write(), computes the literal set of each
region. The literal set represents the values that each
global discrete variable does not possibly have in a re-
gion. Through such an analysis and literal sets formu-

381

lation, transitions that have triggering conditions con-
flicting with the literal sets will never be triggerable
and can thus be eliminated from further consideration.

¢ Bypass Internal Transition: BIT is a reduction ma-
nipulator that detects and bypasses a transition in an
intermediate state-graph, that is not observable by ex-
ternal processes.

4 Region Encoding Diagrams

Region Encoding Diagram (RED URL:
http://www.iis.sinica.edu.tw/~farn/red/)
was first proposed for symmetric real-time systems with a
single clock per process [8]. Recently, it was further ex-
tended for asymmetric real-time systems with unrestricted
number of global and local clocks [9]. Compared to the
classic DBM [1], RED provides data-sharing capability
of fully symbolic manipulation. The number of variables
used in RED is O(] X |log|X|) when X is the clock set in
the input system description. Experiments show that RED
compares more favarobly than Uppaal2k and Kronos, as far
as scalability in concurrency handling is concerned.

Considering some benchmarks with which RED has
been experimented, it can handle 20 processes obeying the
Fischer’s timed mutual exclusion protocol, 17 processes
running the CSMA/CD network communcation protocol,
and 29 processes executing the FDDI token-passing ring-
network protocol. All the benchmark results show RED
as a promising technology for implementing future model-
checkers. Currently, most model-checkers are based on
the DBM technology, which requires two types of data-
structures: BDD and zone matrices to handle discrete and
clock variables, respectively.

Currently, RED is still in its infancy, and hence when
large constants are compared with clock variables, it might
not compare well with other verification data-structures,
such as DBM. In such a case, we use the DBM-based SGM
for verifying WTP. Details of RED are out of scope here,
interested readers are advised to refer to [8, 9].

5 Experiments on Verification Scalability

In this section, we will show how different tools (re-
duction techniques and data-structures) increase verifica-
tion scalability in different ways. SGM can efficiently han-
dle large clock and discrete constants, while RED can effi-
ciently handle high degree of concurrency. Experimenting
with WTP, the above two tools were applied and results ob-
tained to support our claim.

We verified the WTP Class 1 transactions for all the three
different bearer configurations given in the WTP Specifica-
tion, namely, GSM (Global System for Mobile communica-

Table 1. Bearer Ty,
[BearerType | R| A

pe Configurations

WBmam | Qmm

GSM SMS 40| 51 300 4 4
GSMUSSD | 15| 5| 60 4 4
1P 441 1] 40 8 6

tion) SMS (Short Message Service), GSM USSD (Unstruc-
tured Supplementary Service Data), and bearers supporting
Internet Protocol (Circuit switched, Cellular Digital Packet
Data, ...). The parameters used for modeling these three
types of bearers are given in Table 5, where R is the retry
time-out interval, A is the acknowledgment time-out inter-
val, W is the wait time-out interval, Py, is the maximum
bound on invoke retransmissions, and () g, is the maxi-
mum bound on re-acknowledgments.
All experiments were carried out on a Linux box with a
Celeron Pentium 111/300 MHz CPU and 256 MB of physical
~memory. The tool versions used were: SGM version 1.4 and
RED version 2.0.

5.1. Efficient handling of large constants

First, we used SGM for verifying WTP. Totally, four ma-
nipulators were applied to the WTP specification, namely,
merge_graph (mg), read_write (rw), shield _clock (sc), and
bypass.internal_transition (bit), which were introduced in
Section 3. The size of the state-spaces, along with execu-
tion time and memory requirements, are given in Table 2 for

GSM SMS. Due to page-limits, state-space sizes for GSM

USSD and IP are omitted.

Table 2. State-Space Reductions for WTP on
GSM SMS

Manipulator | State-Space Size | Memory | Time
Sequence #M | #T (MB) (sec)
mg 558 851 0.87 0.25
mg, W 543 836 1.20 1.06
mg, sc 336 582 0.75 0.22
mg, Iw, s¢ 332 570 1.02 0.97
mg, sc, I'w 328 560 0.95 0.72
mg, rw, bit 347 621 1.26 1.62
mg, sc, rw, bit | 199 450 1.03 1.09
mg, rw, sc, bit | 201 451 1.08 1.32
mg, rw, bit, sc | 207 461 1.08 1.29

M = Number of modes, # T = Number of transitions

From the application results, we observed that the se-
quence {(mg, sc, rw, bit) achieves the smallest global state-
graph in all the three bearer configurations. Hence, we can

382

Table 3. Efficient Clock Constants Handling
by SGM

SGM (v1.4) RED (v2.0)
Rla W M T M T
1] 1 1]0.77] 0.18 | 0.33 9.60
51 1 1090 | 0.24 | 0.88 28.32
1 5 11207 | 081 0.87 60.58
1] 1 51078 | 0.20 | 0.99 35.57
515 11081 020 | 0.52 41.55
5 1 51085 | 021 0.90 28.07
115 51199 0.82 | 0.88 60.67
515 51077 0.18 | 0.51 40.24
141 5[60091 | 026 | 438 | 1375.00
40 | 5300 | 0.87 | 0.24 | Not Available
M = Memory (MB), T = Time (8), Pz = Qmaz = 4

basically conclude that it is the best sequence in terms of
state-space reduction for WTP, irrespective of the bearer
type. Looking at the parameters in Table 5, we can observe
that GSM SMS and GSM USSD both have the same two
counter values, Ppqar and Q... The values of the two
parameter counters were larger in the IP case, and so also
were the state-space sizes. Thus, we can say that the size
of WTP state-space varies with the value of the two coun-
ters, instead of the clock intervals. This observation is also
further supported by the result that a large difference in the
wait time-out intervals (W = 40 for IP and W = 300 for
GSM SMS) did not affect the state-space sizes.

We further compare SGM and RED in their capability to
handle clock constants, by varying the values of the three
clock intervals in WTP. From the results shown in Table 3,
we observe that SGM handles large clock constants much
better than RED. The RED results for last row is not shown
because it took more than an acceptable amount of time for
state-space construction. The last two rows are respectively
parameter values for GSM USSD and GSM SMS. It can
be observed that SGM completes state-space construction
for both the bearer types using little CPU time and memory
space, while RED fails for GSM SMS. This is due to the
large clock constant (300) for wait time-out interval (W).

5.2. Efficient handling of high concurreny

Since SGM is based on the DBM technology, small dif-
ferences in clock intervals did not affect the state-space size
or verification time and memory requirements, but differ-
ences in concurrency does have an effect. Hence, we also
experimented with a new BDD-like data-structure, called
Region Encoding Diagram (RED) [8, 9], by applying it to
the WTP specification. We varied the two counter values to

Table 4. Efficient Concurrency Handling by
RED

P Q SGM (v1.4) RED (v2.0)

max maax M T M l T
4 4 0.77 0.20 | 0.33 9.58

6 6 1.05 0.30 | 0.34 13.87

10 10 1.63 0.70 | 0.36 23.20

20 20 3.59 3.38 | 0.37 46.67

40 20| 4.57 5.50 | 0.37 | 46.67

40 40 | 10.51 28.48 | 0.38 98.42

60 60 | 22.64 | 108.56 | 0.40 | 156.52

80 80 | 40.27 | 296.71 | 043 | 221.74
100 100 | 65.65 | 726.90 | 0.46 | 293.91
M =Memory (MB), T=Time (s), R=A=W =1

model different degrees of concurrency. All time-out inter-
vals were fixed at a very small value of one, so that we could
observe the effects of concurrency alone. From the results
shown in Table 4, we observe that a higher concurrency
(as implied by larger counter values) did not significantly
increase memory requirements for RED (0.33 MB to 0.43
MB), while the same is not true in the SGM case (0.77 MB
to 65.65 MB). As for the execution time, SGM performed
very well when the concurrency was low, but it took much
longer than RED when the concurrency was high. All these
observations go to show that with a good selection of data-
structure such as RED, verification can be scaled to larger,
highly-concurrent systems.

6 Conclusion

We have shown how formal verification can be made
more scalable through a clever choice of reduction tech-
niques (manipulators in SGM) and of data-structures
(RED). Different reduction techniques focus on different
factors that cause state-space explosions such as concur-
rency, clock constants, and discrete constants, SGM, based
on the conventional DBM data-structure, handles large con-
stants efficiently, while RED, based on the new BDD-like
diagram data-structures, handles concurrency efficiently.
We have shown how SGM and RED can be useful in the de-
tection and choice of reduction techniques for the Wireless
Transaction Protocol, a part of the world standard, Wireless
Application Protocol (WAP).

References

[1] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and
H. Wong-Toi. An implementation of three algorithms for
timing verification based on automata emptiness. In Proc.

383

[2]

(3]

f4]

B3]

f6]

{7

[8]

91

[10]

[11]

[12]

(13]

[14]

(15]

(16]

IEEE Intl. Conf. Real-Time Systems Symposium (RTSS’92),
1992,

J. Bengtsson, F. Larsen, K.and Larsson, P. Petterson,
Y. Wang, and C. Weise. New generation of UPPAAL. In
Procs. of the Intl Workshop on Software Tools for Technol-
ogy Transfer (STTT’98), July 1998.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L.J. Hwang. Symbolic model checking: 10?° states and be-
yond. In Proc. 5th Annual Symposium on Logic in Computer
Science, June 1990.

A. Cimatti, F. Clarke, E.and Giunchiglia, and M. Roveri.
NuSmv: a reimplementation of smv. In Procs. of the
Intl Workshop on Software Tools for Technology Transfer
(STTT’ 98), July 1998.

E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symme-
try in temporal logic model checking. In Lecture Notes in
Computer Science, volume 697, 1993,

C. Daws, A. Olivers, S. Tripakis, and S. Yovine. The tools
KRONOS. In Hybrid System IlI, Lecture Notes in Computer
Science, volume 1066, pages 208-219, 1996.

E. Emerson and A. Sistla. Utilizing symmetry when
model-checking under fairness assumptions: An automata-
theoretic approach. ACM Trans. on Programming Lan-
guages and Systems, 19(4):617-638, July 1997.

W. Farn. Efficient data structure for fully symbolic verifica-
tion of real-time software systems. In Procs. International
Conference on Tools and Algorithms for the Construction of
Applications and Systems (TACAS’2000), Lecture Notes in
Computer Science (LNCS), volume 1785. Springer-Verlag,
March 2000.

W. Farn. Region encoding diagram for fully symbolic ver-
ification of real-time systems. In Procs. IEEE Computer
Software and Applications Conference (COMPSAC’2000).
IEEE CS Press, October 2000.

W. A. P. Forum. Wireless application protocol spec-
ifications. Version 1.2 available on the web site at
http://www.wapforum.org/, 1999.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems. In Proc. IEEE
Logics in Computer Science, 1992.

P.-A. Hsiung and F. Wang. A state-graph manipulator tool
for real-time system specification and verification. In Procs.
of the 5th Intl Conf on Real-Time Computing Systems and
Applications (RTCSA’98), October 1998.

P-A. Hsiung and F. Wang. User-friendly verification. In
IFIP TC6/WG6.1 Joint International Conference on Formal
Description Techniques For Distributed Systems and Com-
munication Protocols & Protocol Specification, Testing, And
Verification, (FORTE/PSTV ’99), October 1999.

D. Peled. All from one, one for all: On model check-
ing using representatives. In Proc. of the 5th Intl Conf
on Computer-Aided Verification, Lecture Notes in Computer
Science, volume 697, pages 409423, 1993.

S. Tripakis and S. Yovine. Analysis of timed systems. based
on time-abstracting bisimulations. In CAV’96, Lecture Notes
in Computer Science, volume 1102, 1996.

F. Wang and P.-A. Hsiung. Automatic verification on the
large. In Proc. 3rd IEEE High-Assurance Systems Engi-
neering Symposium (HASE’ 98) — (invited paper), November
1998.

