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Abstract: Model checking often faces the problem of reducing the large exponential 
sizes of state-space representations. Several reduction techniques such as 
bisimulation equivalence, partial-order semantics, and symmetry-based 
reduction have been proposed, but existing tools do not completely allow a 
user the flexibility in manipulating state spaces. We propose a new user-
friendly verification environment where a user has full control on what 
techniques to apply and in what sequences to apply them. We have 
implemented the environment in a tool called State-Graph Manipulators 
(SGM). SGM packages verification techniques into efficient, reusable, 
modular manipulators, that act on high-level state-space representations called 
state-graphs. Further, we are also proposing four new state-space reduction 
techniques, namely variable shielding, read-write analysis, internal transitions 
bypassing, and sibling transition multiplicity reduction. They are implemented 
into SGM and experiments have been conducted to show their usefulness. 

1. INTRODUCTION 

In the recent few years due to several breakthroughs, model-checking [2], 
a formal approach to the verification of concurrent systems, has become 
more and more popular. Model-checking has been used to verify real-time 
systems. Timed automata [4] has been widely used as the system model for 
verifying real-time properties specified in Timed Computation Tree Logic 
(TCTL) [11]. Concurrency is generally modeled as the interleaving of 
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computation sequences [15]. This causes state-space explosions and the 
large sizes of state-space representations become unmanageable, thus 
hindering verification.  Both the degree of concurrency and the complexity 
of systems verifiable are limited. Several techniques have been proposed in 
the literature for reducing the state-space representation size, including 
symmetry-based reductions [10], partial-order reductions [15], bisimulation 
equivalences [16], and minimization techniques [3]. 

Such reduction techniques usually require years of studying to master and 
are typically implemented with sophisticated data-structures for state-graphs. 
Moreover, since different verification tasks may need different ways of 
attacking the state-explosion problem, for each specific verification task the 
optimal combination of reduction techniques that reduces the state-space 
representations most and in the least time might be different. Even for an 
engineer properly knowledgeable of verification theory, to experiment with 
different combinations of the various reduction techniques may painfully 
take too much time and resources a project can sustain. This need for 
experimentation necessitates an environment where a designer can easily 
change the combination of reduction techniques applied to a given 
verification task. For this purpose, we have developed a new tool called the 
State-Graph Manipulators (SGM). 

SGM adopts and presents a high-level view of all verification intricacies 
through a graphical user-interface (GUI). Various different sophisticated 
verification technologies are packed into efficient manipulators that act on 
high-level data-objects representing state-spaces. These data-objects are 
called state-graphs as defined later in Section 4. With a friendly GUI, users 
can choose manipulators, from the menu bar, during state-graph 
constructions and compare the effects of applying different sequences of 
manipulators to state-graphs. 

Section 2 describes verification-related tools and their techniques. 
Section 3 describes the verification framework, the verification procedure 
language, and the three interfaces of SGM. Section 4 describes the seven 
manipulators implemented in SGM. Section 5 gives the experimental results 
for several application examples. Section 6 gives the final conclusion. 

2. PREVIOUS WORK 

This section gives a brief account of some mature tools that are widely 
known and of the verification techniques they have used. It is worth noticing 
that although such tools are numerous, yet very few tools have been, are, or 
will be providing high-level perceptions. NuSMV [6], a new version of the 
well-known Symbolic Model Verifier (SMV), is one tool that will be 
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adopting an approach similar to ours, but they do not yet have any published 
results on the benefits of using high-level techniques, nor is there any 
description of concrete implementations in [6]. 

Murφ Verification System [9] is a language-based verifier tool for 
finite-state verification of concurrent systems with symmetry-based 
reduction. SPIN [12] is an automated protocol validation system using 
PROMELA with refining dependencies for efficient partial-order 
verification. KRONOS [7] is a well-known verification tool with 
minimization algorithms, inactive clock reduction [8], and clock equality [8] 
reduction techniques implemented. UPPAAL [5] is a widely-used 
verification tool for real-time systems with a graphical interface, simulation, 
quotient construction, minimizations, trivial equation elimination, and 
equivalence reduction implemented. SMV [14] is a well-known tool for 
model-checking finite-state systems against CTL (Computation Tree Logic) 
specifications. A new version called NuSMV has implemented automatic 
variable ordering and cache configuration [6]. 

From the above, we notice that although different techniques have been 
implemented in the various well-known tools, yet if a user needs to apply 
two or more different techniques (implemented in different tools) to a 
verification task, then the user will have to spend a great effort trying to 
either translate the output results of one tool to the input format of another 
tool or make some strong assumptions of technique application that may be 
invalid. Pain staking efforts could be avoided if various compatible 
techniques could be collected, implemented, and integrated into a single 
environment in which users can flexibly fine tune their verification problems. 
SGM is proposed with this motivation in mind. 

3. SGM: A USER-FRIENDLY VERIFICATION 
FRAMEWORK 

SGM provides a user-friendly verification environment through a flexible 
input language and three user interfaces: graphical, interactive, and batch.  

We adopt the framework of model-checking in which a system is 
described by a set of concurrent timed automata [2] with dense-time 
semantics and a timing property is specified in TCTL (Timed Computation 
Tree Logic) [2,11] extended from CTL. To compute the compact global 
state-space representations (i.e. state-graphs), first, the set of timed automata 
is merged, two at a time. Second, during each merge iteration different 
sequences of reduction techniques may be applied to the intermediate state-
graphs. Finally, the system is verified by model-checking the global state-
graph against the given TCTL specification. 
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SGM allows a user to describe his/her system of timed automata, the 
property to be verified, and the actions to be performed on state-graphs 
(defined in Section 4). SGM helps the designer in experimenting, online or 
offline, with the application of different sequences of reduction techniques to 
the intermediate state-graphs during the composition of a global state-graph. 
For a given verification task, this helps in finding a good sequence of 
manipulators (proved and implemented verification techniques), which 
reduces the state-graph sizes and increases verification scalability. 

We have developed seven manipulators in SGM, namely state-graph 
merging, timed symmetry-reduction [17], clock-shielding, variable-shielding, 
read-write analysis, internal transition bypassing, and sibling transition 
multiplicity reduction. Of the above, the first three were proposed by other 
authors and ourselves, the other four are new reduction techniques. These 
seven techniques will be discussed in Section 4. Other reduction techniques 
can be easily hooked into our tool as a new manipulator. Thus, researchers 
can take advantage of the framework to experiment with how one’s 
reduction technique works in collaboration with other existing techniques. 

3.1 Verification Procedure Language 

The input language of SGM is called Verification Procedure Language 
(VPL), which consists of three parts for system description, specification, 
and state-graph manipulation. System description corresponds to the timed 
automata model of real-time systems. Specification corresponds to a TCTL 
formula. Manipulation corresponds to a list of actions on state-graphs.  

We will use Fischer’s Mutual Exclusion Protocol (FMEP) as a running 
example in this paper. FMEP is a benchmark example that has been used for 
state-graph reduction technique evaluation in several literatures [13]. A 
generic timed automaton for the ith process and the corresponding SGM 
input for a 11-process system obeying FMEP are shown in Fig. 1. Fischer’s 
protocol says that given a system of n concurrent processes, the time taken 
by each process for checking (or reading) whether a lock variable is zero 
must be lesser than that for assigning (or writing) its index value to the lock 
variable. We must prove that such a system will never allow more than one 
process into the critical section (mode M4). VPL allows easy change of a 
system’s degree of concurrency by only changing the first line. 

Theoretically, this part of the input corresponds to the timed automata 
model of a real-time system. A timed automaton (TA) is composed of 
various modes interconnected by transitions. Variables are distinguished into 
clock and discrete, where variables of the former type increment at a uniform 
rate and can be reset on a transition, while variables of the latter type change 
values only when assigned a new value on a transition. A TA may remain in 
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a particular mode as long as the values of all its variables, including clock 
and discrete, satisfy a mode predicate, which is a conjunction of clock 
constraints and boolean propositions. In the following, N and R represent the 
sets of non-negative integers and non-negative real numbers, respectively. 

 
Figure 1. Fischer's Mutual Exclusion Protocol 

Definition 1: Mode Predicate. Given a set C of clock variables and a set D 
of discrete variables, the syntax of a mode predicate η over C and D is 
defined as follows: η := false | x ~ c | x - y ~ c | d ~ c | η1 ∧ η2 | ¬η1, where x, 
y ∈ C, ~ ∈ {≤, <, =, ≥, >}, c ∈ N, d ∈ D, η1, η2 are mode predicates. 

Let B(C, D) be the set of all mode predicates over C and D. A TA may go 
from a mode to another, that is perform a transition, when the triggering 
condition (specified as a mode predicate) is satisfied by the current valuation 
of the clock and discrete variables. On a transition, some clocks may be reset 
to zero and some discrete variables may be assigned new integer values. 

 
Definition 2: Timed Automaton. A Timed Automaton (TA) is a tuple Ai = 
(Mi, mi

0, Ci, Di, χi, Ei, τi, ρi) such that: Mi is a finite set of modes, mi
0∈M is 

the initial mode, Ci is a set of clock variables, Di is a set of discrete variables, 
χi: Mi → B(Ci, Di) is an invariance function that labels each mode with a 
condition true in that mode, Ei⊆Mi×Mi is a set of transitions, τi: Ei → B(Ci, 
Di) defines the transition triggering conditions, and ρi: Ei → 2Ci ∪ (Di × N) is an 
assignment function that maps each transition to a set of assignments such as 
resetting some clock variables and setting some discrete variables to specific 
integer values. 

As far as temporal property specification is concerned, SGM uses TCTL. 
A TCTL formula has the following syntax. φ ::= η | ∃�φ′ | ∃φ′U~cφ″ | ¬φ′ | 
φ′∨φ″. Here, η is a mode predicate in B(C, D), φ′, φ″ are TCTL formulae, ~ 
∈ {<, ≤, =, ≥, >}, and c ∈ N. Due to page-limit, we do not elaborate on the 
semantics of a TCTL formula. Details can be found in [11]. 

The specification begins with the keyword verify. Users can easily specify 
a TCTL formula using the user-friendly keywords. For example, all_paths 

automata A : i = 1..11; 
clock x[1..total(A)]; register lock; 
automaton A[i] {initially M1 and lock=0 and x[i]=0; 

mode M1 { invariant True; 
  when lock=0 may goto M2; x[i]:=0;} 
mode M2 { invariant x[i]<1; 
  when x[i]<1 may goto M3; x[i]:=0; lock:=i;} 
mode M3 { invariant True; 
  when x[i]>=1 and lock=i may goto M4; 
  when ~(lock=i) may goto M1;} 
mode M4 { invariant True; 
  when True may goto M1; lock:=0; } 

M1 M2

M4 M3

lock = 0
xi = 0;

xi < 1;

lock ≠ ilock := 0;
xi < 1 xi := 0;

lock := i;

lock = i

Ai

xi ≥ 1
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means for all paths in the state-graph starting from the initial mode. For our 
running example of 3-automata FMEP, the TCTL specification is as follows. 

verify all_paths (henceforth  
not{(mode(A[1])=M4) and (mode(A[2])=M4)} and not{(mode(A[1])=M4) and 
(mode(A[3])=M4)} and not{(mode(A[2])=M4) and (mode(A[3])=M4)}); 

In the last part of SGM input, state-graphs are variables which have to be 
declared first. Then, a list of manipulations follows the declaration. A simple 
manipulation can be either the merging of two state-graphs such as g[3] := 
merge_graph(g[1], g[2]);or the application of a single reduction technique on 
some state-graph such as shield_clock(g[3]);, or model-checking a state-graph 
such as model_check(g[3]);, or printing a state-graph such as print_graph(g[3]);, 
where g[1], g[2], g[3] are all state-graph variables. More complex 
programming constructs are also provided, such as for-loops, and if-then-else 
statements for more dynamic selections of manipulator sequences. These are 
omitted due to page-limit. 

State-graph manipulation for FMEP example is as follows. 
     manipulation                             
       graph g[1..total(A)-1];         -- new graph declarations 
       for(i:=1; i<total(A); i++) {    -- for each declared graph g[i] 
         if(i = 1) { g[1] := merge_graph(A[1], A[2]); } 
         else { g[i] := merge_graph(g[i-1], A[i+1]); } 
         shield_clock(g[i]); 
         normalize_region(g[i]); } 
       model_check(g[total(A)-1]);    -- model-check global graph 

3.2 User Interfaces 

Besides a human-readable input language, user-friendly verification is 
achieved by SGM through three user interfaces including graphical, 
interactive, and batch. A user has to first create a text input file using VPL. 

In the graphical mode, as shown in Fig. 2 after a user loads input file, 
SGM displays the system as a set of boxes where each box represents a 
state-graph. Each box has some basic visible information including its size 
and component processes. A detailed information of each state-graph (box) 
can be obtained by opening the boxes. After selecting two state-graphs 
(boxes), one can merge them through a Merge Graph command in the SGM 
menu and a new state-graph (box) is created, which represents their merger. 
A state-graph (box) can be selected for applying any manipulator in the 
SGM Reduce menu. The manipulators will be described in detail in the next 
section. 
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Figure 2. SGM Graphical User Interface 

In the interactive mode, SGM uses a command shell to accept commands 
from the user one at a time. This mode is useful when windows cannot be 
displayed, for example, over a terminal connection. The commands can be 
classified as graph commands, shell commands, and miscellaneous 
commands. Using the commands, a user can change his/her sequence of 
manipulators based on initial experimental results. 

In the batch mode, SGM needs an input file that contains all the three 
parts of VPL, including the manipulation part, so that SGM can run all the 
listed actions in a batch. 

4. MANIPULATORS 

The main factor that makes SGM user-friendly is the complete flexibility 
provided to a user in manipulating state-graphs through different 
permutations of manipulators.  Any technique that acts on state-graphs can 
be implemented as a manipulator. We first define state-graphs and regions. 

Definition 3: State-Graphs. Given a concurrent real-time system S of n 
timed automata (n>0) with process identifiers (also called indices) 
{1,2,…,n}, Ai = (Mi, mi

0, Ci, Di, χi, Ei, τi, ρi), a state-graph G=(q,Q,T) is a 
graph representation of a state-space, such that q∈V, is a starting node of the 
state-graph, Q includes all the nodes in the state-graph, where each node 
represents a region (Definition 4) of the state-space and is semantically a 
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collection of states satisfying some conditions in B(∪{i=1}

n Ci,∪{i=1}
n Di), and 

T includes all the arcs in the state-graph, where each arc represents a 
possible transition of the system. 

Definition: Regions A region is a collection of states such that: (1) they 
have the same mode-vector label (µ), which gives the mode names that each 
process timed automata is in, (2) they satisfy the same timing constraint in 
the form of a zone (ζ), which is a Difference-Bound Matrix (DBM) [1], and 
(3) they have the same set of literals (L), representing the discrete variables’ 
valuation. Thus, a region can be uniquely represented by a triple (µ, ζ, L). 

A manipulator checks the characteristics of each region in a state-graph, 
performs some comparisons between region characteristics or regions 
themselves, merges identical regions/transitions, removes redundant 
regions/transitions, etc. Three types of manipulators are supported: merging 
of state-graphs, reduction techniques, and model-checking algorithms. 

4.1 State-Graph Merging 

This manipulator called merge_graph() is not a reduction technique, but 
a necessary construction technique for composing two state-graphs into a 
single state-graph that represents the concurrent behaviors of the two 
components. In SGM, concurrency is modeled using interleaving semantics, 
that is, the execution of two or more concurrent transitions of a system is 
modeled as a set of interleaved computations. All possible interleavings of 
the concurrent transitions must be considered for a complete analysis. 
Although, reductions on interleavings are possible such as using the partial-
order reduction technique, yet merge_graph() is implemented as a pure 
composition operator so that reduction effects can later be compared. 

4.2 Timed Symmetry Reduction 

This is an extension of the non-timed symmetry-based reduction 
technique proposed recently by Emerson and Sistla [10], such that clocks 
and their readings are also considered for symmetry reductions. We have 
independently implemented our timed-symmetry reduction technique using a 
normalization scheme in the form of a manipulator called 
normalize_region(). This manipulator is an indispensable one when the 
system is a set of concurrent symmetric processes.  

Our implementation of the timed-symmetry reduction technique adopts a 
sorting procedure on the process indices by considering all the data-
structures of a region: mode-vectors, zones, and literal sets. After sorting, 
each region can be represented by a normalized form, that is mode-vectors, 
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zones, and literal sets are all normalized. If an existing region is itself in the 
normal form, then it is used for representing all regions with the same 
normal form. If no such normal form region exists, then a new normal region 
is created. In this way, the manipulator reduces the number of regions. 
Transitions will be duplicated when regions with the same normal form are 
merged into a single region, thus further reduction is possible by considering 
the redundancy in transitions (see subsection 4.7). Finally, after all regions 
and transitions are reduced, we have a unique representation for each region. 

4.3 Clock Shielding 

This manipulator was individually devised and implemented in SGM by 
the authors, but there is already published literature on clock activity [8], 
which is semantically the same as that implemented in our manipulator. 
Though their semantics is the same as ours, yet we adopt a different strategy 
in detecting inactive clocks (clocks that do not affect future evolution of a 
system are called inactive in [8]). We call them shielded clocks instead, 
because the clocks themselves are not inactive, they progress like all other 
clocks, but their readings are not useful currently so we instead shield them 
from external observation. The method presented in [8] was a fix-point 
iteration strategy where the set of inactive clocks is obtained after a few 
iterations. Our method is by tracing all the paths in a state-graph starting 
from the region under consideration. Briefly, the manipulator works as 
follows: if a clock is not in the TCTL specification and if it is never read 
before it is reset, or will never ever be read again, then the clock can be 
shielded. As demonstrated by Daws and Yovine, this is a useful reduction 
technique. Our implementation and experimental results using SGM further 
show how this technique works in collaboration with other reduction 
techniques implemented as manipulators. 

4.4 Variable Shielding 

Applying the same concept of clock shielding to the discrete variables, 
we have constructed a new manipulator called shield_variable(). A discrete 
variable is said to be shieldable in a mode if it does not occur in a given 
TCTL specification and along all possible out-going paths starting from that 
mode either its value will never be read again or it will be assigned a new 
value before being read. This indicates the value of a shieldable discrete 
variable in a mode has no effect on the global behavior of a system. 

By shielding some variables in the modes of a state-graph, some modes 
become identical in all respects and can thus be identified into a single mode. 
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Resulting multiple transitions can be reduced using Sibling Transition 
Multiplicity Reduction technique as described later in this section. 

4.5 Read-Write Analysis 

This is a new reduction technique that reduces the state-graph through an 
analysis of the discrete variable values as they are changed during transitions. 
Recall that each region is associated with a literal set (Definition 4). A literal 
in the set is basically of the form (v ≠ k), where v is a global discrete variable 
and k is any integer value. By analyzing all the possible values that a process 
automaton writes to, or does not write to a global discrete variable, this 
manipulator, called read_write(), computes the literal set of each region. 
The literal set represents the values that each global discrete variable does 
not possibly have in a region. Through such an analysis and literal sets 
formulation, transitions that have triggering conditions conflicting with the 
literal sets will never be triggerable and can thus be eliminated from further 
consideration. Lemma 1 explains the reduction technique implemented in 
read_write(). 

Suppose we have an intermediate state-graph composed from state-
graphs for processes with indices in set H. For a given global variable y, we 
let D{H:y} be the set of values written to y by processes with identifiers in H 
but NOT by processes without identifiers in H. 
LEMMA 1 Suppose we are given a variable y and a finite run segment 
(νh,th)(ν{h+1},t{h+1})…(νk,tk) such that for all i, h ≤ i < k, νi goes to ν{i+1} 
without making assignment to y on a transition from a process with identifier 
in H. 

 If we enter state νh with an assignment y:=a;, then for all h ≤ i < k, tI 

≤ t ≤ t{i+1}, νi+t ⊨ ∧bε(D{H:y}-{a})y≠b. 
 If we enter state νh without an assignment to y but with a triggering 

condition y=a, then for all h≤i<k, ti≤t≤t{i+1}, νi+t ⊨ ∧bε(D{H:y}-{a})y≠b. 
 If we enter state νh without an assignment to y but with a triggering 

condition y≠a with a∈D{H:y}, then for all h ≤ i < k, ti ≤ t ≤ t{i+1}, νi+t 
⊨ y≠a. 

Proof: Since the values in D{H:y} are not going to be written to y by other 
processes with identifiers not in H, and we have the full knowledge that 
processes with identifiers in H will neither write values in D{H:y} to y along 
the segment, thus the lemma holds. 

4.6 Bypass Internal Transition 

During compositional verification, an intermediate state-graph represents 
the concurrent behavior of k processes, 1 ≤ k ≤ n. These k processes are 
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called internal, while the rest are called external. Some behavior of internal 
processes in a state-graph such as the occurrence of a transition might not be 
observable by external processes. Such behaviors do not affect the global 
evolution of a system. Bypass Internal Transition (BIT) is a reduction 
manipulator that detects the occurrence of a transition in an intermediate 
state-graph, that is not observable by external processes. BIT detects internal 
behavior by checking (1) if the invariance condition of a node v implies that 
of a successor node v', where (v, v') is a transition under consideration, (2) if 
τ(v, v') is implied by the invariance condition of v, (3) if (v, v') only accesses 
variables not accessed by external processes, (4) if (v, v') does not reset any 
clocks, and (5) v' is not related to a given TCTL specification. Once such a 
transition is detected, BIT bypasses the transition by eliminating (v, v') and 
by adding new transitions between v and the successor nodes of v'. 

BIT can achieve reduction of state-graph sizes because if a transition (v, 
v') is bypassed, it may happen that v' becomes unreachable from the initial 
node of a state-graph. The BIT manipulator will be illustrated in the Ring 
Network example of Section 5. 

 

4.7 Sibling Transition Multiplicity Reduction 

Reduction techniques such as symmetry reduction, clock shielding, etc. 
often results in more than one transition between a pair of nodes in a state-
graph. Out of the identical transitions between a pair of nodes, only one need 
be left in the state-graph. But, there is still some redundancy left in the 
transitions. Sibling Transition Multiplicity Reduction (STMR) is a reduction 
manipulator that detects such redundancy by checking if two transitions are 
corresponding transitions of two similar processes and their common source 
node is symmetric with respect to the two process indices. On detecting such 
transitions only one is left in the state-graph by STMR. This is because when 
a computation of a concurrent system reaches the source node of the 
corresponding transitions, the system cannot distinguish between the two 
processes. 

Applying STMR after each of the other manipulators helps reduce state-
graph sizes to a large extent because the reductions are accumulated through 
the sequence of manipulator applications. 

5. APPLICATION EXAMPLES 

Several academic as well as industrial examples were verified using 
SGM. The three application examples presented here include: (1) Fischer's 
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timed mutual exclusion protocol (FMEP) [13], (2) Rules of graphical user 
interface for a simple calculator, and (3) ring network token passing. 

5.1 Fischer's Timed Mutual Exclusion Protocol 

This example was used for illustration throughout the article. The timed 
automaton for the ith process was shown in Fig. 1 and system description 
using VPL were described in subsection 3.1. As shown in Table 1, after 
experimenting with five different sequences of the manipulators in SGM we 
notice that for Fischer's mutual exclusion protocol [13], although both the 
sequences (D) and (E) have the same final effect, that is, they reduce the 
intermediate state-graphs to the same size, yet the decrease rate is not the 
same. The first sequence decreases the state-graph sizes more quickly than 
the second sequence. Further, comparing the time taken by the two 
sequences for state-graph reductions, we see it is also the first sequence that 
uses a shorter time. Thus, we conclude the first sequence is a better 
manipulation of the state-graphs.  

Table 1. Fischer's Mutual Exclusion Protocol (11 processes) 
#Modes  

#Transitions 
Construction Time (sec) 

 
 
 

n 2 3 4 5 6 7 8 9 10 11 
A 70 

160 
0.06 

1239 
4013 

3 

28593
120850

-

O/M O/M O/M O/M O/M O/M O/M

B 31 
70 

0.07 

182 
578 

1 

1024
4149

13

5804 
28451 

- 

O/M O/M O/M O/M O/M O/M

C 36 
80 

0.08 

224 
743 
3.3 

1270
6357
186

O/M O/M O/M O/M O/M O/M O/M

D 16 
35 

0.07 

39 
109 
0.6 

76
247

3

130 
472 

10.7 

204 
810 
35 

301
1290
108

424
1944
276

576
2822

-

760
3937

-

219
1063

-
E 16 

35 
0.08 

39 
109 
0.9 

76
247
4.7

130 
472 
18 

204 
810 
61 

301
1290
212

424
1944
487

576
3400

-

760
4786

-

219
1174

-
A: {mg, rw}, B: {mg, rw, sc}, C: {mg, rw, nr}, D: {mg, rw, sc, nr}, E: {mg, rw, nr, sc}, O/M: Out of 
Memory, mg = merge_graph(), rw = read_write(), sc = shield_clock(), nr = normalize_region() 

5.2 Rules of graphical user interface for a calculator 

This is a real project example from the Institute of Information Science, 
Academia Sinica, Taiwan. The project goal was to develop a generator of 
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graphical user interfaces (GUI). The example considered here is a GUI for a 
simple calculator. The generator created a set of condition/action rules 
governing the behavior of a calculator GUI. Due to the large number of rules, 
it was difficult to verify if a resulting GUI behaved in the same way as a real 
calculator. It was also difficult to comprehend how large the state space 
would be and how the state space could be reduced. Thus, SGM came handy 
in such a situation. We collaborated with the project members to verify the 
GUI rules created by their generator. 

The set of rules was transformed into a corresponding set of timed 
automata and input to SGM. Each rule was modeled by a single timed 
automaton with one mode and one or more looping transitions. The rule 
condition was mapped to a triggering condition of the transitions. The action 
part was mapped to a set of transition assignment statements. The set of 
automata obtained from the rules is shown in Fig. 3. 

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = 1 | … | click = 9
value = INIT | value = INPUT
value := INPUT
caption := NON_ZERO

click = 0
value = INIT |
value = INPUT
value := INPUT

R1

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = 0 | … | click = 9
value = ADD | value = SUB |
value = MUL | value = DIV
value := INPUT caption := ZERO
R2

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = CE
value := INIT
op := INIT
caption := ZERO
R3

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = ADD ∧ value = INPUT
caption := ZERO
op := ADD

R4

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = SUB ∧ value = INPUT
caption := ZERO
op := SUB

R5

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = MUL ∧ value = INPUT
caption := ZERO
op := MUL

R6

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = DIV ∧ value = INPUT
caption := ZERO
op := DIV

R7

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = ADD
value := ADD
op := INIT

R8

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = SUB
value := SUB
op := INIT

R9

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = MUL
value := MUL
op := INIT

R10

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = DIV ∧
caption = NON_ZERO
value := DIV
op := INIT

R11

click = EQ ∧ op = DIV ∧
caption = ZERO
value := ERROR
op := INIT

 

Figure 3. Calculator GUI Example 
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As shown in Table 2, on applying the manipulators read_write() and 
shield_variables() after each merge(), we found a significant reduction in 
state-graph sizes. The reduction was as much as 73.6% for transitions and 
24.7% for modes. 

Table 2. Rules of Calculator GUI 
#Modes 

#Transitions  

n 2 3 4 5 6 7 8 9 10 11

Time 
(sec)

A 11 
660 

11 
671 

22 
1364 

33 
2079 

44 
2816 

55 
3575 

69
4554

83
5561

97
6596

90
1229

12.9

B 11 
650 

11 
561 

21 
1091 

31 
1641 

41 
2211 

51 
2801 

61
2711

71
2421

81
1931

90
1229

27.5

C 10 
590 

10 
510 

10 
519 

19 
1005 

28 
1509 

37 
2031 

55
2444

64
2182

73
1740

83
1133

32.6

A:{mg},B:{mg,rw},C:{mg,rw,sv}, mg=merge_graph(),rw=read_write(),sv=shield_variables() 

5.3 Ring Network 

This example illustrates how BIT reduces state-graphs. In Fig. 11, we 
have a ring network consisting of three processes {p0, p1, p2} and three 
tokens {t0, t1, t2}. Each process enters a critical section only when its token is 
true. Initially, only process p0 has its token t0 set as true, thus p0 enters the 
critical section. After p0 leaves the critical section, it sets t0 to false and t1 to 
true, thus allowing process p1 to enter the critical section. Likewise, 
processes p1 and p2 behave in a similar manner. We observe that token t0 is 
accessed only by p0 and p2 and not by p1. Similarly, token t1 is accessed only 
by p1 and p0, and t2 by only p2 and p1. When we construct an intermediate 
state-space representation for processes p0 and p2, token t0 becomes internal.  
The action of reading t1 along transition (Idle, Critical-Section) of process p0 
becomes an internal action in the intermediate state-space representation of 
p0 and p2. This action is not observable by external process p1. 

Idle

Critical
Section

xi=0 ∧ t0=1 ∧ tj=0, 0 < j < n

Pi

xi = 1 ∧
 ti = 1

xi := 0 ∧
ti := 0
t(i+1)%n := 1

 

Figure 4. Ring Network 
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From Table 6, we can observe that the BIT manipulator in sequence (B) 
reduces the intermediate state-graph sizes and achieves a greater scalability 
such that 7 processes in a ring network can be verified as compared to that of 
only 6 processes without applying BIT. Sequence (C) can achieve a greater 
reduction but at the cost of time. 

Table 3. Ring Network 
#Modes / #Transitions  

n 2 3 4 5 6 7 
Total time 
(seconds)

A 32/64 221/663 1364/5450 7842/38460 O/M - N/A
B 14/28 63/202 302/1440 1508/9600 7567/61220 18/18 125
C 12/26 51/1840 244/1355 1254/9433 6574/63974 18/18 1270

A:{mg},B:{mg,rw,bit},C:{mg,rw,bit,sv}, mg=merge_graph(), rw=read_write(), 
bit=bypass_internal_transition(), sv=shield_variables() 

6. CONCLUSION 

We have successfully developed a user-friendly verification environment 
as a state-graph manipulation tool called State-Graph Manipulators (SGM) 
for the specification and verification of real-time systems which are modeled 
as timed automata and model-checked against TCTL specifications. We 
have also proposed four new state-graph reduction techniques: Variable-
Hiding, Read-Write, BIT, and STMR. SGM allows system designers to 
experiment with different sequences of manipulators that best fit a particular 
verification task at hand. At the same time, SGM allows verification 
researchers to experiment with how a new reduction technique developed by 
him/her would collaborate with other existing techniques. We expect that 
SGM would be a useful tool to both the verification expert as well as the 
verification layman (one who just wants to see how much his/her verification 
task could be best tuned for efficiency and scalability). 

Other existing reduction techniques will be gradually implemented into 
SGM. Further, new reduction techniques and their interaction with existing 
techniques will be investigated using SGM 

Acknowledgments 

We acknowledge the help provided by Mr. Ruey-Cheng Chen and Mr. 
Chao-Chi Chang of National Taiwan University for the implementation of 
the SGM Graphical User Interface. We also acknowledge Prof. Yue-Sun 
Kuo for providing us the Calculator GUI rules example. 



16 PAO-ANN HSIUNG and FARN WANG
 
References 

[1] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi, “An implementation 
of three algorithms for timing verification based  on automata emptiness,” In Proc. IEEE 
Intl Conf Real-Time Systems Symposium, 1992. 

[2] R. Alur, C. Courcoubetis, N. Halbwachs, and D. Dill, “Modeling checking for real-time 
systems,” In Proc IEEE Logics in Computer Science, 1990. 

[3] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi, “Minimization of 
timed transition systems,” In Proc Intl Conf CONCUR'92, LNCS, volume 630, pages 340-
354, August 1992. 

[4] R. Alur and D. Dill, “Automata for modeling real-time systems,” Theoretical Computer 
Science, 126(2):183-236, April 1994. 

[5] J. Bengtsson, F. Larsen, K.Larsson, P. Petterson, Y. Wang, and C. Weise, “New 
generation of UPPAAL,” In Procs of the Intl Workshop on Software Tools for Technology  
Transfer (STTT'98), July 1998. 

[6] A. Cimatti, F. Clarke, E Giunchiglia, and M. Roveri, “NuSmv: a reimplementation of 
smv,” In Procs of the Intl Workshop on Software Tools for Technology  Transfer 
(STTT'98), July 1998. 

[7] C. Daws, A. Olivers, S. Tripakis, and S. Yovine, “The tools KRONOS,” In Hybrid System 
III,” Lecture Notes in Computer Science, volume 1066, pages 208-219, 1996. 

[8] C. Daws and S. Yovine, “Reducing the number of clock variables of timed automata,” In 
Proc Real-Time Systems Symposium, pages 73-81, December 1996. 

[9] A. J. Dill, D. L.Drexler, A. J. Hu, and C. H. Yang, “Protocol verification as a hardware 
design aid,” In Procs of the IEEE Intl Conf on Computer Design: VLSI in  Computers and 
Processors, 1992. 

[10] E.A. Emerson and A.P. Sistla, “Utilizing symmetry when model-checking under fairness 
assumptions: An automata-theoretic approach,” ACM Trans on Programming Languages 
and Systems, 19(4):617-638, July 1997. 

[11] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking for 
real-time systems,” In Proc IEEE Logics in Computer Science, 1992. 

[12] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991. 
[13] L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans. on Computer Systems, 

5(1):1-11, February 1987. 
[14] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publisher, 1993. 
[15] D.A. Peled, “All from one, one for all: On model checking using representatives,” In 

Proc of the 5th Intl Conf on Computer-Aided Verification, Lecture Notes in Computer 
Science, volume 697, pages 409-423, 1993. 

[16] S. Tripakis and S. Yovine, “Analysis of timed systems based on time-abstracting 
bisimulations,” In CAV'96, Lecture Notes in Computer Science, volume 1102, 1996. 

[17] F. Wang and P.-A. Hsiung, “Automatic verification on the large,” In Proc 3rd IEEE 
High-Assurance Systems Engineering Symposium (HASE'98), November 1998. 

 


