Automatic Verification on the Large*

Farn Wang and Pao-Ann Hsiung
Institute of Information Science, Academia Sinica, Taipei, Taiwan 115, Republic of China
+886-2-27883799 ext. 1717; FAX +886-2-27824814; farn@iis.sinica.edu. tw

Abstract

An automatic verification method from a high-level
resource-management standpoint is presented. Various ma-
nipulators can be incorporated in the method to construct,
refine, reduce, and model-check state space representation.
Proper combinations of manipulators can then be picked
strategically by users or computers for less resource (time
and space) consumption. An algorithm based on group the-
ory to pick a manipulator combination is presented. Verifi-
cation sessions are conducted to illustrate our idea.

1. Introduction

The general trend of engineering is to package complex
technology with simple and friendly interfaces so that more
users can be benefited. Since the famous Pentium-bug, peo-
ple have been anticipating wide acceptance of the technol-
ogy of computer-aided verification. Indeed, with today’s
powerful hardware and recently reported verification the-
ory breakthroughs[2, 5], it seems that industrial applica-
tion of verification theory is becoming more and more real.
But most verification packages today are developed based
on profound, complex theories that takes years of gradu-
ate study to master. Thus inevitably, only projects with big
budgets can afford the advantage of computer-aided verifi-
cation. This work aims at devising a packaging scheme for
verification technologies so that users illiterate of verifica-
tion technology can still benefit from it.

Here we give a brief description of our method which
works on concurrent systems. For a system with m con-
current processes, we assume that we are given their m be-
havior descriptions, called state-graphs stored in an array,
GI[1],...,G[m] respectively. In traditional approach, a ver-
ification procedure will start by constructing the Cartesian
product of G[1],...,G{m], as in table 1(a) with eight pro-
cesses, to verify the given concurrent system. The state-

“The work is partially supported by NSC, Taiwan, ROC under grant
NSC 87-2213-E-001-007.

0-8186-9221-9/98 $10.00 © 1998 IEEE

134

verify(G, 8, ¢)

state_graph *G;

int 8; /* number of processes */

CTL ¢;

{
G :=G[] x G[2] x ... x G[8];
check G against ¢;

}

(a)

verify(G, 8, ¢) /* Assume we have reducers
Cy, ..., Cs. ¥/

state_graph *G;

int 8; /* number of processes */

CTL ¢;

{

=G x G[§]
= Ci(C2(G));
check G against ¢;

(b)

Table 1. Verification sessions in comparison

graphs of local processes are stored in array . The stan-
dard technology now is symbolic manipulation[5, 15, 4]
which can be used in both Cartesian product calculation and
model-checking. To cope with resource consumption re-
quirement from different verification tasks, very often inge-
nious strategies have to be devised to keep space and CPU-
time under control. To this end, users have to be knowl-
edgeable of the theory of computer-aided verification and
traverse through the final product state-graph G.

On the contrary, our method treats state-graphs as high-

level data-objects and defines and implements many theo-
retically proven manipulators to merge, reduce, check them.
From users’ standpoint, the goal is to construct a verifica-
tion procedure which composes a representation for global
state space from all the state-graphs with manageable space
and CPU-time consumption. There are three types of ma-
nipulators in our method: x for binary merge, check()
for model-checking, and reducers for reducing the sizes of
state-graphs. With the many manipulators in our method,
users can easily test different combinations of manipulators.
In table 1(b), we have another example verification session
using our method. Users calculate the binary products of
state-graphs and intermittently reduce them with different
reducer combinations as the users see fit. It is up to users to
pick their combinations of manipulators to reduce resource
consumptions (memory and CPU time) to fulfill given veri-
fication tasks. Just like a mechanic can buy various compo-
nents from shelves to build her/his dream car, users of our
method can also enjoy the technology of CAV without deep
understanding of the component technologies and construct
the verification procedure better suits them with the manip-
ulations supported in our method.

At this moment, we have successfully developed the sev-
eral theoretically sound reducers. For each different verifi-
cation task, there can be a different reducer combination for
it which may cost the least memory space and CPU time.
One research issue in our method is how to choose a good
reducer combination for a given verification task when the
number of reducers is large. In section 5, we also present an
algorithm based on group theory[13, 14] to pick an efficient
reducer combination for a given verification task.

Section 2 briefly describes our problems. Section 3
presents the general framework of our method. Section 4
briefly describes the manipulators we have implemented so
far. Section 5 shows an algorithm which uses group the-
ory to find a local optimal combination of manipulators to
counter with state-explosion problem. Section 6 illustrates
our idea with experiments. Section 7 is the conclusion.

We shall adopt the following notations. Given a set or
sequence F, |F'| is the number of elements in F'. For each
element e in F', we also write e € F. Given a sequence F,
we let [F) be the set of elements used in F. N is the set of
nonnegative integers, Z is the set of integers, and R is the
set of nonnegative reals.

2. Problem presentation

We adopt the framework of model-checking for concur-
rent systems. That is, each verification task is composed
of a pair: a system description in dense-time automata
and a specification formulus in CTL (Computation Tree
Logic)[2, 9, 10]. Due to page-limit, we shall only give brief
descriptions of both. Interested readers should be directed

135

= 2;1 = p;
qup:: 0; p

Figure 1. Fischer’s mutual exclusion protocol

to 2,9, 10].

A real-time concurrent system is composed of many pro-
cesses. Each process runs autonomously and interacts with
others through read-write operations to global variables and
timers. In addition, each process has its own local vari-
ables and timers which no other processes can access. For a
system with m processes, we shall use integer 1,...,m to
identify the m processes.

In our formalism, all processes run the same program.
Thus the system behavior is totally described by a generic
process’ program. We shall describe such a program as
a process timed mode-transtion system (PTMTS). Here we
have an example.

Example 1 : In Figure 1, we draw the PTMTS as a timed
automaton which is visually readable. The circles are
modes and the starting mode is doubly circled. Inside the
circles, we put down the mode names and invariance con-
ditions enforced by I, in the modes. On each transition,
we put down the triggering condition (n), if any, above the
assignment statements (x), if any. For example, in mode
gp = 1,0 < z, < 1 must be true for process p where z,
is a local timer. In mode ¢, = 1, when x, < 1, process p
may assign p to variable [, reset x,, to zero, and enter mode
gp = 2. We also label each transition with boldface number
near their sources for later use. I

A CTL formulus has the following syntax.
pu=uz~cly=c|30¢ | US| ¢ | 6V 4"

Here z is a timer name, ~€ {<, <, =, >, >}, c¢is a natural
constant, and y is a variable name. 30¢' means there exists
a computation, from the current state, along which ¢’ is al-
ways true. 3¢'U¢" means there exists a computation, from
the current state, along which ¢’ is true until ¢" becomes
true. Traditional shorthands like 3¢, VO, V<O, YU, A, and
—, can all be defined.

Example 2 : The mutual exclusion specification of Fis-
cher’s protocol in figure 1 is YO- V1<p<p’<m(qp =3A
gy =3).

verify(G,m,¢) /* Assume we have reducers
Ci,...,Co. *
state_graph xG;
int m;
CTL ¢;
{
state_graph H, H,, Hy, Hz; oY)
int7; 2
H:=G[1]; 3)
fori := 2tom, do { @
H:=H x G[Z], (5)
H, := C,(Cy(H)); (6)
Hy = C3(C4(C5(Cs(H)))); N
if Size(H,) < Size(H,) then H := Hy; (8)
else if Size(H,) > Size(H,) then H := Hy; (9)
else if Time(H,) < Time(H>) H := Hy; (10)
else H := H>; an
}
return check(H, ¢); (12)
}

Table 2. An example verification procedure

3. General framework of verification

Our method can be embodied in a simple language of
verification procedure. The language looks like Pascal or C
but supports high-level objects with types of integer, state-
graphs, and CTL formulus. In the following, we give an
example to illustrate how to define a verification procedure
in the language.

Merging of state-graphs is performed by the binary x.
Then we have a set of theoretically proven reducers which
can be designed by any one. The control of verification
procedure can be achieved with nested for-loops indexed
on integers and if-statements with conditions on state-graph
sizes, graph construction times, and index variables. In
table 2, we have an example verification procedure writ-
ten in the language. Verification procedures always take
three arguments. The first, here G, is an array of state-
graphs; the second, here m, the number of state-graphs
(processes) in the concurrent system; and the third, here
¢, the CTL formulus to check with. The array is declared
in C-language style. Line (1) and (2) declare variables of
state-graph type and integer type respectively. Line (4) it-
erates the for-loop to merge and reduce the state-graphs.
Lines (6) and (7) calculate two alternative combinations of
reducers. The if-structure starting at line (8) chooses the
reduction result with first the least size and then the least
CPU-time for each iteration. For any state-graph H, we

136

let size(H) = NodeCount(H) + ArcCount(H). Node-
Count() is a system-defined function which returns the
number of nodes in the argument state-graph. Similarly, an-
other function ArcCount() returns the number of arcs in the
argument state-graph. Time() is the CPU time used to con-
struct the state-graph in its argument. After the loop from
line (4) to (11) is over, H is a reduced representation for the
global state space. Then at line (12), we check H against ¢.

Since our method allows reasoning on state-graphs as
whole objects instead of searching for paths in them, users
can test different combination of reducers to achieve their
verification tasks from a resource management point of
view without deep knowledge of the technology and theory
inside the manipulators.

4. Manipulators

In this section, we shall first briefly describe some reduc-
ers which we have proven correct and implemented. Poten-
tial reduction algorithms in the literature can be found in
[19,17,3,6,16,18, 1,7, 11].

4.1. Implemented reducers

The three implemented reducers have all been proven in
theory to be correct. We refer readers to [23] for details on
their operation and correctness. In this paper, we shall only
give a sketchy view on how they work.

4.1.1. ReadWrite() : Variable value stability under
concurrent read/write

In concurrent systems, each process behaves in a distinct
way by writing specific values to and reading specific val-
ues from global variables. For example, in Fischer’s mutual
exclusion protocol in figure 1, each process writes only two
values, 0 and its identifier, to global variable [. Also when
a process reads from [, it only cares if the value is zero or
its identifier. Whether the present value of [is the identifier
of a particular peer process is of no concern to the reading
process. This kind of behavior is actually very common in
protocol systems.

Suppose we are given a set H of process identifiers. For
a given global variable y, we let Dy, be the set of values
written to y by processes with identifiers in H but NOT by
processes without identifiers in H. In [23], there is a lemma
which says that if we know that for an interval, y starts with
value not in Dy, and no process with identifier in H is go-
ing to write values in D .y to y, then we can conclude that
at any instant in the interval y does not contain any value
in Dy, Such alemma helps us to get rid of a lot of states
which according to the lemma, will never exist. We have
implemented a reducer ReadWrite() based on this lemma

in [23]. In fact, it is observed from experiments that this
reducer has wide applicability to many verification tasks.
Thus in our implementation, it is implemented inside the
merge operator X.

4.1.2. Shield() : shielded timer elimination

In [23], a timer z at a state is defined shielded if

e 1 is not used in the specification and

¢ from that state on, no inequalities of z ever change

Boolean values until z is reset again.

It is then proven as a lemma that two states are equiva-
lent with respect to a model-checking problem instance iff
the two states are identical except for the readings of those
shielded timers. We have implemented a reducer Shield()
based on this lemma.

4.1.3. Symmetry() : Region and transition reduc-
tion by symmetry

In a real-time concurrent system with identical pro-
cesses, utilizing symmetry is a must in efficient verification.
The idea in our method is very similar to the one presented
in [12] except we extend the symmetry to cover timing in-
equalities of timers in zones. Basically, we use process
identifiers in state information. For example, we may have
two states { = 0;¢q; = 2; 27 = 0.5;g2 = 1;22 = 0.3} and
{l=0;¢1 = 1;37 = 0.3; 95 = 2; 22 = 0.5} for Fischer’s
protocol (fig 1) with concurrency = 2. By permuting the
identifiers of 1 and 2, we find that the two states become the
same. Thus in our verification data-structure, we shall la-
bel permutations on transitions. According to [12] and [23],
the technique is valuable in verifying systems with identical
processes. However, this reduction leaves the state-graph as
a multi-graph.

5. Automatic reducer combination for efficient
verification

At this moment, we have three reducers in addition to the
merge operator X. As mentioned in section 4 that from the
literature, there are many reduction algorithms with poten-
tial to become new reducers. Different reducers may have
different impacts on different verification tasks. Moreover,
when the number of reducers is large, sometimes it may be-
come difficult for users to pick a good reducer combination
to accomplish their verification tasks. In this section, we
shall develop an algorithm based on group theory[13, 14]
to automatically pick a “locally optimal” combination for a
given task.

Suppose we have n reducers: Cy, Cs, ..., and C,,. We
shall simplify the verification procedure construction prob-
lem to the verification procedure template in table 3. Thus

137

verify(G, m, ¢) /* Assume we have reduce operators
Ci,...,Cp. ¥/

state_graph =G

int m;

CTL ¢;

{

state_graph H; M
int; @
H :=G[1]; 3)
fori:= 2tom, do 4)

H:=C; (Ci, (... (Cir (HxG[])..)); . (B
return check(H, ¢); 0

Table 3. A verification procedure template

the goal for the construction of efficient verification proce-
dure is restricted to finding a good sequence 7y, . . ., i from
the integer interval [1,n] such that the verification proce-
dure costs less space and time.

Before the presentation of our algorithm, we need to clar-
ify what it aims to achieve. In executing a verification task,
there can be a trade-off between space and time require-
ments. By dynamically deducing information while needed
and deleting them while not, we can save a lot of mem-
ory space. But repetitively and dynamically creating the
same piece of information will certainly takes up a lot of
CPU time. However, we believe for verification tasks, space
management is more important than time management be-
cause of the state-space explosion phenomenon. Most veri-
fication tasks quickly runs out of memory instead of taking
too long to complete. Thus our algorithm will pick a re-
ducer sequence with predicted “locally minimal” space re-
quirement.

In the following, we shall first present a structure for
reducer sequence groups. Then based on the structure,
we shall define local optimality of reducer sequences and
present an algorithm for predicting a locally most efficient
reducer sequence.

5.1. Structure of reducer sequence groups

Given a set {Ci,...,C,} of n reducers, a reducer
sequence is a sequence like C; C;, ...C;, such that
{i1,---,ix}| = kand {i1,...,ix} C {1,...,n}. Sup-
pose we are given a reducer sequence v = C; C;, ... C;,.
A binary permutation (j,j') on v is a pair of integers,
such that 1 < j < j' < k, and denotes an operation on
v which switches the position of C;; and Cij, in the se-
quence. Formally speaking, v(j,5') = C; C;, ... C; such

that C%j = Cij,, C%J, = CiJ ,and forall 1 < h < k with
h#jandh #j',C; =C,.

By group theory[13, 14], it is known that every permu-
tation can be constructed as a sequential composition of bi-
nary permutations. This further implies that for any two
reducer sequences 7,7y’ composed of the same set of re-
ducers, there is a finite sequence 6 . . . 8y, of binary permu-
tations such that v6,65 ...60, = ~'. For convenience, we
adopt left-associativity to interpret the ordering of permu-
tation operations. Thus all reducer sequences composed of
the same set of reducers form a connected graph.

We now have to define operations between reducer se-
quences composed of different sets of reducers. This can
be done by the append operation. Given reducer sequence
v=C;,Ci,...C;, andareducerC € {C;,,Cy,,...,Ci },
~C is exactly the new reducer sequence C;, C;, ... C;, C.

The following lemma depicts the structures of reducer
sequence groups. Remember that at the end of section 1, we
defined that for any sequence F, [F] is the set of elements
in F. Due to page-limit, the proof is omitted.

LEMMA 1 : Given a set {Cy,...,C,} of reducers, for
any two reducer sequences v,y constructed from the set,
there is a sequence N\ = Y172 ...V of reducer sequences
such that
e T="
e v = and
o foralll < i < k, one of the following three is true.
— forsome 1 <j <j' <k 7(j,j') =vir1; or
— forsomeC € {Cy,...,Cp}—[vi) %C = Yig1,
or
— for some C € {Cy,..
vi+1C.

With the operations of binary permutations and append-
ing, we know that we can draw a undirected reducer se-
quence graph (CSG) for a given set of reducers. The nodes
in a CSG are reducer sequences while the arcs are deter-
mined by if the two nodes can be related by a binary per-
mutation or an appending operation. In fig 2, we have a
CSG for three reducers. Lemma | says that such a graph is
connected.

-,Cn} - [%‘+1], Yi =

Two reducer sequences in a CSG are called neighbors to
each other if we can go from one to the other by a binary
permutation or an appending operation. Suppose we have a
valuation V on all reducer sequences in a CSG=(T",) such
that I is the set of nodes (reducer sequences), {2 is the set of
edges, and for ally € T, V(y) € RT. A reducer sequence
v in the CSG is called a local minimum if V(v) < V(') for
every neighbor ' of 7y in the CSG.

Our algorithm to pick reducer sequences for efficient ver-
ification shall use memory-space consumption increase rate
with respect to concurrency as our valuation V.

138

Figure 2. CSG for three reducers

5.2. Algorithm to pick a locally most efficient se-
quence

Suppose we are given a concurrent system presented
as m state-graphs G[1],...,G[m], with m > 4, and re-
ducers Cy,...,C,. Our strategy is to predict the space-
complexities of reducer sequences by testing the proce-
dure template on four state-graphs (G[1], G[2], G[3], G[4]
or some other four picked by users). Since the CSG has
size of order n factorial, it is not feasible to test all the re-
ducer sequences. Our algorithm hinges on the definition of
valuations on reducer sequences which reflects how fast the
memory space rate and CPU-time consumption rate grow.
It will randomly generate a reducer sequence and then start
searching the CSG. The search stops when it reaches a local
minimal reducer sequence.

There will be two valuations in our method, the ma-
jor one is for space consumption and the minor one is for
CPU-time consumption. We need the minor one because
our reducers do not increase the sizes of its argument state-
graphs. Thus a naive reducer sequence which leads to min-
imal space consumption is the sequence of all reducers.
However, for a given verification tasks, some reducers may
be applied with no effect on the state-graph while still con-
suming huge amount of CPU-time. Thus it is better if we
can also use CPU-time as a minor valuation.

Both the major and the minor valuations are devised on
the same idea. Since verification problems usually exhibit
at least singly exponential space complexity with respect to
concurrency, our algorithm attempts to use the predictions
on how fast the exponent base grows as an indication of the
memory consumption. If two reducer sequences have the
same prediction, then we choose the one with less CPU-
time consumption. We define the reduced state-graph H,/
inductively with reducer sequence 7 after each iteration.

o Hj = ~(G[1] x G[2]) and

e foreachh > 2, H = y(Hp—1 x G[h])
Our algorithm uses the following major valuation V7 to
predict the space consumption complexity of a reducer se-
quence 7.
S%Ze(n“*)
size(n?)
sizecy)
Size(xy))

_ (size(H)))(size(H]))
- (size(H7))?

Vs(v) =

The design of V, () has the following intuitive. In most ver-
ification tasks, complexities are super-exponential. Since
we want to predict the complexities of reducer sequences
for high concurrency with only composition of up to four
processes, we decide to use the “multiplication rate of mul-
tiplication rate” as the predicting valuation. The denomi-

size(H]) . T
nator = (H% of the first fraction is the multiplication rate
2
of space requirement from concurrency two to three. The
ize(H] L .
numerator et w) of the first fraction is the multiplica-
size(H))

tion rate of space requirement from concurrency three to
four. The fraction is thus an indication how fast the space
consumption rate multiplies. For most verification tasks
for concurrent systems, verification on up to four processes
usually takes very little memory space and CPU-time. Thus
Vs (7) should be able to give a good prediction on space
complexity.

The minor valuation V() is defined similarly in the fol-
lowing way to predict how fast the CPU-time consumption
complexity of a reducer sequence y multiplies.

Timeu?)

Timex7)
: 3

Timex?)

Time)

_ (Time(#7))(Time(#7))
- (Time(H7))?

Vily) =

Table 4 is our algorithm in picking a reducer sequence
for efficient verification. The termination of its execution is
guaranteed because the CSG is finite and the search stops
when v is no greater than its neighbors with respect to V()
and Vi(). In section 6, we shall have experiment data to
justify our algorithm.

Before we leave this section, there is a legitimate ques-
tion to ask : why do we only use four processes to predict
the complexity ? Indeed, we can use a larger number of pro-
cesses to make more accurate prediction with redefinition
of Vs(7y) as, say

139

Figure 3. A small mutual exclusion protocol

S{ze(ag)
size(x))
i ¥
sze(H)
s:ze(ag)

__ (size(H7,))(size(H]))
- (size(H}))?

V()

But this prediction will cost more space and CPU-time to
calculate. And for a lot of inefficient reducer sequences,
they may already run out of memory before the construction
of H;. Thus, “four” is a safe minimum which allows most
reducer sequence to complete their predictions.

6. Experiment

We have conducted experiments on our methods of veri-
fication on the large. At this moment, we have implemented
the merge operator x, three reducers: readwrite(), shield(),
and symmetry(). We test our method on Fischer’s timed
mutual exclusion protocol in figure 1 and the simple mutual
exclusion protocol in figure 3. In the following, we have
collected data on the effects of different reducer sequences.

In table 5 and 6, we have shown the graph sizes in mode
counts, transition counts, and their sums for small mutual
exclusion protocol (figure 3) and the Fischer’s protocol (fig-
ure 1) respectively.

Now we compare the data with our predicting valuation
V(). In table 5, for reducer sequence A, B,C, D, and E,

Vs(4) = 12910 ~ 0.809, V,(B) = 3x82 ~ 0.851,
Vs(C) ~ 0810, Vy(D) = 0.789, and V,(E) ~ 0.789.

As we can see that the valuation indeed gives a good pre-
diction of how fast the multiplication rate grows. It is ob-
seved that by permutating the shield() and the symmetry()
reducer, there is no difference made with respect to the
space complexity prediction. Thus we can further calcu-
late V(D) = 2022032 — (.64 and V,(E) = 0.6. And we
see from table 5, reducer sequence E indeed looks like to
have the smallest space and time complexity.

In table 6, for reducer sequence A, B,C, D, and E,
Vy(A) = BOXUMS o 1246, V,(B) = 0X5T
0.905, Vs(C) ~ 0.946, V,(D) =~ 0.752, and V;(E) ~
0.752. Again the valuation indeed gives a good predic-
tion of how fast the multiplication rate grows. Since re-
ducer sequence D and E tie in space complexity predica-

~
~

good_sequence(G,m) /* Assume we have reduce operators Cy, ..., C,. */
state_graph *G,
int m;
{
state_graph H1, H2, H3; (D
Randomly pick a reducer sequence «y from Cy, ..., C,. 2)
Repeat forever { (3
By ={v0G, i) 11<i<i <hu{y |3Ce{Cr,....Ca} — Y]y =7 CpU{C|Ce{Cy,...,Ca} =[]}, D
Pick v' € B, such that forall v/ € B.,, Vs(v") < Vs(v"); (%)
If Vi () < Vs(y'), return y; else if Vo (y) > Vs ('), v := 7' else if Ve(y) < Vi('), return ; else v := +'; (6)
}
}
Table 4. Our reducer sequence picking algorithm
#Modes/#Transitions/#Modes+#Transitions
Construction Time (seconds)
n 2 3 4 5 6 7 8
A | 14/28/42 | 57/165/222 203/746/949 | 725/3040/3765 | 2646/12003/14649 | 10469/49411/59880 O/M
0.01 0.11 0.66 375 20.81 126.95
B | 11/22/33 | 51/149/200 | 215/817/1032 | 850/3759/4609 | 3311/15864/19175 | 13430/66567/79997 O/M
0.02 0.11 1.00 8.07 7491 1025.10
C 8/14/22 15/35/50 24/68/92 35/116/151 46/171/217 60/251/311 | 76/357/433
0.02 0.09 0.30 0.73 1.36 2.58 4.64
D 6/11/17 12/29/41 20/58/78 30/100/130 42/157/199 56/231/287 | 72/324/396
0.02 0.10 0.32 0.84 1.88 3.82 7.24
E 6/11/17 12/29/41 20/58/78 30/100/130 42/157/199 56/231/287 | 72/324/396
0.02 0.10 0.30 0.78 1.74 343 6.61

A: X, readwrite(); B: x, readwrite(), shield(); C: x, readwrite(), symmetry()
D: x, readwrite(), shield(), symmetry(); E: X, readwrite(), symmetry(), shield(); O/M: Out of Memory

Table 5. Small Mutual Exclusion Protocol Example

tion, we further calculate V,(D) = 290292 ~ (0.549 and

Vi(E) = 0.47. It seems that we have a contradiction in our
predicting valuation V,() as we can check from table 6. At
this moment, we do not have experiment data to tell if our
predicting valuation will be correct on very large concur-
rency.

7. Conclusion

We propose a method which treats state-graphs as data-
objects and allows the definition of state-graph manipula-
tors as a user-friendly way to package complex technology
of computer-aided verification. The success of the method
depends on if many more state-graph manipulators can be
developed and proven correct.

140

References

[1] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and
S.K. Rajamani, "Partial-Order Reduction in Symbolic State-
Space Exploration,” Intl. Conf. CAV’97.

R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for
Real-Time Systems, IEEE LICS, 1990.

R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H.
Wong-Toi, "Minimization of Timed Transition Systems,’
Intl. Conf. CONCUR’92, August 1992, Lecture Notes in
Computer Science, Vol. 630, pp. 340-354.

R. Alur, TA. Henzinger, P-H. Ho. Automatic Symbolic
Verification of Embedded Systems. in Proceedings of 1993
IEEE Real-Time System Symposium.

JR. Burch, EM. Clarke, K.L. McMillan, D.L.Dill, L.J.
Hwang. Symbolic Model Checking: 10%° States and Be-
yond, IEEE LICS, 1990.

(3]

[6]

[7]

[8]

9

—

(101

[11]

[12]

[13]

[14]

[15]

[16]

[17]

#Modes/#Transitions/#Modes+#Transitions
Construction Time (seconds)
n 2 3 4 5 6 7 8
A | 70/160/230 | 1239/4013/5252 | 28593/120850/149443 oM oM oM Oo/M
0.06 3.20 218.65
B 31/70/101 182/578/760 1024/4149/5173 | 5804/28451/34255 oM oM OM
0.07 0.95 12.85 204.99
C 36/80/116 224/743/967 1270/6357/7627 O/M O/M O/M oM
0.08 3.30 185.80
D 16/35/51 39/109/148 76/247/323 130/472/602 | 204/810/1014 | 301/1290/1591 | 424/1944/2368
0.07 0.61 2.92 10.69 3525 107.84 275.61
E 16/35/51 39/109/148 76/247/323 130/472/602 | 204/810/1014 | 301/1290/1591 | 424/1944/2368
0.08 0.89 4.66 17.87 61.19 212.40 486.67

Table 6. Fischer’s Mutual Exclusion Protocol Example

A. Bouajjani, J-C. Fernandez, N. Halbwachs, and P. Ray-
mond, "Minimal State Graph Generation,” Science of Com-
puter Programming, Vol. 18, No. 3, 1992, pp. 247-269.

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, "Partial Order
Reductions for Timed Systems,” to appear in Procs. CON-
CUR’98.

R.E. Bryant. Graph-based Algorithms for Boolean Function
Manipulation, IEEE Trans. Comput., C-35(8), 1986.

E. Clarke and E.A. Emerson. Design and Synthesis of
Synchronization Skeletons using Branching-Time Temporal
Logic, Proceedings of Workshop on Logic of Programs, Lec-
ture Notes in Computer Science 131, Springer-Verlag, 1981.

E. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verifi-
cation of Finite-State Concurrent Systems Using Temporal
Logic Specifications, ACM Transactions on Programming
Languages and Systems 8(2), 1986, pp. 244-263.

C. Daws and S. Yovine, "Reducing the Number of Clock
Variables of Timed Automata,” in Procs. Real-Time Systems
Symposium, Dec. 1996, pp. 73-81.

E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-
Checking under Fairness Assumptions: An Automata-
Theoretic Approach. ACM TOPLAS, Vol. 19, Nr. 4, July
1997, pp. 617-638.

I.N. Herstein. Topics in Algebra, 2nd Edition, 1975, Xerox
College Publishing, Lexington, Massachusetts.

K. Hoffman, R. Kunze. Linear Algebra, 2nd edition, 1971,
Prentice Hall, Inc., Englewood Cliffs, New Jersey.

T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic
Model Checking for Real-Time Systems, IEEE LICS 1992.

K.G. Larsen, P. Pettersson, and W. Yi, "Compositional and
Symbolic Model-Checking of Real-Time Systems,” in Procs.
of the 16th IEEE Real-Time Systems Symposium, Dec.
1995.

K.G. Larsen and W. Yi, "Time Abstracted Bisimulation: Im-
plicit Specifications and Decidability,” Intl. Conf. Mathemat-
ical Foundations of Programming Semantics, April 1993,
Lecture Notes in Computer Science 802.

141

[18]

[19]

(20]

{21]

{22}

(23]

[24]

D. Peled, ”All from One, One for All — on Model Check-
ing Using Representatives,” Intl. Conf. CAV’93, June 1993,
Lecture Notes in Computer Science, Vol. 697, pp. 409-243.

S. Tripakis and S. Yovine, “Analysis of Timed Sys-
tems Based on Time-Abstracting Bisimulations,” Intl. Conf.
CAV’96, July 1996, Lecture Notes in Computer Science,
Vol. 1102.

F. Wang, A.K. Mok, E.A. Emerson. Real-Time Distributed
System Specification and Verification in APTL. ACM
TOSEM, Vol. 2, No. 4, Octobor 1993, pp. 346-378.

F. Wang. Timing Behavior Analysis for Real-Time Systems.
IEEE LICS 1995.

F. Wang. Reachability Analysis at Procedure Level through
Timing Coincidence. in Proceedings of the 6th CONCUR,
Philadelphia, USA, August 1995, LNCS 962, Springer-
Verlag.

F. Wang, P.-A. Hsiung. Iterative Refinement and Condensa-
tion for State-Graph Construction. Technical Report TR-11S-
98-009, Institute of Information Science, Academia Sinica,
Taipei, Taiwan, ROC.

E Wang, C.T. Lo. Procedure-Level Verification of Real-Time
Concurrent Systems. to appear in Proceedings of the 3rd
FME, Oxford, Britain, March 1996; in LNCS, Springer-
Verlag.

