
1

User-Friendly Verification

PAO-ANN HSIUNG and FARN WANG
Institute of Information Science, Academia Sinica, Taipei, TAIWAN, R.O.C.
E-mail: {eric,farn}@iis.sinica.edu.tw
URL: http://www.iis.sinica.edu.tw/~eric/sgm/

Key words: timed automata, TCTL, model-checking, state-space explosion, verification
tool, concurrent real-time systems

Abstract: Model checking often faces the problem of reducing the large exponential
sizes of state-space representations. Several reduction techniques such as
bisimulation equivalence, partial-order semantics, and symmetry-based
reduction have been proposed, but existing tools do not completely allow a
user the flexibility in manipulating state spaces. We propose a new user-
friendly verification environment where a user has full control on what
techniques to apply and in what sequences to apply them. We have
implemented the environment in a tool called State-Graph Manipulators
(SGM). SGM packages verification techniques into efficient, reusable,
modular manipulators, that act on high-level state-space representations called
state-graphs. Further, we are also proposing four new state-space reduction
techniques, namely variable shielding, read-write analysis, internal transitions
bypassing, and sibling transition multiplicity reduction. They are implemented
into SGM and experiments have been conducted to show their usefulness.

1. INTRODUCTION

In the recent few years due to several breakthroughs, model-checking [2],
a formal approach to the verification of concurrent systems, has become
more and more popular. Model-checking has been used to verify real-time
systems. Timed automata [4] has been widely used as the system model for
verifying real-time properties specified in Timed Computation Tree Logic
(TCTL) [11]. Concurrency is generally modeled as the interleaving of

2 PAO-ANN HSIUNG and FARN WANG

computation sequences [15]. This causes state-space explosions and the
large sizes of state-space representations become unmanageable, thus
hindering verification. Both the degree of concurrency and the complexity
of systems verifiable are limited. Several techniques have been proposed in
the literature for reducing the state-space representation size, including
symmetry-based reductions [10], partial-order reductions [15], bisimulation
equivalences [16], and minimization techniques [3].

Such reduction techniques usually require years of studying to master and
are typically implemented with sophisticated data-structures for state-graphs.
Moreover, since different verification tasks may need different ways of
attacking the state-explosion problem, for each specific verification task the
optimal combination of reduction techniques that reduces the state-space
representations most and in the least time might be different. Even for an
engineer properly knowledgeable of verification theory, to experiment with
different combinations of the various reduction techniques may painfully
take too much time and resources a project can sustain. This need for
experimentation necessitates an environment where a designer can easily
change the combination of reduction techniques applied to a given
verification task. For this purpose, we have developed a new tool called the
State-Graph Manipulators (SGM).

SGM adopts and presents a high-level view of all verification intricacies
through a graphical user-interface (GUI). Various different sophisticated
verification technologies are packed into efficient manipulators that act on
high-level data-objects representing state-spaces. These data-objects are
called state-graphs as defined later in Section 4. With a friendly GUI, users
can choose manipulators, from the menu bar, during state-graph
constructions and compare the effects of applying different sequences of
manipulators to state-graphs.

Section 2 describes verification-related tools and their techniques.
Section 3 describes the verification framework, the verification procedure
language, and the three interfaces of SGM. Section 4 describes the seven
manipulators implemented in SGM. Section 5 gives the experimental results
for several application examples. Section 6 gives the final conclusion.

2. PREVIOUS WORK

This section gives a brief account of some mature tools that are widely
known and of the verification techniques they have used. It is worth noticing
that although such tools are numerous, yet very few tools have been, are, or
will be providing high-level perceptions. NuSMV [6], a new version of the
well-known Symbolic Model Verifier (SMV), is one tool that will be

User-Friendly Verification 3

adopting an approach similar to ours, but they do not yet have any published
results on the benefits of using high-level techniques, nor is there any
description of concrete implementations in [6].

Murφ Verification System [9] is a language-based verifier tool for
finite-state verification of concurrent systems with symmetry-based
reduction. SPIN [12] is an automated protocol validation system using
PROMELA with refining dependencies for efficient partial-order
verification. KRONOS [7] is a well-known verification tool with
minimization algorithms, inactive clock reduction [8], and clock equality [8]
reduction techniques implemented. UPPAAL [5] is a widely-used
verification tool for real-time systems with a graphical interface, simulation,
quotient construction, minimizations, trivial equation elimination, and
equivalence reduction implemented. SMV [14] is a well-known tool for
model-checking finite-state systems against CTL (Computation Tree Logic)
specifications. A new version called NuSMV has implemented automatic
variable ordering and cache configuration [6].

From the above, we notice that although different techniques have been
implemented in the various well-known tools, yet if a user needs to apply
two or more different techniques (implemented in different tools) to a
verification task, then the user will have to spend a great effort trying to
either translate the output results of one tool to the input format of another
tool or make some strong assumptions of technique application that may be
invalid. Pain staking efforts could be avoided if various compatible
techniques could be collected, implemented, and integrated into a single
environment in which users can flexibly fine tune their verification problems.
SGM is proposed with this motivation in mind.

3. SGM: A USER-FRIENDLY VERIFICATION
FRAMEWORK

SGM provides a user-friendly verification environment through a flexible
input language and three user interfaces: graphical, interactive, and batch.

We adopt the framework of model-checking in which a system is
described by a set of concurrent timed automata [2] with dense-time
semantics and a timing property is specified in TCTL (Timed Computation
Tree Logic) [2,11] extended from CTL. To compute the compact global
state-space representations (i.e. state-graphs), first, the set of timed automata
is merged, two at a time. Second, during each merge iteration different
sequences of reduction techniques may be applied to the intermediate state-
graphs. Finally, the system is verified by model-checking the global state-
graph against the given TCTL specification.

4 PAO-ANN HSIUNG and FARN WANG

SGM allows a user to describe his/her system of timed automata, the
property to be verified, and the actions to be performed on state-graphs
(defined in Section 4). SGM helps the designer in experimenting, online or
offline, with the application of different sequences of reduction techniques to
the intermediate state-graphs during the composition of a global state-graph.
For a given verification task, this helps in finding a good sequence of
manipulators (proved and implemented verification techniques), which
reduces the state-graph sizes and increases verification scalability.

We have developed seven manipulators in SGM, namely state-graph
merging, timed symmetry-reduction [17], clock-shielding, variable-shielding,
read-write analysis, internal transition bypassing, and sibling transition
multiplicity reduction. Of the above, the first three were proposed by other
authors and ourselves, the other four are new reduction techniques. These
seven techniques will be discussed in Section 4. Other reduction techniques
can be easily hooked into our tool as a new manipulator. Thus, researchers
can take advantage of the framework to experiment with how one’s
reduction technique works in collaboration with other existing techniques.

3.1 Verification Procedure Language

The input language of SGM is called Verification Procedure Language
(VPL), which consists of three parts for system description, specification,
and state-graph manipulation. System description corresponds to the timed
automata model of real-time systems. Specification corresponds to a TCTL
formula. Manipulation corresponds to a list of actions on state-graphs.

We will use Fischer’s Mutual Exclusion Protocol (FMEP) as a running
example in this paper. FMEP is a benchmark example that has been used for
state-graph reduction technique evaluation in several literatures [13]. A
generic timed automaton for the ith process and the corresponding SGM
input for a 11-process system obeying FMEP are shown in Fig. 1. Fischer’s
protocol says that given a system of n concurrent processes, the time taken
by each process for checking (or reading) whether a lock variable is zero
must be lesser than that for assigning (or writing) its index value to the lock
variable. We must prove that such a system will never allow more than one
process into the critical section (mode M4). VPL allows easy change of a
system’s degree of concurrency by only changing the first line.

Theoretically, this part of the input corresponds to the timed automata
model of a real-time system. A timed automaton (TA) is composed of
various modes interconnected by transitions. Variables are distinguished into
clock and discrete, where variables of the former type increment at a uniform
rate and can be reset on a transition, while variables of the latter type change
values only when assigned a new value on a transition. A TA may remain in

User-Friendly Verification 5

a particular mode as long as the values of all its variables, including clock
and discrete, satisfy a mode predicate, which is a conjunction of clock
constraints and boolean propositions. In the following, N and R represent the
sets of non-negative integers and non-negative real numbers, respectively.

Figure 1. Fischer's Mutual Exclusion Protocol

Definition 1: Mode Predicate. Given a set C of clock variables and a set D
of discrete variables, the syntax of a mode predicate η over C and D is
defined as follows: η := false | x ~ c | x - y ~ c | d ~ c | η1 ∧ η2 | ¬η1, where x,
y ∈ C, ~ ∈ {≤, <, =, ≥, >}, c ∈ N, d ∈ D, η1, η2 are mode predicates.

Let B(C, D) be the set of all mode predicates over C and D. A TA may go
from a mode to another, that is perform a transition, when the triggering
condition (specified as a mode predicate) is satisfied by the current valuation
of the clock and discrete variables. On a transition, some clocks may be reset
to zero and some discrete variables may be assigned new integer values.

Definition 2: Timed Automaton. A Timed Automaton (TA) is a tuple Ai =
(Mi, mi

0, Ci, Di, χi, Ei, τi, ρi) such that: Mi is a finite set of modes, mi
0∈M is

the initial mode, Ci is a set of clock variables, Di is a set of discrete variables,
χi: Mi → B(Ci, Di) is an invariance function that labels each mode with a
condition true in that mode, Ei⊆Mi×Mi is a set of transitions, τi: Ei → B(Ci,
Di) defines the transition triggering conditions, and ρi: Ei → 2Ci ∪ (Di × N) is an
assignment function that maps each transition to a set of assignments such as
resetting some clock variables and setting some discrete variables to specific
integer values.

As far as temporal property specification is concerned, SGM uses TCTL.
A TCTL formula has the following syntax. φ ::= η | ∃�φ′ | ∃φ′U~cφ″ | ¬φ′ |
φ′∨φ″. Here, η is a mode predicate in B(C, D), φ′, φ″ are TCTL formulae, ~
∈ {<, ≤, =, ≥, >}, and c ∈ N. Due to page-limit, we do not elaborate on the
semantics of a TCTL formula. Details can be found in [11].

The specification begins with the keyword verify. Users can easily specify
a TCTL formula using the user-friendly keywords. For example, all_paths

automata A : i = 1..11;
clock x[1..total(A)]; register lock;
automaton A[i] {initially M1 and lock=0 and x[i]=0;

mode M1 { invariant True;
 when lock=0 may goto M2; x[i]:=0;}
mode M2 { invariant x[i]<1;
 when x[i]<1 may goto M3; x[i]:=0; lock:=i;}
mode M3 { invariant True;
 when x[i]>=1 and lock=i may goto M4;
 when ~(lock=i) may goto M1;}
mode M4 { invariant True;
 when True may goto M1; lock:=0; }

M1 M2

M4 M3

lock = 0
xi = 0;

xi < 1;

lock ≠ ilock := 0;
xi < 1 xi := 0;

lock := i;

lock = i

Ai

xi ≥ 1

6 PAO-ANN HSIUNG and FARN WANG

means for all paths in the state-graph starting from the initial mode. For our
running example of 3-automata FMEP, the TCTL specification is as follows.

verify all_paths (henceforth
not{(mode(A[1])=M4) and (mode(A[2])=M4)} and not{(mode(A[1])=M4) and
(mode(A[3])=M4)} and not{(mode(A[2])=M4) and (mode(A[3])=M4)});

In the last part of SGM input, state-graphs are variables which have to be
declared first. Then, a list of manipulations follows the declaration. A simple
manipulation can be either the merging of two state-graphs such as g[3] :=
merge_graph(g[1], g[2]);or the application of a single reduction technique on
some state-graph such as shield_clock(g[3]);, or model-checking a state-graph
such as model_check(g[3]);, or printing a state-graph such as print_graph(g[3]);,
where g[1], g[2], g[3] are all state-graph variables. More complex
programming constructs are also provided, such as for-loops, and if-then-else
statements for more dynamic selections of manipulator sequences. These are
omitted due to page-limit.

State-graph manipulation for FMEP example is as follows.
 manipulation
 graph g[1..total(A)-1]; -- new graph declarations
 for(i:=1; i<total(A); i++) { -- for each declared graph g[i]
 if(i = 1) { g[1] := merge_graph(A[1], A[2]); }
 else { g[i] := merge_graph(g[i-1], A[i+1]); }
 shield_clock(g[i]);
 normalize_region(g[i]); }
 model_check(g[total(A)-1]); -- model-check global graph

3.2 User Interfaces

Besides a human-readable input language, user-friendly verification is
achieved by SGM through three user interfaces including graphical,
interactive, and batch. A user has to first create a text input file using VPL.

In the graphical mode, as shown in Fig. 2 after a user loads input file,
SGM displays the system as a set of boxes where each box represents a
state-graph. Each box has some basic visible information including its size
and component processes. A detailed information of each state-graph (box)
can be obtained by opening the boxes. After selecting two state-graphs
(boxes), one can merge them through a Merge Graph command in the SGM
menu and a new state-graph (box) is created, which represents their merger.
A state-graph (box) can be selected for applying any manipulator in the
SGM Reduce menu. The manipulators will be described in detail in the next
section.

User-Friendly Verification 7

Figure 2. SGM Graphical User Interface

In the interactive mode, SGM uses a command shell to accept commands
from the user one at a time. This mode is useful when windows cannot be
displayed, for example, over a terminal connection. The commands can be
classified as graph commands, shell commands, and miscellaneous
commands. Using the commands, a user can change his/her sequence of
manipulators based on initial experimental results.

In the batch mode, SGM needs an input file that contains all the three
parts of VPL, including the manipulation part, so that SGM can run all the
listed actions in a batch.

4. MANIPULATORS

The main factor that makes SGM user-friendly is the complete flexibility
provided to a user in manipulating state-graphs through different
permutations of manipulators. Any technique that acts on state-graphs can
be implemented as a manipulator. We first define state-graphs and regions.

Definition 3: State-Graphs. Given a concurrent real-time system S of n
timed automata (n>0) with process identifiers (also called indices)
{1,2,…,n}, Ai = (Mi, mi

0, Ci, Di, χi, Ei, τi, ρi), a state-graph G=(q,Q,T) is a
graph representation of a state-space, such that q∈V, is a starting node of the
state-graph, Q includes all the nodes in the state-graph, where each node
represents a region (Definition 4) of the state-space and is semantically a

8 PAO-ANN HSIUNG and FARN WANG

collection of states satisfying some conditions in B(∪{i=1}

n Ci,∪{i=1}
n Di), and

T includes all the arcs in the state-graph, where each arc represents a
possible transition of the system.

Definition: Regions A region is a collection of states such that: (1) they
have the same mode-vector label (µ), which gives the mode names that each
process timed automata is in, (2) they satisfy the same timing constraint in
the form of a zone (ζ), which is a Difference-Bound Matrix (DBM) [1], and
(3) they have the same set of literals (L), representing the discrete variables’
valuation. Thus, a region can be uniquely represented by a triple (µ, ζ, L).

A manipulator checks the characteristics of each region in a state-graph,
performs some comparisons between region characteristics or regions
themselves, merges identical regions/transitions, removes redundant
regions/transitions, etc. Three types of manipulators are supported: merging
of state-graphs, reduction techniques, and model-checking algorithms.

4.1 State-Graph Merging

This manipulator called merge_graph() is not a reduction technique, but
a necessary construction technique for composing two state-graphs into a
single state-graph that represents the concurrent behaviors of the two
components. In SGM, concurrency is modeled using interleaving semantics,
that is, the execution of two or more concurrent transitions of a system is
modeled as a set of interleaved computations. All possible interleavings of
the concurrent transitions must be considered for a complete analysis.
Although, reductions on interleavings are possible such as using the partial-
order reduction technique, yet merge_graph() is implemented as a pure
composition operator so that reduction effects can later be compared.

4.2 Timed Symmetry Reduction

This is an extension of the non-timed symmetry-based reduction
technique proposed recently by Emerson and Sistla [10], such that clocks
and their readings are also considered for symmetry reductions. We have
independently implemented our timed-symmetry reduction technique using a
normalization scheme in the form of a manipulator called
normalize_region(). This manipulator is an indispensable one when the
system is a set of concurrent symmetric processes.

Our implementation of the timed-symmetry reduction technique adopts a
sorting procedure on the process indices by considering all the data-
structures of a region: mode-vectors, zones, and literal sets. After sorting,
each region can be represented by a normalized form, that is mode-vectors,

User-Friendly Verification 9

zones, and literal sets are all normalized. If an existing region is itself in the
normal form, then it is used for representing all regions with the same
normal form. If no such normal form region exists, then a new normal region
is created. In this way, the manipulator reduces the number of regions.
Transitions will be duplicated when regions with the same normal form are
merged into a single region, thus further reduction is possible by considering
the redundancy in transitions (see subsection 4.7). Finally, after all regions
and transitions are reduced, we have a unique representation for each region.

4.3 Clock Shielding

This manipulator was individually devised and implemented in SGM by
the authors, but there is already published literature on clock activity [8],
which is semantically the same as that implemented in our manipulator.
Though their semantics is the same as ours, yet we adopt a different strategy
in detecting inactive clocks (clocks that do not affect future evolution of a
system are called inactive in [8]). We call them shielded clocks instead,
because the clocks themselves are not inactive, they progress like all other
clocks, but their readings are not useful currently so we instead shield them
from external observation. The method presented in [8] was a fix-point
iteration strategy where the set of inactive clocks is obtained after a few
iterations. Our method is by tracing all the paths in a state-graph starting
from the region under consideration. Briefly, the manipulator works as
follows: if a clock is not in the TCTL specification and if it is never read
before it is reset, or will never ever be read again, then the clock can be
shielded. As demonstrated by Daws and Yovine, this is a useful reduction
technique. Our implementation and experimental results using SGM further
show how this technique works in collaboration with other reduction
techniques implemented as manipulators.

4.4 Variable Shielding

Applying the same concept of clock shielding to the discrete variables,
we have constructed a new manipulator called shield_variable(). A discrete
variable is said to be shieldable in a mode if it does not occur in a given
TCTL specification and along all possible out-going paths starting from that
mode either its value will never be read again or it will be assigned a new
value before being read. This indicates the value of a shieldable discrete
variable in a mode has no effect on the global behavior of a system.

By shielding some variables in the modes of a state-graph, some modes
become identical in all respects and can thus be identified into a single mode.

10 PAO-ANN HSIUNG and FARN WANG

Resulting multiple transitions can be reduced using Sibling Transition
Multiplicity Reduction technique as described later in this section.

4.5 Read-Write Analysis

This is a new reduction technique that reduces the state-graph through an
analysis of the discrete variable values as they are changed during transitions.
Recall that each region is associated with a literal set (Definition 4). A literal
in the set is basically of the form (v ≠ k), where v is a global discrete variable
and k is any integer value. By analyzing all the possible values that a process
automaton writes to, or does not write to a global discrete variable, this
manipulator, called read_write(), computes the literal set of each region.
The literal set represents the values that each global discrete variable does
not possibly have in a region. Through such an analysis and literal sets
formulation, transitions that have triggering conditions conflicting with the
literal sets will never be triggerable and can thus be eliminated from further
consideration. Lemma 1 explains the reduction technique implemented in
read_write().

Suppose we have an intermediate state-graph composed from state-
graphs for processes with indices in set H. For a given global variable y, we
let D{H:y} be the set of values written to y by processes with identifiers in H
but NOT by processes without identifiers in H.
LEMMA 1 Suppose we are given a variable y and a finite run segment
(νh,th)(ν{h+1},t{h+1})…(νk,tk) such that for all i, h ≤ i < k, νi goes to ν{i+1}
without making assignment to y on a transition from a process with identifier
in H.

 If we enter state νh with an assignment y:=a;, then for all h ≤ i < k, tI

≤ t ≤ t{i+1}, νi+t ⊨ ∧bε(D{H:y}-{a})y≠b.
 If we enter state νh without an assignment to y but with a triggering

condition y=a, then for all h≤i<k, ti≤t≤t{i+1}, νi+t ⊨ ∧bε(D{H:y}-{a})y≠b.
 If we enter state νh without an assignment to y but with a triggering

condition y≠a with a∈D{H:y}, then for all h ≤ i < k, ti ≤ t ≤ t{i+1}, νi+t
⊨ y≠a.

Proof: Since the values in D{H:y} are not going to be written to y by other
processes with identifiers not in H, and we have the full knowledge that
processes with identifiers in H will neither write values in D{H:y} to y along
the segment, thus the lemma holds.

4.6 Bypass Internal Transition

During compositional verification, an intermediate state-graph represents
the concurrent behavior of k processes, 1 ≤ k ≤ n. These k processes are

User-Friendly Verification 11

called internal, while the rest are called external. Some behavior of internal
processes in a state-graph such as the occurrence of a transition might not be
observable by external processes. Such behaviors do not affect the global
evolution of a system. Bypass Internal Transition (BIT) is a reduction
manipulator that detects the occurrence of a transition in an intermediate
state-graph, that is not observable by external processes. BIT detects internal
behavior by checking (1) if the invariance condition of a node v implies that
of a successor node v', where (v, v') is a transition under consideration, (2) if
τ(v, v') is implied by the invariance condition of v, (3) if (v, v') only accesses
variables not accessed by external processes, (4) if (v, v') does not reset any
clocks, and (5) v' is not related to a given TCTL specification. Once such a
transition is detected, BIT bypasses the transition by eliminating (v, v') and
by adding new transitions between v and the successor nodes of v'.

BIT can achieve reduction of state-graph sizes because if a transition (v,
v') is bypassed, it may happen that v' becomes unreachable from the initial
node of a state-graph. The BIT manipulator will be illustrated in the Ring
Network example of Section 5.

4.7 Sibling Transition Multiplicity Reduction

Reduction techniques such as symmetry reduction, clock shielding, etc.
often results in more than one transition between a pair of nodes in a state-
graph. Out of the identical transitions between a pair of nodes, only one need
be left in the state-graph. But, there is still some redundancy left in the
transitions. Sibling Transition Multiplicity Reduction (STMR) is a reduction
manipulator that detects such redundancy by checking if two transitions are
corresponding transitions of two similar processes and their common source
node is symmetric with respect to the two process indices. On detecting such
transitions only one is left in the state-graph by STMR. This is because when
a computation of a concurrent system reaches the source node of the
corresponding transitions, the system cannot distinguish between the two
processes.

Applying STMR after each of the other manipulators helps reduce state-
graph sizes to a large extent because the reductions are accumulated through
the sequence of manipulator applications.

5. APPLICATION EXAMPLES

Several academic as well as industrial examples were verified using
SGM. The three application examples presented here include: (1) Fischer's

12 PAO-ANN HSIUNG and FARN WANG

timed mutual exclusion protocol (FMEP) [13], (2) Rules of graphical user
interface for a simple calculator, and (3) ring network token passing.

5.1 Fischer's Timed Mutual Exclusion Protocol

This example was used for illustration throughout the article. The timed
automaton for the ith process was shown in Fig. 1 and system description
using VPL were described in subsection 3.1. As shown in Table 1, after
experimenting with five different sequences of the manipulators in SGM we
notice that for Fischer's mutual exclusion protocol [13], although both the
sequences (D) and (E) have the same final effect, that is, they reduce the
intermediate state-graphs to the same size, yet the decrease rate is not the
same. The first sequence decreases the state-graph sizes more quickly than
the second sequence. Further, comparing the time taken by the two
sequences for state-graph reductions, we see it is also the first sequence that
uses a shorter time. Thus, we conclude the first sequence is a better
manipulation of the state-graphs.

Table 1. Fischer's Mutual Exclusion Protocol (11 processes)
#Modes

#Transitions
Construction Time (sec)

n 2 3 4 5 6 7 8 9 10 11
A 70

160
0.06

1239
4013

3

28593
120850

-

O/M O/M O/M O/M O/M O/M O/M

B 31
70

0.07

182
578

1

1024
4149

13

5804
28451

-

O/M O/M O/M O/M O/M O/M

C 36
80

0.08

224
743
3.3

1270
6357
186

O/M O/M O/M O/M O/M O/M O/M

D 16
35

0.07

39
109
0.6

76
247

3

130
472

10.7

204
810
35

301
1290
108

424
1944
276

576
2822

-

760
3937

-

219
1063

-
E 16

35
0.08

39
109
0.9

76
247
4.7

130
472
18

204
810
61

301
1290
212

424
1944
487

576
3400

-

760
4786

-

219
1174

-
A: {mg, rw}, B: {mg, rw, sc}, C: {mg, rw, nr}, D: {mg, rw, sc, nr}, E: {mg, rw, nr, sc}, O/M: Out of
Memory, mg = merge_graph(), rw = read_write(), sc = shield_clock(), nr = normalize_region()

5.2 Rules of graphical user interface for a calculator

This is a real project example from the Institute of Information Science,
Academia Sinica, Taiwan. The project goal was to develop a generator of

User-Friendly Verification 13

graphical user interfaces (GUI). The example considered here is a GUI for a
simple calculator. The generator created a set of condition/action rules
governing the behavior of a calculator GUI. Due to the large number of rules,
it was difficult to verify if a resulting GUI behaved in the same way as a real
calculator. It was also difficult to comprehend how large the state space
would be and how the state space could be reduced. Thus, SGM came handy
in such a situation. We collaborated with the project members to verify the
GUI rules created by their generator.

The set of rules was transformed into a corresponding set of timed
automata and input to SGM. Each rule was modeled by a single timed
automaton with one mode and one or more looping transitions. The rule
condition was mapped to a triggering condition of the transitions. The action
part was mapped to a set of transition assignment statements. The set of
automata obtained from the rules is shown in Fig. 3.

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = 1 | … | click = 9
value = INIT | value = INPUT
value := INPUT
caption := NON_ZERO

click = 0
value = INIT |
value = INPUT
value := INPUT

R1

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = 0 | … | click = 9
value = ADD | value = SUB |
value = MUL | value = DIV
value := INPUT caption := ZERO
R2

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = CE
value := INIT
op := INIT
caption := ZERO
R3

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = ADD ∧ value = INPUT
caption := ZERO
op := ADD

R4

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = SUB ∧ value = INPUT
caption := ZERO
op := SUB

R5

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = MUL ∧ value = INPUT
caption := ZERO
op := MUL

R6

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = DIV ∧ value = INPUT
caption := ZERO
op := DIV

R7

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = ADD
value := ADD
op := INIT

R8

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = SUB
value := SUB
op := INIT

R9

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = MUL
value := MUL
op := INIT

R10

Idle

value = INIT ∧ op = INIT ∧ caption = 0

click = EQ ∧ op = DIV ∧
caption = NON_ZERO
value := DIV
op := INIT

R11

click = EQ ∧ op = DIV ∧
caption = ZERO
value := ERROR
op := INIT

Figure 3. Calculator GUI Example

14 PAO-ANN HSIUNG and FARN WANG

As shown in Table 2, on applying the manipulators read_write() and
shield_variables() after each merge(), we found a significant reduction in
state-graph sizes. The reduction was as much as 73.6% for transitions and
24.7% for modes.

Table 2. Rules of Calculator GUI
#Modes

#Transitions

n 2 3 4 5 6 7 8 9 10 11

Time
(sec)

A 11
660

11
671

22
1364

33
2079

44
2816

55
3575

69
4554

83
5561

97
6596

90
1229

12.9

B 11
650

11
561

21
1091

31
1641

41
2211

51
2801

61
2711

71
2421

81
1931

90
1229

27.5

C 10
590

10
510

10
519

19
1005

28
1509

37
2031

55
2444

64
2182

73
1740

83
1133

32.6

A:{mg},B:{mg,rw},C:{mg,rw,sv}, mg=merge_graph(),rw=read_write(),sv=shield_variables()

5.3 Ring Network

This example illustrates how BIT reduces state-graphs. In Fig. 11, we
have a ring network consisting of three processes {p0, p1, p2} and three
tokens {t0, t1, t2}. Each process enters a critical section only when its token is
true. Initially, only process p0 has its token t0 set as true, thus p0 enters the
critical section. After p0 leaves the critical section, it sets t0 to false and t1 to
true, thus allowing process p1 to enter the critical section. Likewise,
processes p1 and p2 behave in a similar manner. We observe that token t0 is
accessed only by p0 and p2 and not by p1. Similarly, token t1 is accessed only
by p1 and p0, and t2 by only p2 and p1. When we construct an intermediate
state-space representation for processes p0 and p2, token t0 becomes internal.
The action of reading t1 along transition (Idle, Critical-Section) of process p0
becomes an internal action in the intermediate state-space representation of
p0 and p2. This action is not observable by external process p1.

Idle

Critical
Section

xi=0 ∧ t0=1 ∧ tj=0, 0 < j < n

Pi

xi = 1 ∧
 ti = 1

xi := 0 ∧
ti := 0
t(i+1)%n := 1

Figure 4. Ring Network

User-Friendly Verification 15

From Table 6, we can observe that the BIT manipulator in sequence (B)
reduces the intermediate state-graph sizes and achieves a greater scalability
such that 7 processes in a ring network can be verified as compared to that of
only 6 processes without applying BIT. Sequence (C) can achieve a greater
reduction but at the cost of time.

Table 3. Ring Network
#Modes / #Transitions

n 2 3 4 5 6 7
Total time
(seconds)

A 32/64 221/663 1364/5450 7842/38460 O/M - N/A
B 14/28 63/202 302/1440 1508/9600 7567/61220 18/18 125
C 12/26 51/1840 244/1355 1254/9433 6574/63974 18/18 1270

A:{mg},B:{mg,rw,bit},C:{mg,rw,bit,sv}, mg=merge_graph(), rw=read_write(),
bit=bypass_internal_transition(), sv=shield_variables()

6. CONCLUSION

We have successfully developed a user-friendly verification environment
as a state-graph manipulation tool called State-Graph Manipulators (SGM)
for the specification and verification of real-time systems which are modeled
as timed automata and model-checked against TCTL specifications. We
have also proposed four new state-graph reduction techniques: Variable-
Hiding, Read-Write, BIT, and STMR. SGM allows system designers to
experiment with different sequences of manipulators that best fit a particular
verification task at hand. At the same time, SGM allows verification
researchers to experiment with how a new reduction technique developed by
him/her would collaborate with other existing techniques. We expect that
SGM would be a useful tool to both the verification expert as well as the
verification layman (one who just wants to see how much his/her verification
task could be best tuned for efficiency and scalability).

Other existing reduction techniques will be gradually implemented into
SGM. Further, new reduction techniques and their interaction with existing
techniques will be investigated using SGM

Acknowledgments

We acknowledge the help provided by Mr. Ruey-Cheng Chen and Mr.
Chao-Chi Chang of National Taiwan University for the implementation of
the SGM Graphical User Interface. We also acknowledge Prof. Yue-Sun
Kuo for providing us the Calculator GUI rules example.

16 PAO-ANN HSIUNG and FARN WANG

References

[1] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi, “An implementation
of three algorithms for timing verification based on automata emptiness,” In Proc. IEEE
Intl Conf Real-Time Systems Symposium, 1992.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, and D. Dill, “Modeling checking for real-time
systems,” In Proc IEEE Logics in Computer Science, 1990.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi, “Minimization of
timed transition systems,” In Proc Intl Conf CONCUR'92, LNCS, volume 630, pages 340-
354, August 1992.

[4] R. Alur and D. Dill, “Automata for modeling real-time systems,” Theoretical Computer
Science, 126(2):183-236, April 1994.

[5] J. Bengtsson, F. Larsen, K.Larsson, P. Petterson, Y. Wang, and C. Weise, “New
generation of UPPAAL,” In Procs of the Intl Workshop on Software Tools for Technology
Transfer (STTT'98), July 1998.

[6] A. Cimatti, F. Clarke, E Giunchiglia, and M. Roveri, “NuSmv: a reimplementation of
smv,” In Procs of the Intl Workshop on Software Tools for Technology Transfer
(STTT'98), July 1998.

[7] C. Daws, A. Olivers, S. Tripakis, and S. Yovine, “The tools KRONOS,” In Hybrid System
III,” Lecture Notes in Computer Science, volume 1066, pages 208-219, 1996.

[8] C. Daws and S. Yovine, “Reducing the number of clock variables of timed automata,” In
Proc Real-Time Systems Symposium, pages 73-81, December 1996.

[9] A. J. Dill, D. L.Drexler, A. J. Hu, and C. H. Yang, “Protocol verification as a hardware
design aid,” In Procs of the IEEE Intl Conf on Computer Design: VLSI in Computers and
Processors, 1992.

[10] E.A. Emerson and A.P. Sistla, “Utilizing symmetry when model-checking under fairness
assumptions: An automata-theoretic approach,” ACM Trans on Programming Languages
and Systems, 19(4):617-638, July 1997.

[11] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking for
real-time systems,” In Proc IEEE Logics in Computer Science, 1992.

[12] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.
[13] L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans. on Computer Systems,

5(1):1-11, February 1987.
[14] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publisher, 1993.
[15] D.A. Peled, “All from one, one for all: On model checking using representatives,” In

Proc of the 5th Intl Conf on Computer-Aided Verification, Lecture Notes in Computer
Science, volume 697, pages 409-423, 1993.

[16] S. Tripakis and S. Yovine, “Analysis of timed systems based on time-abstracting
bisimulations,” In CAV'96, Lecture Notes in Computer Science, volume 1102, 1996.

[17] F. Wang and P.-A. Hsiung, “Automatic verification on the large,” In Proc 3rd IEEE
High-Assurance Systems Engineering Symposium (HASE'98), November 1998.

