IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1,

JANUARY 2002

61

Efficient and User-Friendly Verification

Farn Wang and Pao-Ann Hsiung, Member, IEEE

Abstract—A compositional verification method from a high-level resource-management standpoint is presented for dense-time
concurrent systems and implemented in the tool of SGM (State-Graph Manipulators) with graphical user interface. SGM packages
sophisticated verification technology into state-graph manipulators and provides a user interface which views state-graphs as basic
data-objects. Hence, users do not have to be verification theory experts and do not have to trace inside state-graphs to analyze state
and path properties to make the best use of verification theory. Instead, users can construct their own verification strategies based on
observation on the state-graph complexity changes after experimenting with some combinations of manipulators. Moreover, SGM
allows users to control the complexity of state-graphs through iterative state-graphs merging and reductions before they become out of
control. Reduction techniques specially designed for the context of state-graph iteration composition and shared variable
manipulations are developed and used in SGM. Experiments on different benchmarks to show SGM performance are reported. An
algorithm based on group theory to pick a manipulator combination is presented.

Index Terms—Verification, compositional verification, model-checking, real-time systems, timed automata, formal methods, software

engineering.

1 INTRODUCTION

HE general trend in engineering is to package complex

technology with simple and friendly interfaces so that
more users can benefit. Since the famous Pentium-bug,
people have been anticipating wide acceptance of the
technology of computer-aided verification. Indeed, with
today’s powerful hardware and recently reported verifica-
tion theory breakthroughs [3], [8], it seems that industrial
application of verification theory is becoming more and
more real. But most verification packages today are
developed based on profound, complex theories that take
years of graduate study to master. Thus, inevitably, only
projects with big budgets can afford the advantage of
computer-aided verification. One of the goals of this work is
to devise a packaging scheme for verification technologies
so that users illiterate in verification technology can still
benefit from it.

Here, we give a brief description of our method which
works on dense-time concurrent systems. For a system with
m concurrent processes, we assume that we are given their
m behavior descriptions, called state-graphs, stored in an
array, G[1],...,G[m],, respectively. In the traditional
approach, a verification procedure will start by constructing
the Cartesian product of G[1],...,G[m], as in Table 1la with
eight processes, to verify the given concurrent system. The
standard technology now is symbolic manipulation [8], [19],
[4], which can be used in both Cartesian product calculation
and model-checking. To cope with the resource consump-
tion requirement from different verification tasks, very
often ingenious strategies which search through state-

o . Wang is with the Institute of Information Science, Academia Sinica,
Taipei, Taiwan 115, ROC. E-mail: farn@iis.sinica.edu.tw.

e P.-A. Hsiung is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan 621,
ROC.

Manuscript received 28 May 1999; revised 1 Mar. 2001; accepted 12 June
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109957.

graphs for certain state and path properties have to be
devised to keep space and CPU-time under control. To this
end, users have to be knowledgeable about the theory of
computer-aided verification and traverse through the final
product state-graph G.

On the contrary, our method treats state-graphs as high-
level data-objects and defines and implements many
theoretically proven manipulators to merge, reduce, and
check them. From the users’ standpoint, the goal is to
construct a verification procedure, with the many state-
graph manipulators in our library, which composes a
representation for global state space from all the state-
graphs with manageable space and CPU-time consumption.
There are three types of manipulators in our method: x for
binary merge, check() for model-checking, and reducers for
reducing the sizes of state-graphs. In between, iterative
binary mergings of state-graphs, combinations of reducers
can be applied to control the complexity of newly
constructed state-graphs. With the many manipulators in
our method, users can easily test different combinations of
manipulators. In Table 1b, we have another example
verification session using our method. Users calculate the
binary products of state-graphs and intermittently reduce
them with different reducer combinations as the users see
fit. One performance advantage of our approach is that the
users can control the complexities of state-graphs with on-
the-shelf manipulators before those state-graphs become
out of control.

Just like a mechanic can buy various on-the-shelf
components to build her/his dream car, users of SGM can
also enjoy the technology of CAV without deep under-
standing of the component technologies and construct the
verification procedure that better suits them with the
manipulations supported in our method. At this moment,
we have successfully developed several theoretically sound
reducers. From our experiments, different application
ordering of different reducers can achieve different com-
plexity reductions. Thus, the performances of the many

0018-9340/02/$17.00 © 2002 IEEE

62

TABLE 1
Verficiation Sessions in Comparison

verify(G, 8, ¢)

state_graph *G;

int 8; /* number of processes */
CTL ¢;

G:=G[1] x G2] x ... x G[8];
check G against ¢:

}

(a)

verify (G, 8, ¢) /* Assuine we have reducers Ry, . ..,
state_graph *G;

int 8; /* number of processes */

CTL ¢;

{

Re. */

G :=G[1] x G[2];

G =R (R4(G));

G =G xG[3;

G = Ra(R;5(R(G)));
G =G x G4

G =G x G[8]

G =R (R:(G));
check G against ¢;

(b)

reduction techniques really depend on each other. This is
due to the fact that a reduction technique may need the
information derived by another to make further reduction.
(See Example 4.) SGM provides a high-level and clean
interface for users to experiment with different combina-
tions of manipulators to reduce resource consumptions
(memory and CPU time) to fulfill given verification tasks.

For each different verification task, there can be a
different reducer combination for it which may cost the
least memory space and CPU time. One research issue in
our method is how to choose a good reducer combination
for a given verification task when the number of reducers is
large. In Section 10, we also present an algorithm based on
group theory [20], [21] to pick an efficient reducer
combination for a given verification task.

Another contribution of the work is in our design of
reduction techniques in the context of iterative composition
and global shared variable manipulations. For example, we
may have m state-graphs Gi,...,G,, constituting a con-
current system and Gy is generated by composing
G1,Gs,...,Gy with k <m. Each of the state-graphs may
write specific and unique values to some shared variables.
We aim to design reduction techniques on intermediate
state-space representations like Gp; by analyzing the
distinct values compared with and written to by various
parties in the concurrent system. Previous model-checkers
like Kronos gain part of their performance by detecting
“dead transitions” (i.e., transitions which can never be
triggered) after generating a Cartesian product of automata.
But, Kronos does not allow natural manipulations of global
variables and thus is not able to detect dead transitions

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.1, JANUARY 2002
whose triggering conditions depend on global variable
values. To eliminate dead transitions in the context of
iterative composition and global shared variables, we have
to research into deeper theory of concurrency and work out
new techniques. Instead of using the product calculation
technique, we used our Lemma 1 to eliminate “dead
transitions” with locality of global read-write operations
of concurrent processes. Moreover, we believe that our
approach better utilizes the properties among concurrent
global operations and has the potential of reducing space-
complexity before it becomes uncontrollable in the genera-
tion of Cartesian product.

Section 2 defines our problems. Section 3 discusses some
related work. Section 4 presents the general framework of
our method. Section 5 describes the function and data-
structures of our state-graphs. Sections 6 and 7 describe the
manipulators we have implemented so far. Section 8
demonstrates SGM in its graphical user interface. Section 9
reports experiments on several benchmarks. Section 10
shows an algorithm which uses group theory to find a local
optimal combination of manipulators to counter with state-
explosion problem. Section 11 contains the conclusion, our
perspective of using this research as a public framework to
enhance the application of verification technology and
cooperation throughout the world.

We shall adopt the following notations. Given a set or
sequence F, |F| is the number of elements in F. For each
element e in F, we also write e € F. N is the set of
nonnegative integers, Z is the set of integers, and R* is the
set of nonnegative reals.

2 FORMAL PROBLEM DEFINITION

We formally define our dense-time concurrent systems and
their CTL model-checking problem, respectively, in two
subsections.

2.1 Timed Mode Transition Systems
A real-time concurrent system is composed of many
processes. Each process runs autonomously and interacts
with others through read-write operations to global variables
and timers. In addition, each process has its own local
variables and timers which no other processes can access. For
a system with m processes, we use integer 1,...,m to
identify the m processes.

Given a timer set H and a variable set F), a state predicate n
of H and F is a formula constructed according to the
following syntax:

nu=y=cly=pletec~a' +d|lz~c|n|nvy.

y is a variable in F'. ¢, d are natural numbers. p is the process
identifier symbol which represents the local process. z,z’
are timers in H. ~ is an inequality operator in
{<,<,=,>,>}. Common shorthands like true, false,
conjunction (A), and implication (—) can be defined.
Notationally, we let B be the set of all state predicates of
H and F.

Definition 1 (PTMTS). The process timed mode-transition
system (PTMTS) is defined to describe behaviors in an atomic
process in a real-time concurrent system. It is essentially a

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

1, 1=0

63

qp == Lz =0

Fig. 1. Fischer’s timed mutual exclusion protocol.

timed automata with an identifier and global variables.
Notationally, we use symbolic subscript p to denote those
transitions, local variables, and timers of process p. When the
definitions are instantiated to a particular process with
identifier i € {1,...,m}, all occurrencess of p are to be
substituted for i. The identifier of a process can be used in the
flexible manipulation of global and local variables.

APTMTS forprocess pisatuple A, = (X, X,,,Y,Y,, I,,, T))
with the following restrictions.

e X is the global timer set, X, is the local timer set, Y is
the global variable set, and Y, is the local variable set.

® g, €Y, is a special local variable which records the
current mode of process p.

e I, is a state predicate in Bfﬁf,i” denoting the
invariance condition of process p. (Thus, the global
invariance condition is N\, I,-)

o T, is the set of transition rules with the following form:

(gp =cAn) — gy :==d; K]

Here, ¢ and d are natural numbers. n is a state

predicate in By 3 (.

denoting the transition
triggering condition. x is a finite sequence of
assignment statements which is executed on the
happening of the transition. Each assignment state-

ment in k has the following syntax:

yi=c ly=p [z:=0;
Again, y€e YU (Y, —{q}) v€XUX, p is the
process identifier symbol, and ¢ is a natural number.
Initially, all timers and variables contain zeros. The
processes act by performing transitions in an interleaving
fashion, i.e., at any moment, at most one transition can
happen. Right before a transition e = (g, =i An) — [g, =
J; &) € T, happens, A, is in mode i and n is satisfied. On the
happening of e, which is instantaneous, variables are assigned
new values and timers are reset to zeros according to k and
then A, enters mode j. In between the happenings of
transitions, all variable contents stay unchanged and all timer
readings increment at a uniform rate.

Example 1. For each process of Fischer’s timed mutual

exclusion protocol, we have a PTMTS (X, X,,, Y, Yp,l T,)
with X=0, X,={x}, Y={} Y,={¢}
I,=¢=0V(p=1N0<2, N2, <1)Vg=2Vgqg,=3,
and

(@p=0N1=0) = [g, :== Li2, := 03],

(gp=1Nz, <1) =g, :=2;1:=p;z, == 0;],
Ty, =9 (@ =2A1#p) — [g = 0s],

(@p =2Amp=1N1=p)— g = 3],

(g =3) = lgp = 051 := 03]

In Fig. 1, we draw the PTMTS as a timed automaton
which is more visually readable. The circles are modes
and the starting mode is doubly circled. Inside the
circles, we put down the mode names and invariance
conditions enforced by I, in the modes. On each
transition, we put down the triggering condition (7), if
any, above the assignment statements (x), if any. For
example, in mode ¢, =1, 0 <z, <1 must be true for
process p. In mode ¢, = 1, when z, < 1, process p may
assign p to variable [, reset z, to zero, and enter mode
gy = 2. We also label each transition with a boldface
number near its source for later use.

Givena PTMTS 4, = (X, X,,,Y,Y,, I,,T,) and a variable y

in YUY, we let Dy, be the union of {0} and the set of
values assigned to y in 7},. That is, Dy, ., is the domain of y.

Definition 2 (States). A real-time concurrent system, in our

definition, is represented as a set of PTMTSs. Suppose
we are given a real-time concurrent system S with m
PTMTSs Ay,..., A, such that, for all 1<p<m,
A, =(X,X,,Y.,Y,, I, T,). A state of S is a mapping
v from XUUcpe X UY UU o), Yo such that for
each x€ XU, oo, Xp, v(x) €RY; for each yev,
v(y) € Urcpem Dayyy and, for 1<p<m and yevy,
v(y) € Da,y. A state v is an initial state iff, for all
z2€ XUUiqpem Xp VY UUicper, Yo v(2) = 0.

Given a state and a state predicate 1, we can define v |= 7

(v satisfies n) in a traditional inductive way.

viEy=ciff v(y) =¢,

viEy=piff v(y) =p,
vExz+te~z +diff v(z)+c~v(r)+d,
viExz~ciff v(z) ~¢,

v | —m iff it is not the case that v | 7,
veEnvyiffvEnorviE”®

Given a state v and § € R", we let v+ ¢ be a mapping

identical to v except that, for each z € X UUlgpgm X,

(v +0)() =

v(z) +6. Given a sequence of assignment

statements x, we let vk be a new mapping identical to v
except that variables are assigned new values and timers
are reset to zero according to .

64

Definition 3 (runs). Suppose we are given a real-time
concurrent system Ay, ..., A, such that A,=
(X, X, Y, Y, I,,T)) forall 1 < p < m. A v-run is an infinite
sequence of state-time pair (vo,to)(v1,61) ... (Vs te)
such that v =y, tot1 ...t is a monotonically increas-
ing real-number (time) divergent sequence and, for all k > 0,

o forallte€ [0t —til, vk +t E Nicpar Ip) and
e cither

- vt (te — tr) = Vegrs o
- there are pe{l,...,m} and (g, = vi(gy) A
n) — qp = viy1(qp); k] € T, such that v, +
(t/c+1 - tk) |: n and (Vk + (tk+1 - tk))/{ = Vkt1-
If a v-run describes the behavior of the system from the

beginning of computation, then we require v to be an initial
state.

2.2 CTL and Model-Checking

Our verification framework is model-checking. That is, the
system description is given in PTMTSs and the specification
is given in CTL formulas [3], [19] and a verification problem
instance asks if a given concurrent system with PTMTS
processes satisfies a given CTL formula. A CTL formula has
the following syntax:

¢pu=n|30¢ | U | ~¢' | ¢V

Here, 7 is a state predicate in

XUUl<p<TH Xp
YUUlgpgm Y"

J0¢’ means there exists a run, from the current state, along
which ¢’ is always true. 3¢'U¢" means there exists a run,
from the current state, along which ¢’ is true until ¢”
becomes true. Traditional shorthands, like 3, VO, V<, VU, A
(conjuntion), big disjunction (V,.,.,,), big conjunction
(Ai<p<m), and —, can all be defined.

B

The satisfaction of a CTL formula ¢ by a state v in a real-
time concurrent system .S, written S, v = ¢, can be defined
in a standard way.

e S.vEniff vsatisfies n as a state predicate.
e S v = 30¢ iff there is a v-run

(V[J» tU)(Vh tl) e (Vk, tk)

such that, for all k>0 and ¢ € 0,51 — tg),
S, v+t 'Z (;5
e S vE3IpUP iff there is a v-run

(l/()7 t())(l/l, tl) e (l/k-7 tk) ;
ak>0,and a t € [0,¢r+1 — tx] such that

- S,y +tE¢; and
- for all 0<h<k and ¢ €[0,tp1 —ts), if
th+t <tp+t then S,u, +t E ¢.
e S, vE —¢ iff it is not the case that S,v | ¢.
o SvEovyifft SsvlEgorSvEQ
Also, we write S | ¢ (S satisfies ¢) iff, for the initial state v
of S, S,v [¢.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002
Example 2. The mutual exclusion specification of Fischer’s

protocol in Fig. 1is VO-V, ., ,<..(¢p = 3 A gy = 3).

3 REeLATED WORK

This section gives a brief account of some mature tools that
are widely known and of the verification techniques they
have used. It is worth noticing that, although such tools are
numerous, very few tools have provided high-level
verification perceptions yet. The following are some tools
and techniques used for formal verification.

SMV [34] is the first model-checking tool for CTL
(Computation Tree Logic) specifications with BDD (Binary
Decision Diagram) technology. NuSMV [9], a newer version
of SMV, is one tool that will be adopting a high-level user
interface. But, they still do not allow users to easily
construct verification strategies best fitting their verification
tasks.

SPIN [23] is an automated protocol validation system
using PROMELA with refining dependencies for efficient
partial-order verification [10], [18].

Mur¢ Verification System [13] is a language-based
verification tool for finite-state concurrent systems with
symmetry-based reduction [27].

Aldebaran [16] is a component of the CADP protocol
engineering toolbox developed at INRIA/Verimag with
strong/weak (bi)simulation, safety preorder/equivalence,
on-the-fly verification techniques [17], time-abstracting
bisimulation implemented [40]. Yet another component in
the CADP toolset is XTL Model Checker [33] with states,
transitions, and labels handling labeled transition systems.

CAML Prototype [29] has implemented a quotienting
technique of moving a parallel system description into a
specification formula, trivial equation elimination, and
equivalence reduction. KRONOS [11] is a well-known
verification tool with minimization algorithms [11], inactive
clock reduction [12], and clock equality [12] reduction
techniques implemented. Kronos does not allow natural
manipulations of global variables. We believe that, in the
context of iterative composition, Kronos is not able to detect
dead transitions whose triggering conditions depend on
global variable values. Moreover, Kronos detects dead
transitions by generating a Cartesian product of automata,
which can be very space-inefficient.

UPPAAL [31], [30], [7] is a widely used verification
tool for real-time systems with a graphical interface,
simulation, quotient construction, minimizations, trivial
equation elimination, and equivalence reduction imple-
mented [31]. Memory space explosion was tactically
handled by compact data structures [30] and optimized
constraint manipulations [7].

In Section 7.4, we discuss how to reduce state-graph sizes
through bypassing internal transitions. Similar concepts
may be dated back to the “internal action” of process
algebra [22], [35]. A recent similar concept is the “invisible
transition” by Miller and Katz [36]. However, there is both a
similarity and a distinction between the concepts of Miller
and Katz’s “invisible” and our “internal.” In the similarity
part, both concepts try to hide information which is not
interesting to the outside world. In the distinction part,
Miller and Katz focus on the observation (i.e., specification)

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

65

TABLE 2
An Example Verification Procedure

state_graph xG;

int m;

CTL o;

{
state graph H, H|, Hy, Hy;
int i;

H:=(d[1;

for i := 2 tom, do {
H = H x GIil;
H’] = R[(RQ(H)).

else H := H,;

1

return check(H, ¢);

verify (G, m, ¢) /* Assume we have reducers Ry, . ..

H; := Rs(Ra(Rs(Rs(H)))):

if Size(H,) < Size(H,) then H := Hy;

else if Size(H,) > Size(H,) then H := H,;

else if Time(H;) < Time(H,) then H := Hy; (

R;. */

——
[N
e S

= w

of the users, while we focus on the interaction among peer
processes. This distinction drove us to design new
techniques with Lemmas 1 and 2. More precisely, the
property of “invisibility of transitions” proposed by Miller
and Katz depends on the specification, whereas our
property of “internal” is independent of any specification.
A transition may become internal only when verification is
performed compositionally.

From the above, we notice that, although different
techniques have been implemented in the various well-
known tools, yet if a user needs to apply two or more
different techniques to a verification task and if those
techniques were implemented in different tools, then the
user will have to expend great effort trying to either
translate the output results of one tool to the input format of
another tool or make some strong assumptions of technique
application that may be invalid. Even with one verification
tool, users still face a delimma. On one side, without a user-
friendly interface for users to construct high-level verifica-
tion strategy, it may become difficult for the tools to figure
out the right combination of existing reduction techniques
for a given verification task. On the other side, for new
users, to acquaint themselves with the reasoning structures
of various tools in order to maximize verification efficiency
can just be too costly and too time-consuming for their jobs.
Such painstaking efforts could be avoided if various
compatible techniques could be collected, implemented,
and integrated into a single environment in which users can
flexibly fine-tune their verification strategy. SGM is pro-
posed with this motivation in mind.

4 GENERAL FRAMEWORK OF VERIFICATION

Our method can be embodied in a simple language of
verification procedure. The language looks like Pascal or
C, but supports high-level objects with types of integer,

state-graphs, and CTL formula. In the following, we give an
example to illustrate how to define a verification procedure
in the language.

Merging of state-graphs is performed by the binary x.
Then, we have a set of theoretically proven reducers which
can be designed by anyone. The control of verification
procedure can be achieved with nested for-loops indexed
on integers and if-statements with conditions on state-
graph sizes, graph construction times, and index variables.
In Table 2, we have an example verification procedure
written in the language. Verification procedures always
take three arguments. The first, here G, is an array of state-
graphs; the second, here m, the number of state-graphs
(processes) in the concurrent system; and the third, here ¢,
the CTL formula to check with. The array is declared in C-
language style. Lines (1) and (2) declare variables of state-
graph type and integer type, respectively. Line (4) iterates
the for-loop to merge and reduce the state-graphs. Lines (6)
and (7) calculate two alternative combinations of reducers.
The if-structure starting at line (8) chooses the reduction
result with, first, the least size and, then, the least CPU-time
for each iteration. For any state-graph H, we let
size(H) = NodeCount(H) + ArcCount(H). NodeCount()
is a system-defined function which returns the number of
nodes in the argument state-graph. Similarly, another
function, ArcCount(), returns the number of arcs in the
argument state-graph. Time() is the CPU time used to
construct the state-graph in its argument. After the loop
from lines (4) to (11) is over, H is a reduced representation
for the global state space. Then, at line (12), we check H
against ¢.

Since our method allows reasoning on state-graphs as
whole objects instead of searching for paths in them, users
can test different combinations of reducers to achieve their
verification tasks from a resource management point of

66

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 51, NO. 1, JANUARY 2002

TABLE 3
Manipulator x

If XState(vo) is false, return NULL.

While U is not empty, do {
Choose s = (v, vy, 19) € U;

x(Gv,Gs) /* Gy = (V1, 014, XState,, By, (XPair,, XProc,, Xtion , XPermy))
and Gy = (Vy, vay, XStates, By, (XPairy, XProcy, Xtiony, XPermy)) */

Let G := (V, vy, XState, E, (XPair, XProc, Xtion, XPerm))
Let XState(vy) := XStatey(vi.0) A XStatey(van);

Let U = {{(vg, v, v2a) }; Vo= {we}; E = 0;

For cach 7 € {1,2} and e € E; with XPair(e) = (v;, &;) for some 7;, do {
Let o' be the destination node from v by transition e.

Calculate XState(v') as the posteondition of transition ¢ from v
according to the algorithm in [19].
If XState(v') is FALSE, then break;

Let V=V u{v};

}Let U :=U — {s};

return A;

}

If there is a © € V such that XState(v') = XState(d), let o' = ; clse {

if i = 1, then construct a new (v, 9y, vs) in U;
else construct a new (v, vy, 0y} in U;

Let E := EU{e'}; XPair(¢') := (v,0"); XProc(e') := XProc(e);
Xtion(e") .= Xtion;(e); XPerm(e') := XPerm;(e);

view without deep knowledge of the technology and theory
inside the manipulators.

5 IMPLEMENTATION OF STATE GRAPHS

A state-graph G for process set H = {i1,is,...,%,} is a
multigraph (allowing more than one arc from one node to
the other) and is conceptually implemented as a tuple,

G = (V, vy, X State, E, (X Pair, X Proc, Xtion, X Perm)).

Each element in V is a region which represents a set of
states. vy is the initial region. For each v € V, X State(v) is a
condition true for all states represented by v. Specifically, in
X State(v), we record the following information:

e The values of all local and global discrete variables
(including g,) in H.

e The Difference-Bound Matrix [2], [14] which records
the differences among all local and global timers in
H up to the biggest timing constant used in the input
PTMTS.

e Some propositions prepared by manipulators in
SGM for the use of other manipulators. For example,
we may use Lemma 1 in Section 7.1 to infer that, at
some states, | = p must be false.

Thus, when we say two states are in the same regions, we
mean they are identical with respect to their information
recordings.

E is the set of arcs among nodes in V. For each e € E,

® XPuair(e) = (v,v') describes the source and destina-
tion of arc e.

e XProc(e) € {1,...,m} defines the index of the
process which makes the transition corresponding
to e.

e Xtion(e) is an index representing the transition
which corresponds to e.

e XPerm(e) is a permutation of process identifiers 1
through m and is needed because we implement
reduction with symmetry [15].

State-graphs are multigraphs because there can be more
than one transition leading from one node to the other.
Reduction by symmetry also adds multiplicity to arcs
between pairs of nodes. From X Proc() and Xtion(), we can
reach informations about triggering conditions and assign-
ment statements.

6 ON-THE-FLY MERGING OF STATE-GRAPHS

In this section, we shall first briefly describe our merge
manipulator, (x), which merges two state-graphs into a
new one which represents a finer description of the global
state-space. Suppose we are given two state-graphs, with
1€{1,2},

Gi = (V;,vi0, X State;, E;, (X Pair;, X Proc;, Xtion;, X Perm;))

for process set H; ={pii1,pi2,---,Pim;;} such that
HiNHy=0. x(G1,G2) (or G; X Gy in infix notations),
computed with the procedure in Table 3, is a new state-
graph constructed with on-the-fly technique from G; and
Gy for process set H; U Hs. The reader should be mindful
that the output of a merge operation is not a plain Cartesian
product. It also contains information for reduction informa-
tion needed for further composition and reduction (like
symmetry reduction). Since the merge is in an on-the-fly
style, some inconsistent state representations can be
discarded before being generated.

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

67

node 0

qg1=1ANqg=1Ag=1AN12>%1>22>23>0

2

29

node 1
G =2ANq@p=1Ag=1A12>223>23>21 >0

node 4
g1=1ANg=2Aqgs=1A1221>23>222>0

L

=

node 2 (deduce I #1)
G =2ANq@p=2Aqg=1AN12>22z3>21>222>0

node 5 (deduce ! # 2)
QL =2ANqg=2Aqgs=1A1223>22>212>0

; f41 23

: f42 23

node 3 (deduce l 1AL #£2)
Q1 =2ANq@p=2Aqg=2ANx1 >x2>232>0

node 6 (deduce I 1AL # 2)
QL =2ANq=2Aqg3=2Ax3>21 >23>0

:41 : :42 43 \l31 l32 l33
Fig. 2. lllustration of Lemma 1.

7 IMPLEMENTED REDUCERS

In this section, we discuss the techniques we used to reduce
state-graphs. Sections 7.1, 7.2, and 7.4 discuss our newly
developed techniques in details with lemmas and examples.
Note that our reduction techniques work in the context of
iterative composition and shared variable manipulations.
Suppose we have merged k state-graphs, out of m given
state-graphs, into Gi.,. We shall establish lemmas which
will help us avoid generating unreachable state preresenta-
tions in those intermediate state-graphs like G|.; in the first
place. Lemma 1 in Section 7.1 helps us to analyze the values
written to shared variables by different parties in a
concurrent system and to predict the shared variable value
ranges in the future. This lemma is very handy in our
derivation of value-stability properties of state subspaces of
those intermediate state-graphs and can be used to
eliminate state subspaces and (dead) transitions, whose
triggering conditions depend on global variables and can
never be satisfied.

Lemma 2 in Section 7.2 derives a path-based property for
timer-elimination and can be used to deduce the behavior-
equivalence among states. The lemma is established in the
context of iterative composition of state-graphs. Lemma 2
predicts, in a given state, whether the value of a clock will
be used again before being reset by considering the
behavior structure in Gi., and the read-write values used
in the other m — k state-graphs for the clock.

Section 7.3 discusses how we adapt the technique of
verification by symmetry [15] to dense-time systems.

Section 7.4 discusses how we can exploit the fact that
some transitions becomes internal only after an intermedi-
ate state-graph, like G, is generated.

7.1 Variable Value Stability under Concurrent

Read/Write
Suppose we have an intermediate state-graph composed
from state-graphs for processes with identifiers in set H. For
a given global variable y, we let Dy, be the set of values
written to y by processes with identifiers in H, but NOT by
processes without identifiers in H. We present the following

KX el

lemma, which governs the stability of global variable
values, derivable from intermediate state-graphs, in con-
current read/write systems.

Lemma 1. Suppose we are given a variable y and a finite run
segment (vp,tp)(Whtt1,the1) - - (g, ty) such that, for all
h <i <k, v; goes to v;11 without making an assignment to
y on a transition from a process with an identifier in H.

e If we enter state v, with an assignment y := a;, then,
for all h <1< k,ti <t<ti1,

vi+th y #b.
be(Diy—{a})

o If we enter state v;, without an assignment to y but
with a triggering condition y=a, then, for all
h<i<kt;<t<tgi,v+tE /\be(DH:r{a}) y#b.

e If we enter state vy, without an assignment to y but
with a triggering condition y # a with a € Dy, then,
forallh§i<k,t¢ <t <t Vi+tl:y7éa,

Proof. If the values in Dy, are not going to be written to y
by other processes with identifiers not in H, since we
have the full knowledge that processes with identifiers in
H will neither write values in Dp., to y along the
segment, thus the lemma must hold. O

Our SGM takes advantage of Lemma 1 in the following
way: In a given state-graph, we have a set of nodes each
representing a set (region) of states. Lemma 1 is first applied
to deduce the truth values of propositions about valuations
of discrete variables in the nodes. Certain nodes can be
eliminated because of invalidated invariance conditions.
Certain transitions can also be eliminated due to invalidated
triggering conditions. After such elimination, the state-
graph size is, hopefully, reduced.

Example 3. In the state-graph in Fig. 2, which is part of the
state-graph generated for Fischer’s timed mutual exclu-
sion algorithm in Fig. 1, the square boxes represent nodes
(regions) while the arcs represent transitions with
transition indices and process identifiers labeled by their

68

sides. The crossed-out arcs represent transitions detected
as untriggerible by Lemma 1. For example, in node 2, we
can deduce [# 1 and, thus, conclude transition 4; will
never be triggered from node 2. Thus, Lemma 1 can be
used to early delete arcs and nodes which eventually are
unreachable in the final state-graphs.

7.2 Irrelevance of Shielded Timers

A timing atom is an atom of the syntax:
x—c~a —d|x~c where z,2' are clocks and c¢,d are
natural numbers. A set I' of timing atoms is shielded in a
state v with respect to a state predicate 7 iff the truth values
of the timing atoms in I' together do not affect the truth
value of n. To explain this concept, we define function (),
which, given a timing atom set I, state v, and a state-
predicate 7, evaluate all atoms in 7 except those in T.
Formally speaking, we define Q(T',v,7n) inductively as
follows:

QT, v, x) = {true, false} if x € T.
QT, v, x) ={v E x} if x is atomic and x ¢ T.
QT, v, —n) = {=b[beQUT,v,n)}.

QC,v,pvry)={bVvd |beQT,v,n);
b e Ql,v,n)}

Here, we assume that

—true = false,
—false = true,
true V true = true,
true V false = true,
false V false = false,

and falseV true = true. Then, T' is shielded in v w.r.t.
n iff |Q(T,v,n)| =1, which means the values of 7 are
independent of atoms in I' in state v. For instance, in
Example 1, timing atom set {0 < z,,z, <1} is shielded
in any state which satisfies ¢,=0 w.r.t.
I=¢,=0V(g,=1N0<z,A2,<1)Vg,=2Vg =3
Definition 4 (Timer shieldedness). Suppose we are given a
model-checking problem instance with system S and CTL
formula ¢. A timing atom in one of the following forms: x ~ c,
x+ce~z +d and ¥ +c~x+dis called an x's timing
atom. Let U, be the set of all timing atoms of x used in the
model-checking problem instance. A timer x is shielded in a
state v for the problem instance iff

1.z is not used in the specification ¢ and
for any k € N and v-run

(l/()ﬂf())(l/l,tl) e (l/k-,tk) 5
if either

a. k> 0and v, goes to vy, on a transition n — [K]
such that |Q(Uy, vk—1 + te-1,m)| > 1 or
b. k>0 and, for some t € [0, t511 — ti),

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002

QU v+t \ L) >1,

1<p<m

then thereisa 0 < h < k such that v,_, goes to v, on a
transition nf — [...;z:=0;...].

Case 2a is a state property which says a transition can be
either allowed to or forbidden from happening due to
different valuations of timing atoms in U,.. Case 2b is a state
property which says a region can be entered or not due to
different valuations of timing atoms in U,. Case 2 is a path
property which intuitively says that if the current reading of
timer x is not tested (with invariance conditions or triggered
transitions) before it is reset, then the current reading of
timer x is of no influence to system behavior in the future.

Lemma 2. For every subformula 1 of the specification formula
and every two states v,V such that v and V' are identical
except for the readings of x, which is shielded in both v and v/,

S,vEYIiff S,V .

Proof. Suppose we have a v-run

(l/()7 t())(l/h tl) . (I/k, tk)

We want to establish that we can construct another
V-run

(V(/), t())(lli7 tl) cee (l///v, tk)

such that, for all & > 0, v;_; goes to v; and v;_; goes to v,
on the same transition e; = 7 — [x] of the same process.
Note that v,/ only differ at readings of .

Assume the construction is impossible because there is
atleast £ > 0 such that e; can be triggered in the v-run, but
cannot be triggered in the /-run due to either unsatisfied
triggering condition (Case 2a in Lemma 2) or unsatisfied
invariance condition (Case 2b). Since the only difference
between the two runs is caused by the different readings of
zinvand v/, this implies either Q(U,, vj_1 + ti, — tj—1,71) >
Lor Q(Uz, vk, Ai<pepn Ip) > 1, which again implies, by our
shieldedness condition, that, before e;, there is another
transition which has reset = to zero in both runs. This
means (vj_1 + tr — tp-1)(z) = (v_1 + t — tp—1)(z), which
is a contradiction to our assumption. Thus, we know the
construction can be made and, by induction on the
subformula structure, we can show the “iff” relation. O

Here is how we plan to use Lemma 2. In the set of nodes
in a state-graph, after application of Lemma 2, we can
eliminate some pieces of information (actually columns and
rows in zone matrices and timing atoms) from the
recordings of nodes. After such elimination, we may
hopefully find out some nodes are indistinguishable now
and we only have to keep only one representative node in
each of such indistinguishable groups. Thus, the state-graph
size can be reduced.

Example 4. In Fig. 3, part of the state-graph generated for
Fischer’s timed mutual exclusion algorithm in Fig. 1, we
illustrate how Lemma 2 works. Fig. 3 can be thought as a
reduction from Fig. 2. Let us examine how this reduction
is possible. By analyzing the intermediate state-graphs G
after merging the state-graphs for processes 1, 2, and 3,
we can deduce that, in Fig. 2, z; is shielded in node 2, z

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

69

node 0

qg1=1ANqg=1Ag=1AN12>%1>22>23>0

2

29

node 1
G =2ANq@p=1Ag=1A12>223>23>21 >0

node 4
g1=1ANg=2Aqgs=1A1221>23>222>0

L

=

node 2 (deduce I # 1; shield z1)
Q1 =2ANqp=2Ags=1A12>23>222>0

node 5 (deduce ! # 2; shield x2)
QL =2ANqg=2Aqgs=1A12>23>212>0

23

%1

node 3

(deduce I #1 Al # 2; shield x1,22)
g1 =2ANq2=2Aqg3=2Nz32>0

L

Fig. 3. lllustration of Lemma 2.

is shielded in node 5, and z1,z, are shielded in both
nodes 3 and 6. To convince ourselves of these, let us look
at node 2 and timer z;. Condition 1 is obviously satisfied
(check Example 2). Condition 2 can be established as
follows: In node 2, process 1 is in mode ¢; =2 from
which z; is read only by process 1 with transition 4;
before any reset. But, from Example 3, we already knew
that, from mode ¢; = 2, transition 4, is not triggerible.

Thus, we deduce Conditions 1 and 2 are both satisfied.

After shielding the clocks in different nodes, we find
that, according to Lemma 2, nodes 3 and 6 are
equivalent. Thus, we can just keep one of them.
However, we note for readers that the shieldedness of
the timers in this example is detected only after we have
eliminated arcs using Lemma 1. This implies that
application ordering among reducers can affect verifica-
tion performance.

7.3 Symmetry through Index Permutation

We extend the technique of reduction by symmetry [15] to
dense-time systems. The idea is to attach process identifer
permutation to arcs in state-graphs. Only one node among
those equivalents under process identifier permutation will
be kept. This usually results in factorial reduction in state-
graph sizes. By applying the reduction by symmetry
technique, we can further reduce the structure in Fig. 3 to
the one in Fig. 4, which is again part of the state-graph
generated for Fischer’s timed mutual exclusion algorithm
in Fig. 1. Note that there is a new arc from node 0 labeled
with 25 now. On the same arc, we also label the
permutation of (2,1).

As we see, reduction by symmetry transforms a state-
graph into a multigraph. In fact, a lot of the arcs can also be
eliminated to save memory space. We adopt a two-fold
approach to this aspect.

e For CTL specification which is symmetric to all
process identifiers, we shall also reduce those arcs
which are equivalent under permutation by process

node 0

g =1ANg=1Ag=1A12>z1 >z2>232>0

2 29

21

node 1
g1 =2Aq@=1Ag=1A1>x2>x3>21 >0

=

node 2 (deduce [# 1; shield z1)
1 =2Nq=2ANqg3s=1AN1>z3>22>0

node 5 (deduce I # 2; shield z2
Q= @2=2Nqgs=1A1>z3>21 >0

\;23

node 3

(deduce I # 1 Al # 2; shield z1,x2)
g1 =2ANq=2Ag3=2Az32>0

S

Fig. 4. lllustration of reduction by symmetry.

NO. 1, JANUARY 2002

70 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,
TABLE 4
Bypass Internal Transition
BIT(G, ¢) /* G = (V,vy, XState, E, (XPair, XProc, Xtion, XPerm)) for process set H */ {
E' =1
For every vi,v2 € V and e € E with XPair(e) = (v),v2) and Xtion(e) =n — [s], if
e XState(vy)/I implies XState(ve)/I; and
e XState(v)) implies 7 is true; and
e ¢ is internal to H,
then {
For all ¢ € E with XPair(¢') = (v2, v3) for some vz € V, do {
create ¢’ such that XPair(e") := (v1,v3), Xtion(e") := Xtion(c'),
XProc(c") := XProc(e)), and XPerm(e') := XPerm(e).
E =Fu{}
}
E:=F - {e};
}
E:=EUFE,
Delete all unreachable nodes in Gj
}
identifiers. It can be shown that such reduction will Given a region v, we let X State(v)/I be the new region
not affect the answer of model-checking. recording obtained from v by discarding all conditions on
e For asymmetric CTL specification, we still do the variables from I. Specifically, X State(v)/I is obtained from
arc reduction with symmetry technique. But, when v by deleting those values recordings for variables in I and
actually model-checking a CTL specification those literals with variables in I. Our BIT reduction
against a state-graph whose arcs have been procedure is shown in Table 4.
rdeduce(.i with symmetry technique, S.G M will Example 5. We have a token ring in Fig. 5 of four processes
ynamically reconstruct the arcs which were .
. with template state-graph A,. ¢1,12,13,%, are the tokens.
reduced. Once the evaluation from one node to .
. . For each 1 < p <m, token ¢, is internal to process set
another is done, the arcs dynamically constructed P
will then be discarded. Such dynamic reconstruc- {(p%4) + 1,p} w}.le.re % is ’Fhe modulo operator. Mode
tion and discarding can increase the efficiency of %=1 18 the. crl.tlcal section. To check for mutual
memory space management. exclusion, it is enoggh to model-check on
VO-(¢1 =1A g =1), which we assume to be the
7.4 Internal Transition Bypassing

Suppose we are given a model-checking problem with
dense-time concurrent system S, of m processes, and CTL
formula ¢. Given a set H of processes in S, we let YH be the
set of discrete variables either read or written to by the
processes in H. A discrete variable y is said to be internal to
H iff

o (yeYNA(ygylh-m-h)

e yis not used in ¢.

In other words, an internal variable of a process set H is
neither accessed by process not in H nor used by the
specification. For example, all local variables of a process
are internal variables of any state-graph. A variable which is
not internal is called a visible variable. For example, all global
variables of a system are visible variables.

Reading and writing of variables occurs on transitions in
their triggering conditions and assignment statements,
respectively. A transition n — [«] is said to be internal to
process H iff its triggering condition 1 and assignment
statements x only access internal variables of H. Note that x
does not reset any timer variables, either local or global.
Otherwise, the progress of time is not continuous and
outside processes may thus speculate on the occurrence
time of the transition.

specification. After merging the state-graphs for A3 and
A4, we find the path in Fig. 6. Note that, in A3 x Ay, g3, qu,
and t, are all internal. Thus, according to our algorithm
in Table 4, the arc from node 0 to node 1 can be bypassed.

8 USER INTERFACE

We have implemented a text-based user-interface and a
window-based user-interface for SGM. They all support
high-level verification in which users can manipulate state-
graphs as basic data-objects.

8.1 Verification Procedure Language

The input language of SGM is called Verification Procedure
Language (VPL), which consists of three parts for system
description, specification, and state-graph manipulation.
System description corresponds to the timed automata
model of real-time systems as defined later in this section.
Specification corresponds to a TCTL specification. Manip-
ulation corresponds to a list of actions on state-graphs. The
following denotes a basic input file structure, where — starts
a comment line.

- (1) System Description Part
automata Client : i =1..11;

clock ...;

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

71

Fig. 5. A ring of four processes.

node 0 node 1 node 2
=0 14 =0 =0
q3 q3 2, q3

A ga=0 A oga=1 AN ga=0

AN t3 =0 /\ AN t3 =0 AN t3=0

AN oty =1 A tg=1 A t4 =0

A t1=0 A t1 =0 At =1

— i -
24
Fig. 6. Part of a region graph for the ring network.

register ...; SGM. It allows the user flexibility in choosing which
automaton Client[i] { } manipulators to apply, when to apply, and in what sequence

TCTL Specification Part
verify
Manipulation Part
manipulation
graph G[1], G[2];
merge_graph (Client[1], Client[2],
G[11):
shield_clock(GI[1]);

The above SGM input allows easy change of a system’s
degree of concurrency by simply changing the first line.
SGM strives to maintain a parametric input description so
that users do not have to write 11 automata descriptions or
rewrite everything whenever a process is added or
removed. In Table 5 we have the VPL description of
Fischer’s timed mutual exclusion protocol.

In VPL, we support the full syntax of TCTL formulas
through various keywords, such as all_paths(V),
exists_path(d), henceforth(Od), eventually({), etc.
The specification begins with the keyword verify. Users
can easily specify a TCTL formula using the user-friendly
keywords. For example, all_paths means for all paths in
the state-graph starting from the initial mode. For our running
example of 3-automata Fischer’s timed mutual exclusion
protocol (FMEP) [28], [1], [32], the TCTL specification is as
follows:

verify all_paths
(henceforth not{ (mode(A[1]) =M4) and
(mode (A[2]) =M4)}
and not { (mode (A[1]) =M4) and
(mode (A[3]) =M4)}
and not { (mode (A[2]) =M4) and
(mode (A[3]) =M4) });

Coming to the final part of a VPL input, state-graph
manipulation, this part is required only in the batch mode of

to apply. Arguments of manipulators are state-graphs,
which are defined in Sections 6 and 7.

In the last part of SGM input, state-graphs are variables
which have to be declared first. Then, a list of manipula-
tions follows the declaration. A simple manipulation can be
either the merging of two state-graphs such as g[3] :=
merge_graph(g[1l], gl[2]); or the application of a
single reduction technique on some state-graph such as
shield_clock(g[3]); or model-checking a state-graph
such as model_check(g[3]); or printing a state-graph
such as print_graph(gl[31);, where g[1l], gl2],
g[3] are all state-graph variables. More complex program-
ming constructs are also provided, such as for-loops and if-
then-else statements, for more dynamic selections of manip-
ulator sequences. These are omitted due to page limits.

TABLE 5
VPL for Fischer's Timed Mutual Exclusion Protocols

automata A ;1= 1.11;
clock x[1..total(A)]; register lock;
automaton Alfi] {
initially M1 and lock = 0 and x[i] = 0;
mode M1 { invariant True;
when lock = 0 may goto M2; x[i]
}
mode M2 { invariant x[i] < 1;
when x[i] < 1 may goto M3; x[i] := 0; lock := i;
}
mode M3 { invariant True;
when x[i] >= 1 and lock = i may goto M4;
when ~(lock = i) may goto M1;

=0

mode M4 { invariant Truc;
when True may goto M1; lock := 0;
t
}

72

State Graph Manlpulators (SCM v1.2)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002

File Graph Options Merge Reduce Verify
Al Al2] A[3] fals] At | A[6] | Jalti] |
4 modes 4 modes 4 modes 4 modes 4 modes | 4 modes | 4 modes |
5 transitions 5 fransitions 5 transitions 5 transitions T —— == = d
A[1] A[2] A[3) a4] = cl1l |1 [
SIZE = 16 modes, 36 transitions
‘| |PROCESSES = a[1] A[3]
Al8] _T[8] _T[9| _Tp) MEMNIPULATORS AFFLIED:

4 modes 0 modes 0 moces 0 modes I";derge;vG_rtaph(Aﬂ], Al
3 transitions 0 transitions 0 transitions 0 transitions Sﬁald_ Cr: EOK
A EMPTY EMPTY EMPTY L ElEE R

Mormalize_Regions()

Transition_Bypass()
|| TOTAL TIME USED: 0.133773 seconds
_T[4] C] LAST ACTION TIME USED: 0.000866 seconds.

0 modes 16 modes
0 transitions 36 transitions
EMPTY a1 A3

Wiew | Reset | Rename Save |

Edit | Fres | Print | oK |

File: fs

| CWD: rhomes/fsmliericArorkssgm_guisgui

Log: flog

|Semantics: FALSE ‘Verbusity =E |

Fig. 7. SGM Graphical User Interface.

Continuing with Fischer’s mutual exclusion protocol
example, the state-graph manipulation is as follows:

manipulation
graph g[l..total(A)-11;
- new graph declarations
for(i:=1; i<total(A); i++) {
— for each declared graph g[i]
if(i=1) { gll] :=merge_graph(A[l]l, A[2]); }
else { g[i] :=merge_graph(g[i-11, A[i+1]1); }
shield_clock(gl[il);
symmetry (g[i]); }
model_check(g[total(A)-11);
— model-check global graph
print_graph(gl[total (A)-11);
- print global graph

8.2 Graphical User Interface
Besides a human-readable input language, user-friendly
verification is achieved by SGM through: 1) three user
interfaces, including graphical, interactive, and batch, 2)
two manipulation modes. A user has to first create a text
input file using VPL (Section 8.1).

In the graphical mode, as shown in Fig. 7, after a user
loads an input file, SGM displays the system as a set of
boxes, where each box represents a state-graph. Each box
has some basic visible information, including its size and
component processes. Detailed information of each state-
graph (box) can be obtained by opening the boxes. After
selecting two state-graphs (boxes), one can merge them
through a Merge Graph command in the SGM menu and a
new state-graph (box) is created which represents their
merger. A state-graph (box) can be selected for applying
any manipulator in the SGM Reduce menu. The manip-
ulators will be described in detail in the next section.

9 EXPERIMENTS

We perform two experiments on SGM. First, we run SGM
against several academic as well as industrial examples,
with various reducer sequences, to show that it is possible
for nonexpert users to easily come up with their own
verification strategy with SGM. Second, we compare SGM’s
performance with two other popular model-checkers for
real-time systems, that is, UPPAAL and Kronos, to show
that, even for nonexperts, reasonable performance can be
achieved in SGM.

9.1 Application Examples

We present the results of five application examples which
illustrate the benefit of allowing user-flexibility in manip-
ulating state-graphs and of the high-level perception of
system verification. On experimentation, we observe that
different verification tasks require different manipulator
sequences to best reduce the intermediate state-graphs and
to help in saving the most computing resources, such as
processor time and memory space. While, for some
verification tasks, a manipulator may not be applicable or
compatible, there are also tasks for which a manipulator not
only provides no reduction, but also consumes computing
resources without any benefit. Since SGM allows a user
complete control over what kind of manipulators to apply
or not to apply, the user can find the best manipulator

sequences suited for a particular verification task.
The five application examples presented here include:

1. Fischer’s timed mutual exclusion protocol (FMEP)
(28], [1], [32],

2. a graphical user interface of a calculator,

3. Carrier Sense, Multiple Access with Collision Detec-
tion (CSMA /CD) network communication protocol
[391, [26], [37],

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

73

TABLE 6
Performance Data for Fischer's Mutual Exclusion Protocol Example (11 Processes)
#Modes
#Transitions
Construction Time (sec)
n 2 3 4 5 6 8 10 11
70 1191 22781
A 160 3988 105125 Oo/M | O/M O/M O/M O/M
0.06 3 1343
31 184 1033 5804
B 70 594 4316 | 28451 | O/M| O/M| O/M| O/M
0.07 1.1 19.1 -
36 224 1509
C 82 859 8107 Oo/M | O/M O/M O/M O/M
0.07 6.1 229
16 39 76 130 204 424 760 219
D~ 35 109 247 472 810 1944 3937 1063
0.07 0.6 3 10.7 35 276 - -
16 39 76 130 204 424 760 219
E 35 109 247 472 810 1944 4786 1174
0.08 0.9 4.7 18 61 487 - -

A: {mg, rw}, B: {mg, rw, sm}, C: {mg,

sm}, D: {ing, tw, s¢, sm}, E: {mg, rw,

s, sc}

O/M: Out of Memory, mg = merge_graph(), rw = read_write(), sc

shicld_clock(), sm = symmetry()

The “*” at row D means combination D is with the best performance in terms of

the smallest state-space size and time.

4. priority-based task execution control mechanism in
the PATHO real-time operating system [38], [6], [5],
and

5. ring network token passing.

9.1.1 Fischer’s Timed Mutual Exclusion Protocol

This protocol [28], [1], [32] was used for illustration
throughout the article. (Check Fig. 1.) We applied SGM to
the protocol with 11 processes. In Table 6, we show the
experiment results with three different reduction sequences
applied after each intermediate state-graph is generated

6000 T T T

read_write(), shield(), normalize(
read_write(), normalize(), shield(

5000

4000 -

Number of modes
w
(=3
[=]
=
T

2000

1000

25
Iteration Steps after applying each manipulator

Fig. 8. Performance chart for FMEP example (mode comparison).

from merging. Each column represents the state-graph
sizes (in #Modes: number of modes and #Transitions:
number of transitions) and CPU time used to generate the
state-graphs for the corresponding number of processes.
Note, in all rows, the numbers in the last column drop
drastically from those in the column next to last. This is
because, once all processes are merged, the causality can
be fully determined and a lot of assumptions of variable
values in the regions of the global state-graph can then be
determined as unfounded.

500 T T T T T L
—o— read_write(), shield(), normalize
as0F-| —&— read_write(), normalize(), shield B
400
350
3001
e
2
8
8 250
@
£
~ 2000
150
100
50
o "
3

Number of automata

Fig. 9. Performance chart for FMEP example (time comparison).

74

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002

value = INITTAL A op = INITIAL Aop =0

click = 3 A (value = INITIAL V value = INPUT)
value := INPUT;

Fig. 10. Automaton for rule “3.Click; value=INITIAL,INPUT;= value=INPUT;”.

value = INIT AN op = INIT A caption = 0| value = INIT ANop =

-,

S

v
klick =10 click = 1|...|click = 9
alue = INIT)| value = INIT|INPUT
alue = INPUT walue := INPUT;
alue := INPUT; caption := -0

click = O|click = 1]...|click =9
value = ADD|value = SUB
value = MU L|value = DIV
caption := 0;value := INPUT;

INIT A caption = 0| wvalue = INIT Nop = INIT A caption =0

)
click =CFE

value := INIT;,

op := INI'gption := 0;

A

click = ADD Awvalue = INPUT
caption = 0;

Ry R> R3
value = INIT Nop = INIT A caption = 0| value = INIT ANop = INIT A caption = 0| wvalue = INIT ANop = INIT A caption =0
sl =4 ey

!

click = SUB A value = INPUT]|
caption := 0;

A

click = MUL A value = INPUT)
caption := 0;

~

A

op:= ADD; op :=SUB op:=MUL
R4 Ry Rsg
value = INIT Aop = INIT A caption = 0| value = INIT Aop = INIT A caption =0 wvalue = INIT A op = INIT A caption =0

S S)
Cdie 3 (e D)
click = DIV ANvalue = INPUT click = EQ Nop = ADD click = EQ Nop = SUB
caption := 0; value :== ADD; value := SUB;
op:= DIV, op:= INIT; op:=INIT;

Ry Rs Ry

~

value = INIT Nop = INIT A caption =0

TS

click = EQNop=MUL
value := MUL;
op:=INIT;

click = FEQ AN op =
velue := ERROR;
op:=INIT;

Rig

value = INI_T/\op = INIT A caption =0

DTV A caption = Oclick = EQ A op = DIV A caption £ 0
velue := DIV
op:=INIT;

Fig. 11. Calculator GUI example.

Note the little difference between reduction sequences
(D) and (E) due to the alteration of ordering of reducer
application. Although both sequences result in the same
final effect, that is, they reduce the intermediate state-
graphs to the same size, the decrease rate is not the same.
The first sequence decreases the state-graph sizes more
quickly than the second sequence. This is observable from
Fig. 8. Further, comparing the time taken by the two
sequences for state-graph reductions, we see from Fig. 9
that it is also the first sequence that uses a shorter time.
Thus, we conclude the first sequence is a better
manipulation of the state-graphs.

9.1.2 Graphical User Interface for a Simple Calculator

This is a real project example from the Institute of
Information Science, Academia Sinica, Taiwan. The project

goal was to develop a generator of graphical user interfaces
(GUI). The example considered here is a GUI for a simple
calculator. The generator created a set of condition/action
rules governing the behavior of a calculator GUI Due to the
large number of rules, it was difficult to verify if a resulting
GUI behaved in the same way as a real calculator. It was
also difficult to comprehend how large the state space
would be and how the state space could be reduced. Thus,
SGM came in handy in such a situation. We collaborated
with the project members to verify the GUI rules created by
their generator.

The set of rules was transformed into a corresponding set
of timed automata and input to SGM. Each rule was
modeled by a single timed automaton with one mode and
one or more looping transitions. The rule condition was
mapped to a triggering condition of the transitions. The

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

75

TABLE 7
Performance Data for Rules of Calculator GUI (Version 1)
7#mo.d (,ES time
" #transitions
2 | 83] 4 | 5 | 6 | 7 | 8 [9 | 10 | 11 | (seq)
A 11 11 22 33 44 55 69 83 97 90 12.9
660 671 1364 2079 2816 3575 4554 5561 6596 1229)
B 11 11 21 31 41 51 61 71 81 90 975
650 561 1091 1641 2211 2801 2711 2421 1931 1229 Y
c 11 11 21 31 41 46 55 64 73 83 32.6
650 561 1091 1641 2211 2526 2444 2182 1740 1133 ’
A: {mg}, B: {mg, rw}, C: {mg, rw, sv}, mg = merge graph(}, rw =
read_write(), sv = shield_variables()
TABLE 8
Performance Data for Rules of Calculator GUI (Version 2)
__#modes time
" F#transitions
2 [3] 4] 5 | 6 | 7] 8] 9 [10] 10 (sec)
A 3 3 6 9 12 15 21 27 33 18 0.68
36 39 84 135 192 255 378 513 660 101)
B 4 C « 3
B 3 3 5 7 J‘ 11 13 15 1‘7 18 0.94
34 33 59 89 123 161 159 149 131 101
3 2 2 3 4 5 7 8 9 11
¢ 34 22 23 37 53 71 84 78 68 61 100

A: {mg}, B: {mg, rw}, C: {mg, rw, sv}, mg = merge_graph(), rw =

read_write(), sv = shield_variables()

action part was mapped to a set of transition assignment
statements. An example automaton for rule

3.Click; value=INITIAL,INPUT;= value=INPUT;

is shown in Fig. 10. The rule says that if button “3” is clicked
and “value” equals to “INITIAL” or “INPUT,” then value is
assigned “INPUT.”

The set of automata obtained from the rules are shown in
Fig. 11. We experimented with two versions of the GUI rule
set: one with a distinction between each number input
0,1,...,9) and another with a distinction between only
zero and nonzero numbers. The second version is a correct
model because only one of the rules (a division rule)
required the operand (number input) to be nonzero, while
the other rules made no distinction among the input
numbers.

On applying the manipulators read_write() and shield_
variables() after each merge(), we found a significant
reduction in state-graph sizes. For the first version, the
reduction was as much as 73.6 percent for transitions and
24.7 percent for modes. For the second version, the
reduction was as much as 89.7 percent for transitions and
72.7 percent for modes. More detailed readings are
tabulated in Tables 7 and 8 for versions 1 and 2,
respectively.

9.1.3 CSMA/CD Network Communication Protocol
This protocol [39], [26], [37] resolves the competition
between several message senders using a multiaccess

channel. As shown in Fig. 12, whenever two or more
senders send their messages about the same time, they all
detect a collision, wait a random amount of time, and
retransmit their messages. If o is the largest propagation
delay, then a sender can be sure that there will be no
collision if none is detected within 20. For example, on a
10Mbps Ethernet, the worst case round trip propagation
delay is 20 = 51.2us. We need to verify that, when one
sender begins transmitting, there always exists a computa-
tion that leads to a successful transmission. As shown in
Table 9, each of the manipulators implemented in SGM was
applied to this protocol example.

We observed that there were intriguing interactions
among the manipulators. For example, if read_write() was
applied before symmetry() (sequences (A), (B), (F), and (1)),
the final state-graph sizes were significantly smaller than if
read_write() was not applied before symmetry() (sequences
(C), (D), (E), (G), (H), (J), and (N)). This is due to
read_write() creating an invariant literal set associated with
each node in a state-graph and these literal sets can be used
by symmetry() to achieve a greater reduction. Furthermore,
on one hand, if read_write() was applied before other
manipulators (sequences (A) and (B)), it turned out that
applying symmetry() before applying shield_clock() pro-
duced better results in terms of greater reductions obtained.
On the other hand, if read_write() was not applied
(sequences (G) and (H)) or was applied last (sequences (C)
and (D)), then the opposite holds true, that is, applying

76

Sender;

channel =0

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 1, JANUARY 2002

x; =05

7 = 10A ;= OA
user = iA user = 0N
channel = 1 channel =0
channel := 0;

z; =0

user := 0;)
user := i,

z; = 0A z; < 2A
channel =1 | channel =0
z; =0

z; =0

Transmit
T, <=2

x; = 0; user

T; = 2A
user = iA
channel =0
channel :=1;

Fig. 12. CSMA/CD network protocol (ith sender).

shield_clock() before applying symmetry() gave greater
reduction results.

After experimenting with all possible sequences of
manipulators, we found that the best sequence (as evident
from Table 9) is sequence (B), that is, {merge_graph(),
read_write(), symmetry(), shield_clock()}, which is differ-
ent from that for FMEP.

9.1.4 PATHO Task Execution

In contrast to the above two examples, this is an asymmetric
system since task execution in the real-time operating
system PATHO [38], [6], [5] is based on task priority. Each
task has an index i, with the smallest index having the

Collision

=0

channel = 1
z; =0

highest priority. As shown in Fig. 13, a task executes (enters
Run mode) only if no other higher priority tasks are
pending and no task is currently running. Otherwise, the
task is said to be pending (enters the Pend mode). Each task
needs one time unit for execution and two instances of the
task are separated by at least 20 time units. A task is said to
be dead if there is not enough time for it to finish execution
before another instance of the same task starts. We need to
verify that, for less than 20 tasks, all tasks can be executed in
a timely fashion.

Due to asymmetricity, symmetry() is not applicable here.
As shown in Table 10, on applying the two manipulators,
read_write() and shield_clock(), we observed that their order

TABLE 9
Performance Data for CSMA/CD Communication Protocol

" #modes/#transitions time

) 2 | 3 ‘ 4 (sec)
A 56,/192 582/2999 1238/3813 170
B* 56,/192 579/2996 1219/3751 175
C 57/216 743/4770 4370/24993 594
D 57/216 749/4792 4361/24981 488
E 57/216 756,/4788 4417/25400 618
F 56/193 565/2717 124(]/3824 157
G | 80/342 | 1128/7796 | 4312/24147 | 432
H 80/341 1132/7890 4335/24417 550
I 73/248 807/4057 1841/5889 238
J 75/281 1115/6985 5660/32136 701
K | 111/386 | 2940/14255 26563/79758 | 1069
L | 111/384 | 3000/14637 26907/81097 | 1301
M | 145/496 | 4555/21817 | 39272/120709 | 1200
N | 101/416 | 1865/12256 5676/32663 702
O | 137/480 | 3798/18946 26636/80253 602

A: {mg, rw, sc, sm}, B: {mg, rw, sm, sc}, C: {mg, sm, sc, rw},
D: {mg, sc, sm, rw}, E: {mg, sm, rw, sc}, F: {mg, sc, rw, sm}, G: {mg, s¢, sm},
H: {mg, sm, sc}, I: {mg, rw, sm}, J: {mg, sm, rw}, K: {mg, sc, rw},
L: {mg, rw, sc}, M: {mg, rw}, N: {mg, sm}, and O: {mg, sc}
at row B means combination B is with the best performance in terms of
the smallest state-space size and time.

The Wk

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

Task;

zi > 20 A run = 0OA
Vi < i(pend[j] =0

z; > 20A

77

best sequence obtained for this example was sequence (D),
namely, {merge_graph(), shield_clock(), read_write()}.

9.1.5 Ring Network

Here, we apply SGM to the timed version of the ring
network in Fig. 5. From Table 11, we can observe that the

(run! = 0v . : !
35 < i(pend]| 2: <19 Arun = OA read_write() and BIT manipulators in sequence (C) reduce
zi =0 vj < i(pendlj] = 0) ' the intermediate state-graph sizes and achieve a greater
pend[i] := 1; z; = 0; pend[i] := 0; run := i;

x; > 19
Dead

Fig. 13. PATHO task execution (ith task).

has little consequence as the reductions obtained were
approximately the same (sequences (D) and (E)). Further,
we also applied bypass_internal_transition() and shield_
variables(), both of which gave no reductions at all in this
case. This is intuitive as there are no internal variables in this
example, whereas the reductions by those two manipulators
depended on the existence of internal variables. Finally, the

reduction compared to that in sequence (B) with only
read_write() applied.

Two versions of the ring network were experimented
with with SGM: one timed and one untimed. From Table 12,
we can observe that, in this version, the application of BIT
(in sequence (C)) results in a greater final reduction than
that with only read_write() (in sequence (B)). There was no
reduction on the intermediate state-graphs.

9.2 Performance Comparison with UPPAAL and
Kronos

We compare the performance of SGM, Kronos (version 2.4.4),

and UPPAAL (version 3.0.39) in this section against

Balarin’s version of Fischer’s timed mutual exclusion

algorithm. The SGM execution is with reduction sequence

TABLE 10

Performance Data for PATHO Task Execution

#modes/#transitions time
n

2 | 3 | 4 (sec)
A | 45/139 | 1060/5004 | 2309/6643 14
B | 45/139 | 1060/5004 | 2240/6477 21
C 37/89 | 443/1470 | 832/2186 9
D* 37/89 412/145() T()8/21()8 10
E 34/89 | 376/1450 | 711/2124 12

A: {mg}, B: {mg, sc}, C: {mg, rw}, D: {mg, sc¢, rw}, and E: {mg, rw, sc}.
mg = merge_graph(), rw = read_write(), sc = shield_clock(), sm =
Wk

symmetry() The at row D mcans combination D is with the best

performance in terms of the smallest state-space size and time.

TABLE 11
Performance Data for Ring Network (Timed Version)
#modes
#transitions total time
" time (sec)
2 | 3 | 4 | 5 | 6 T (seconds)
32 221 1364 7842 42752 28
A 64 663 5450 38460 24445 28 208
0.02 0.2 2.3 21.7 183 0.08
19 96 483 2492 11965 28
B 33 225 1397 8155 42443 28 278
0.04 0.2 0.17 18.3 258 0.09
14 63 303 1513 7782 18
C 28 202 1442 9794 65036 18 378
0.05 0.29 1.15 25.1 351 0.07

A = {mg}, B = {mg, rw}, C = {mg, rw, bit}}
mg = merge_graph(), rw = read_write(), bit =
bypass_internal_transition()

78 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002
TABLE 12
Performance Data for Ring Network (Nontimed Version)
#modes
#transitions total time
" time (sec)
2 | 3 | 4 5 6 | 7 (seconds)
20 88 368 1504 6080 14
A 40 264 1472 7520 36480 14 6
0.01 0.03 0.15 0.85 4.8 0.01
12 36 108 324 972 14
B 20 84 324 1188 4212 14 2.04
0.02 0.06 0.18 0.60 1.16 0.02
12 36 108 324 972 9
C 24 120 552 2424 10344 9 4.35
0.02 0.06 0.21 0.91 3.13 0.02

A = {mg}, B = {mg, rw}, C = {mg, rw, bit}}
mg = merge_graph(), rw = read_write(), bit =
bypass_internal_transition()

TABLE 13
Performance Data of Scalability W.R.T. Number of Processes

‘ benchmarks | CONCUITency || Kronos ‘ UPPAAL | SGM {mg, rw, sc, sm} |

Fischer’s 3 processcs 0.01s 0.05s* 0.6s/1287k®
mutual 4 processes 0.08sT 29" 33/3302k®
exclusion 5 processes 0.21sf 286s* 10.7s/8209k®
6 processes || O/MT O/M* 358/20940k®
7 processes o/MT O/M* 108s/46311k®
8 processes || O/MT O/M* 276s,/98028k®
9 processes || O/MT O/M* 190705k®

t: data collected on a Pentium ITT 500MHz with 256MB memory running LINUX;
*: data collected on a Pentium II 333MHz with 192MB memory running LINUX;
©: data collected on a SUN SPARC 340MHz running solaris;

s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory;

read-write analysis, shielded clock, and symmetry. As
shown in Table 13, it is possible for nonexpert users to
benefit from the user-friendly interface of SGM and come
up with reasonable verification performance.

10 AutomATIC REDUCER COMBINATION FOR
EFFICIENT VERIFICATION

At this moment, we have four reducers in addition to the
merge operator x. As mentioned in Section 3, from the
literature, there are many reduction algorithms with the
potential to become new reducers in SGM. Different
reducers may have different impacts on different verifica-
tion tasks. Moreover, when the number of reducers is large,
sometimes it may become difficult for users to pick a good
reducer combination to accomplish their verification tasks.
In this section, we shall develop an algorithm based on
group theory [20], [21] to automatically pick a “locally
optimal” combination for a given task.

Suppose we have n reducers: Ri,Ry,..., and R,. We
shall simplify the verification procedure construction
problem to the verification procedure template in Table 14.
Thus, the goal for the construction of efficient verification

procedure is restricted to finding a good sequence i1, ..., i

from the integer interval [1,n] such that the verification
procedure costs less space and time.

Before the presentation of our algorithm, we need to
clarify what it aims to achieve. In executing a verification
task, there can be a trade-off between space and time
requirements. By dynamically deducing information while
needed and deleting it while not, we can save a lot of
memory space. But, repetitively and dynamically creating
the same piece of information will certainly take up a lot of
CPU time. However, we believe, for verification tasks, space
management is more important than time management
because of the state-space explosion phenomenon. Most
verification tasks quickly run out of memory instead of
taking too long to complete. Thus, our algorithm will pick a
reducer sequence with predicted “locally minimal” space
requirement.

In the following, we shall first present a structure for
reducer sequence groups. Then, based on the structure, we
shall define local optimality of reducer sequences and
present an algorithm for predicting a locally most efficient
reducer sequence.

Structure of Reducer Sequence Groups. Given a set
{Ry,...
like RilRig ..

,R,} of n reducers, a reducer sequence is a sequence
.R;, such that [{iy,...,5}|=%k and

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

79

TABLE 14
A Verification Procedure Template

verify (G, m, ¢)

CTL ¢; /* the specification */

{

state_graph H;
int ;

H:=GJ1];
for i := 2 to m, do

return check(H, ¢);

/* Assume we usc reducers R, .. ., R}, out of library of R, ...
state_graph +G; /* the input state-graph array. */
int m; /* the number of input state-graphs. */

H=R,(R,(... (Ry(H x G[i])) ..

7Rn~ */

(
(
)i (
(

{t1,...,ix} C{1,...,n}. Suppose we are given a reducer
sequence v = R; R;, ... R;,. A binary permutation (j,j') on ~y
is a pair of integers such that 1 < j < j' < k and denotes an
operation on y which switches the position of R;, and Rﬂ;y, in
the sequence. Formally speaking, +(j,j') = R; R;, ... R;,
such that R{, = RL-j,,, R{,/, =R, and, for all 1 < h <k with
h#jand h# 7, R; =R,

By group theory [20], [21], it is known that every
permutation can be constructed as a sequential composition
of binary permutations. This further implies that, for any
two reducer sequences y,7 composed of the same set of
reducers, there is a finite sequence 6;...6), of binary
permutations such that 6,6, ...6, =+. For convenience,
we adopt left-associativity to interpret the ordering of
permutation operations. Thus, all reducer sequences com-
posed of the same set of reducers form a connected graph.

We now have to define operations between reducer
sequences composed of different sets of reducers. This can
be done by the append operation. Given reducer sequence
v=R;,R;,...R;, and areducer R ¢ {R;,,R;,,...,R;,}, 7R
is exactly the new reducer sequence R; R;, ... R; R.

The following lemma depicts the structures of reducer
sequence groups. Given a sequence F, we let [F] be the set
of elements used in F.

lemma 3. Given a set {Ry,...,R,} of reducers, for any two
reducer sequences v, constructed from the set, there is a
sequence X\ = 17y ...y of reducer sequences such that

® Y=
o =, and
e forall 1 <i <k, one of the following three is true:

- forsome 1< j<j <k v(jj) ="y or
- forsomeR € {Rq,...., R} — [vi], vR =i or
- forsome R € {Rq,..., Ry} — [vit1),

v = Yi-1R.

With the operations of binary permutations and append-
ing, we know that we can draw an undirected reducer
sequence graph (RSG) for a given set of reducers. The nodes

in an RSG are reducer sequences, while the arcs are
determined by whether the two nodes can be related by a
binary permutation or an appending operation. In Fig. 14,
we have an RSG for three reducers. Lemma 3 says that such

a graph is connected.
Two reducer sequences in an RSG are called neighbors to

each other if we can go from one to the other by a binary
permutation or an appending operation. Suppose we have a
valuation V on all reducer sequences in an RSG = (T, ()
such that I is the set of nodes (reducer sequences), § is the
set of edges, and, for all y €T, V(y) e R*. A reducer
sequence « in the RSG is called a local minimum if V(v) <
V(v') for every neighbor 4/ of v in the RSG.

Fig. 14. RSG for three reducers.

80

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002

TABLE 15
Our Reducer Sequence Picking Algorithm

{

state_graph H1, H2, H3;

Repeat forever {
By := {’)’/(j¢

U {#|IRe{Ry,..

U {#R|IRe{Ry,.

v

Rn }
Rn }

If v, () < v, (7'}, then return v;
else if V(v)>V("), then v := 4%
else if Vy(7y) <

else v := +/;

good_sequence(G, m) /* Assume we have reduce operators Ry, . ..
state_graph =G /* the input state-graph array. */
int m; /* the number of input state-graphs. */

Randomly pick a 10(111(01 sequence v from R,

INL<i<g <kl ;

Pick 4" € B, such that for all /” € B, V() < V,.(¢");

Vi(+'), then return -;

:Rn,- >k/

V]
bl

(v =7R)}
'

Our algorithm to pick reducer sequences for efficient
verification will use memory-space consumption increase
rate with respect to concurrency as our valuation V.

10.1 Algorithm to Pick a Locally Most Efficient
Sequence

Suppose we are given a concurrent system presented as
m state-graphs G[1],...,G[m], with m >4, and reducers
Ri,...,R,. Our strategy is to predict the space-complexities
of reducer sequences by testing the procedure template on
four state-graphs (G[1], G[2], G[3], G[4] or some other four
picked by users). Since the RSG has size of order n factorial,
it is not feasible to test all the reducer sequences. Our
algorithm hinges on the definition of valuations on reducer
sequences which reflects how fast the memory space rate
and CPU-time consumption rate grow. It will randomly
generate a reducer sequence and then start searching the
RSG. The search stops when it reaches a local minimal
reducer sequence.

There will be two valuations in our method: TAhe major
one is for space consumption and the minor one is for CPU-
time consumption. We need the minor one because our
reducers do not increase the sizes of its argument state-
graphs. Thus, a naive reducer sequence which leads to
minimal space consumption is the sequence of all reducers.
However, for a given verification tasks, some reducers may
be applied with no effect on the state-graph while still
consuming a huge amount of CPU-time. Thus, it is better if
we can also use CPU-time as a minor valuation.

Both the major and the minor valuations are devised on
the same idea. Since verification problems usually exhibit at
least singly exponential space complexity with respect to
concurrency, our algorithm attempts to use the predictions
of how fast the exponent base grows as an indication of the
memory consumption. If two reducer sequences have the
same prediction, then we choose the one with less CPU-
time consumption. We define the reduced state-graph H)
inductively with reducer sequence +y after each iteration.

H] = ~(G[1] x G[2]) and

e for each h > 2, H] = ~v(H,_1 x G[h]).

Our algorithm uses the following major valuation V7 to
predict the space consumption complexity of a reducer
sequence 7:

_ (sime(H}) (size(H]))
(size(H))”

ze(H))
51ze(H)
V9(,7) = (H)

size
size(H,)

The design of V,(v) has the following intuitive: In most
verification tasks, complexities are super-exponential. Since
we want to predict the complexities of reducer sequences
for high concurrency with only composition of up to four
processes, we decide to use the “multiplication rate of

multlphcatlon rate
ize(H;

sme(H)

rate of space requirement from concurrency two to three.

The numerator sweEZ; of the first fraction is the multi-
plication rate of space requirement from concurrency three
to four. The fraction is thus an indication of how fast the
space consumption rate multiplies. For most verification
tasks for concurrent systems, verification on up to four
processes usually takes very little memory space and CPU-
time. Thus, V,(y) should be able to give a good prediction
on space complexity.

The minor valuation V;(v) is defined similarly in the
following way to predict how fast the CPU-time consump-
tion complexity of a reducer sequence v multiplies:

as the predicting valuation. The

denominator 222U) of the first fraction is the multiplication

Time(H]) N
V() — Time(d;) _ (Time(H)))(Time(H,))
t('Y) Tlme(H;) (Tlme(Hﬁ))Q :
Time(H)) 3

2

Table 15 is our algorithm for picking a reducer sequence
for efficient verification. The termination of its execution is
guaranteed because the RSG is finite and the search stops
when 7 is no greater than its neighbors with respect to V()
and V;(). In Section 10.2, we will have experimental data to
justify our algorithm.

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

z; > 1

CeD

Fig. 15. A small mutual exclusion protocol.

Before we leave this section, there is a legitimate question
to ask: Why do we only use four processes to predict the
complexity? Indeed, we can use a larger number of processes
to make more accurate prediction with redefinition of V()
as, say,

size(H,) ’ y
Vo) = swo(f) (size(H},))(size(HY))
T (eiselH))

8

But, this prediction will cost more space and CPU-time to
calculate. And, for a lot of inefficient reducer sequences,

81

they may already run out of memory before the construc-
tion of H. Thus, “four” is a safe minimum which allows the
reducer sequences to complete their predictions.

10.2 Experiment

We test our method on Fischer’s timed mutual exclusion
protocol in Fig. 1 and the simple mutual exclusion protocol
in Fig. 15. In Tables 16 and 17, we have shown the graph
sizes in mode counts, transition counts, and their sums for
small mutual exclusion protocol (Fig. 15) and the Fischer’s

protocol (Fig. 1), respectively.
Now, we compare the data with our predicting valuation
V(). In Table 16, for reducer sequence A, B, C,D, and E,

42 x 949
33 x 1032
Vi(B) = =507 ~ 0851,

V,(C) ~ 0.810,
V,(D) ~ 0.789,

TABLE 16
Performance Data of Reducer-Sequence Picking Algorithm for Small Mutual Exclusion Protocol Example
#Modes/# Transitions
(#Modes+#Transitions) /(Construction Time (seconds))
n 2 3 4 5 6 7 8
A 14/28 57/165 203/746 | 725/3040 2646/12003 10469/49411 Oo/M
42/0.01 | 222/0.11 | 949/0.66 | 3765/3.75 14649/20.81 59880/126.95
B 11/22 51/149 215/817 | 850/3759 3311/15864 13430/66567 O/M
33/0.02 | 200/0.11 | 1032/1.00 | 4609/8.07 | 199175/74.91 | 79997/1025.10
C 8/14 15/35 24/68 35/116 46/171 60/251 76/357
22/0.02 | 50/0.09 92/0.30 | 151/0.73 217/1.36 311/2.58 | 433/4.64
D 6/11 12/29 20/58 30/100 42/157 56/231 | 72/324
17/0.02 | 41/0.10 78/0.32 | 130/0.84 199/1.88 287/3.82 | 396/7.24
E 6/11 12/29 20/58 30/100 42/157 56/231 | 72/324
17/0.02 | 41/0.10 78/0.30 | 130/0.78 199/1.74 287/3.43 | 396/6.61

A: x, readwrite(); B: X, readwrite(), shield(); C: x, readwrite(),
symmetry()
D: x, readwrite(), shield(), symmetry(); E: x, readwrite(), symmetry(),

shield(); O/M: Out of Memory

TABLE 17
Performance Data of Reducer-Sequence Picking Algorithm for Fischer's Mutual Exclusion Protocol Example
#Modes/#Transitions
(#Modes+#Transitions) /(Construction Time (seconds))

n 2 3 4 5 6 7 8

A 70/160 | 1239/4013 | 28593/120850 O/M O/M O/M O/M
230/0.06 | 5252/3.20 | 149443/218.65

B | 31/70 | 182/578 102474149 | 580428451 O/M O/M O/M
101/0.07 760/0.95 5173/12.85 | 34255/204.99

C | 36/30 | 224/743 1270/6357 0/M O/M O/M O/M
116/0.08 967/3.30 7627/185.80

D 16/35 39/109 76/247 130/472 | 204/810 | 3011290 | 42471944
51/0.07 148/0.61 323/2.92 602/10.69 | 1014/35.25 | 1591/107.84 | 2368/275.61

E 16/35 39/109 76/247 130/472 | 204/810 | 3011290 | 42471944
51/0.08 148/0.89 323/4.66 602/17.87 | 1014/61.19 | 1591/212.40 | 2368/486.67

A: %, readwrite(); B: x, readwrite(), shield(); C: x, readwrite(), symmetry()
D: x, readwrite(), shield(), symmetry(); E: x, readwrite(), symmetry(), shield();

O/M: Out of

Memory

82

and V,(E) ~ 0.789. As we can see, the valuation indeed
gives a good prediction of how fast the multiplication rate
grows. It is observed that, by permutating the shield() and
the symmetry() reducer, there is no difference made with
respect to the space complexity prediction. Thus, we can
further calculate V,(D) = %8032 — (.64 and V,(E) = 0.6.
And, as we see from Table 16, reducer sequence E indeed
looks likely to have the smallest space and time complexity.

In Table 17, for reducer sequence A, B, C,D, and E
230 x 149443

V() = 5~ 1216,
101 x 5173
V.(B) = # ~ 0.905,

V,(C) ~ 0.946,
V,(D) ~ 0.752,

and V,(F) = 0.752. Again, the valuation indeed gives a
good prediction of how fast the multiplication rate grows.
Since reducer sequence D and E tie in space complexity
predication, we further calculate V;(D) = %0392 ~ (.549
and V;(E) = 0.47. It seems that we have a contradiction in
our predicting valuation V() as we can check from Table 17.
At this moment, we do not have experimental data to tell if
our predicting valuation will be correct on very large
concurrency.

11 CONCLUSION AND FUTURE WORK

We propose a method which treats state-graphs as data-
objects and allows the definition of state-graph manipula-
tors as a user-friendly way to package the complex
technology of computer-aided verification. The success of
the method depends on whether many more state-graph
manipulators can be developed and proven correct.

In the future, hopefully, our idea of state-graph manip-
ulators can be used as a public framework for the
verification of real-world projects. In such a framework,
an easy-to-plug-in application program interface (API)
should be defined and standardized so that researchers
and developers can design, implement, and register their
manipulators and everybody else can benefit from their
achievements. Such a framework is very much like the
Internet model and will certainly help in promoting the
application of verification technology and cooperation of
researchers throughout the world. However, certification
methods for new manipulators will then become important
issues.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers of the IEEE
Transactions on Computers. Their comments and criticism
have made this paper much better. This work is partially
supported by the National Science Council of Taiwan,
Republic of China, under grants NSC 87-2213-E-001-007,
NSC 88-2213-E-001-002, NSC 89-2213-E-001-004, and NSC
90-2213-E-001-046. Parts of this manuscript were published
in the Proceedings of the 1998 IEEE International Symposium on
High Asurance Systems Engineering (HASE) [41], the Proceed-
ings of the 1998 International Conference on Real-Time

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 1, JANUARY 2002

Computing Systems and Applications (RTCSA) [24], and the
Proceedings of the 1999 International Conference on Formal
Description Techniques for Distributed Systems and Commu-
nication Protocols/Protocol Specification, Testing, and Verifica-
tion (FORTE/PSTV) [25].

REFERENCES

[1] M. Abadi and L. Lamport, “An Old-Fashioned Recipe for Real
Time,” Proc. REX Workshop, Real-Time Theory in Practice, pp. 1-27,
June 1991.

[2] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-
Toi, “An Implementation of Three Algorithms for Timing
Verification Based on Automata Emptiness,” Proc. IEEE Int’l Conf.
Real-Time Systems Symp. (RTSS '92), 1992.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, and D. Dill, “Modeling
Checking for Real-Time Systems,” Proc. IEEE Logics in Computer
Science, 1990.

[4] R. Alur, T.A. Henzinger, and P.-H. Ho, “Automatic Symbolic
Verification of Embedded Systems,” Proc. IEEE Real-Time Systems
Symp., 1993.

[5] F. Balarin, “Approximate Reachability Analysis of Timed Auto-
mata,” Proc. Real-Time Systems Symp. (RTSS '96), pp. 52-61, Dec.
1996.

[6] F. Balarin, K. Petty, A.L. Sangiovanni-Vincentelli, and P. Varaiya,
“Formal Verification of the PATHO Real-Time Operating Sys-
tem,” Procs. 33rd Conf. Decision and Control (CDC "94), Dec. 1994.

[7]]. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Y. Wang, and C.
Weise, “New Generation of UPPAAL,” Proc. Int’l Workshop
Software Tools for Technology Transfer (STTT '98), July 1998.

[8] J.R.Burch, EM. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang,
“Symbolic Model Checking: 10 States and Beyond,” Proc. Fifth
Ann. Symp. Logic in Computer Science, June 1990.

[9] A. Cimatti, F. Clarke, E. Giunchiglia, and M. Roveri, “NuSmv: A

Reimplementation of Smv,” Proc. Int’'l Workshop Software Tools for

Technology Transfer (STTT '98), July 1998.

E. Clarke, O. Grumberg, M. Minea, and D. Peled, “State-Space

Reduction Using Partial-Ordering Techniques,” Int’l]. Software

Tools for Technology, vol. 2, no. 3, pp. 279-287, 1999.

C. Daws, A. Olivers, S. Tripakis, and S. Yovine, “The Tools

KRONOS,” Hybrid System 111, pp. 208-219, 1996.

C. Daws and S. Yovine, “Reducing the Number of Clock Variables

of Timed Automata,” Proc. Real-Time Systems Symp., pp. 73-81,

Dec. 1996.

Al]. Dill, D.L. Drexler, AJ. Hu, and C.H. Yang, “Protocol

Verification as a Hardware Design Aid,” Proc. IEEE Int’l Conf.

Computer Design: VLSI in Computers and Processors, 1992.

D. Dill, “Timing Assumptions and Verification of Finite-State

Concurrent Systems,” Proc. Int’l Conf. Computer-Aided Verification,

1989.

E.A. Emerson and A.P. Sistla, “Utilizing Symmetry When Model-

Checking under Fairness Assumptions: An Automata-Theoretic

Approach,” ACM Trans. Programming Languages and Systems,

vol. 19, no. 4, pp. 617-638, July 1997.

J.C. Fernandez, “Aldebaran: A Tool for Verification of Commu-

nicating Processes,” Technical Report Spectre C14, LGI-IMAG

Grenoble, 1989.

J.-C. Fernandez and L. Mounier, “On the Fly Verification of

Behavioral Equivalences and Preorders,” Proc. Third Int’l. Work-

shop Computer-Aided Verification, July 1991.

P. Godefroid and D. Pirottin, “Refining Dependencies Improves

Partial-Order Verification Methods,” Proc. Fifth Int’l Conf. Compu-

ter Aided Verification, pp. 438-449, June 1993.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic

Model Checking for Real-Time Systems,” Proc. IEEE Logics in

Computer Science, 1992.

LN. Herstein, Topics in Algebra, second ed. Lexington, Mass.: Xerox

College Publishing, 1975.

K. Hoffman and R. Kunze, Linear Algebra, second ed. Englewood

Cliffs, N.J.: Prentice Hall, 1971.

C.AR. Hoare, Communicating Sequential Processes. Prentice Hall,

1985.

G.J. Holzmann, Design and Validation of Computer Protocols.

Prentice Hall, 1991.

(10]

(11]
[12]

(13]

(14]

[15]

[16]

(171

(18]

(19]

[20]
(21]
(22]

(23]

WANG AND HSIUNG: EFFICIENT AND USER-FRIENDLY VERIFICATION

(24]

[25]

[20]
(27]

(28]

[29]

(30]

B31]

(32]

(33]

[34]
[35]
(36]

[37]

(38]
(39]

[40]

[41]

P.-A. Hsiung and F. Wang, “A State-Graph Manipulator Tools for
Real-Time System Specification and Verification,” Proc. Int’l Conf.
Real-Time Computing Systems and Applications (RTCSA "98), 1998.
P.-A. Hsiung and F. Wang, “User-Friendly Verification,” Proc.
1999 Int’l Conf. Formal Description Techniques for Distributed Systems
and Comm. Protocols/Protocol Specification, Testing, and Verification
(FORTE/PSTV) J. Wu, S.T. Chanson, Q. Gao, eds., Oct. 1999.
IEEE, ANSI/IEEE 802.3, ISO/DIS 8802/3, IEEE CS Press, 1985.
C.N. Ip and D.L. Dill, “Better Verification through Symmetry,”
Formal Methods in System Design, vol. 9, nos. 1/2, 1996.

L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans.
Computer Systems, vol. 5, no. 1, pp. 1-11, Feb. 1987.

F. Laroussine and K.G. Larsen, “Compositional Model Checking
of Real Time Systems,” Proc. Sixth Int’l Conf. Concurrency Theory
(CONCUR 95), pp. 27-41, Aug. 1995.

F. Larsen, K. Larsson, P. Petterson, and Y. Wang, “Efficient
Verification of Real-Time Systems: Compact Data Structure and
State-Space Reduction,” Proc. Intl Real-Time Systems Symp. (RTSS
'97), 1997.

K.G. Larsen, P. Petterson, and W. Yi, “Compositional and
Symbolic Model-Checking of Real-Time Systems,” Proc. 16th IEEE
Real-Time Systems Symp., pp. 76-87, Dec. 1995.

K.G. Larsen, B. Steffen, and C. Weise, “Fischer’s Protocol
Revisited: A Simple Proof Using Modal Constraints,” Hybrid
System 111, pp. 604-615, 1996.

R. Mateescu and H. Garavel, “XTL: A Meta-Language and Tool
for Temporal Logic Model-Checking,” Procs. Int’l Workshop Soft-
ware Tools for Technology Transfer (STTT '98), July 1998.

K.L. McMillan, Symbolic Model Checking. Kluwer Academic, 1993.
R. Milner, Communication and Concurrency. Prentice Hall, 1989.
H. Miller and S. Katz, “Saving Space by Fully Exploiting Invisible
Transitions,” Proc. Conf. Computer Aided Verification (CAV '96),
1996.

X. Nicollin, J. Sifakis, and S. Yovine, “Compiling Real-Time
Specifications into Extended Automata,” IEEE Trans. Software
Eng., vol. 18, no. 9, pp. 794-804, Sept. 1992.

K. Petty, “The PATHO Operating System and User’s Guide,”
technical report, Univ. of California, Berkeley, 1993.

A.S. Tanenbaum, Computer Networks, second ed. Englewood Cliffs,
N.J.: Prentice Hall, 1989.

S. Tripakis and S. Yovine, “Analysis of Timed Systems Based on
Time-Abstracting Bisimulations,” Proc. Conf. Computer Aided
Verification (CAV ’96), 1996.

F. Wang and P.-A. Hsiung, “Automatic Verification on the Large,”
Proc. Third IEEE Int’l Symp. High Assurance Systems Eng. (HASE),
Nov. 1998.

83

Farn Wang received the BS degree in electrical
engineering from National Taiwan University
(NTU) in 1982 and the MS degree in computer

s engineering from National Chiao-Tung Univer-
- sity (NCTU) in 1984. From 1986 to 1987, he was
a research assistant in the Telecommunication
Laboratories, Ministry of Communications. In
1987, he entered the PhD program of Dartmouth
College. In 1988, he joined the PhD program in
computer science at the University of Texas at
Austin (UT-Austin). In 1993, he received the PhD degree and moved
back to 1IS, Academia Sinica, Taiwan, as an assistant research fellow. In
1997, he was promoted to associate research fellow. Dr. Wang has
been researching automated verification since he joined the Real-Time
Aystem Lab at UT-Austin in 1988. He has been involved in the
development of a series of experimental verification tools: ARTL,
VERIFAST, SGM, and RED. He has also published papers in parametric
analysis and synthesis of real-time systems. His most recent work can
be found at: http://www.iis.sinica.edu.tw/~farn/. He has also taught
courses at NCTU and NTU.

Pao-Ann Hsiung received the BS degree in
mathematics and the PhD degree in electrical
engineering from the National Taiwan University
(NTU) in 1991 and 1996, respectively. From
1993 to 1996, he was a teaching assistant and
system administrator in the Department of
Mathematics, NTU. From 1996 to 2000, he
was a postdoctoral researcher at the Institute of
Information Science, Academia Sinica, Taipei,
X | Taiwan, Republic of China (ROC). Since Feb-
ruary 2001, he has been an assistant professor in the Department of
Computer Science and Information Engineering, National Chung Cheng
University, Chiayi, Taiwan, ROC. Dr. Hsiung is a member of the IEEE,
the IEEE Computer Society, and the ACM. He has been included in
several professional listings such as Marquis’ Who’s Who in the World
(17th millenium edition, 2000), Outstanding People of the 20th Century
(second edition, 2000, Cambridge, England), Who’s Who in Formal
Methods, and ACM SIGDA’s design automation professionals.
Dr. Hsiung was on the program committee and served as either session
organizer or chair of several international conferences such as PDPTA
'99, RTC '99, DSVV ’2000, and PDPTA 2000. He has published
approximately 50 papers in international journals and conferences. His
main research interests include hardware-software codesign and
coverification, real-time system specification and verification, system-
level design automation of multiprocessor systems, parallel architecture
design and simulation, and object-oriented design techniques in system
syntheses.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

