
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2005; 35:899–921
Published online 14 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.655

SESAG: an object-oriented
application framework for
real-time systems

Pao-Ann Hsiung1,∗,†, Trong-Yen Lee2, Jih-Ming Fu3 and Win-Bin See4

1Department of Computer Science and Information Engineering, National Chung Cheng University,
160 San-Hsing, Min-Hsiung, Chiayi, Taiwan–621, Republic of China
2National Taipei University of Technology, Taipei, Taiwan, Republic of China
3Cheng-Shiou University, Kaohsiung, Taiwan, Republic of China
4Aerospace Industrial Development Corporation, Taichung, Taiwan, Republic of China

SUMMARY

Advancements in hardware and software technologies have made possible the design of real-time systems
and applications where stringent timing constraints are imposed on critical tasks. The design of such
systems is more complex than that of temporally unrestricted systems because system correctness depends
on the satisfaction of functional as well as temporal requirements. To aid users in correctly and efficiently
designing systems, object-oriented frameworks provide a useful environment for significant reuse and
reduction in design effort. In contrast to other application domains, there has been relatively little work
on an application framework for the design of real-time systems. Facing the growing need for real-time
applications, we propose a novel application framework called SESAG, which consists of five components,
namely Specifier, Extractor, Scheduler, Allocator, and Generator. Within SESAG, several design patterns are
proposed and used for the development of real-time applications. A new evaluation metric called relative
design effort is proposed for evaluating SESAG. Experiences in using SESAG show a significant increase in
design productivity through design reuse and a significant decrease in design time and effort. Two complex
application examples have been developed using SESAG and evaluated using the new evaluation metric.
The examples demonstrate relative design efforts of at most 18% of the design efforts required by
conventional methods. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: object-oriented application framework design; real-time application development; task
scheduling; resource allocation; code generation; framework evaluation; design patterns

∗Correspondence to: Pao-Ann Hsiung, Department of Computer Science and Information Engineering, National Chung Cheng
University, 160, San-Hsing, Min-Hsiung, Chiayi, Taiwan–621, Republic of China.
†E-mail: hpa@computer.org

Contract/grant sponsor: National Science Council, Taiwan; contract/grant numbers: NSC91-2213-E-194-008, NSC92-2213-E-
194-003, NSC92-2218-E-194-009 and NSC93-2213-E-194-002

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 16 March 2001

Revised 30 September 2004
Accepted 30 September 2004

900 P.-A. HSIUNG ET AL.

1. INTRODUCTION

Real-time systems such as telecommunications, avionics, multimedia, robotics, and factory automation
impose stringent timing constraints on tasks executions. Violation of any temporal constraint results in
an incorrect system. To meet such temporal constraints, task scheduling and resource allocation have
become crucial phases of all real-time systems design. It is here that object-oriented (OO) application
frameworks can be taken advantage of because common design phases such as scheduling can be
implemented as reusable classes and components. Thus, allowing application designers to concentrate
on application tasks and not on reimplementing the wheel. Corresponding to different specification
styles and scheduling policies, we need different design patterns. Combining design patterns and
components, a novel OO application framework called SESAG is proposed for the design of real-time
systems. SESAG helps users to efficiently design applications by minimizing design time and effort
spent on routine tasks such as task scheduling, resource allocation, and code generation. Applying
SESAG to two complex application examples shows that the relative design effort is only 18% of that
without using SESAG.

A real-time system is generally specified as a collection of tasks which might share resources.
The tasks are independent and periodic. Execution time, period, deadline, type of priority and resource
requirements are specified for each task. Hard real-time systems do not allow the violation of any timing
constraint, that is, no task can violate its deadline. Soft real-time systems strive to minimize deadline
violations. To statically guarantee satisfaction of all timing constraints, the tasks must be scheduled
using either priority-based scheduling algorithms such as rate-monotonic (RM) [1], earliest-deadline
first (EDF) [1], mixed-priority (MP) [1], pin-wheel or using time-based scheduling algorithms such as
cyclic scheduling or shared-based scheduling algorithms.

OO technology employs encapsulation and inheritance as basic reuse techniques. Objects are
identified in a system, encapsulated, and positioned in a hierarchy of classes, by taking into account
their inter-relationships. Class libraries are thus the basic structures for reusing objects. System
designers found such libraries to be limited in their reuse capability because they strived to cater
for a more general purpose reuse. Recently, several application-domain-specific techniques have been
proposed, which significantly improve the degree of reuse. As introduced in the rest of this section,
design patterns, software architectures, software components, and OO application frameworks are
common reuse techniques, ordered ascendingly by their degrees of reuse.

Design pattern is a problem-solution pair that captures successful development strategy. Patterns aid
in reusing successful design strategies by giving a more abstract view to concrete design strategies.
For example, some core design patterns are Adaptor, Proxy, Facade, and Bridge [2].

In software architecture technology, there are four types of reusable entities: (1) architectural style,
(2) architectural design, (3) architectural framework, and (4) architectural platform. For example, pipes
and filters, functional decomposition, telecommunication infrastructure, and CORBA are examples of
the four reuse entities in software architecture, respectively.

Software components are self-contained instances of abstract data types that can be integrated into
complete applications. Examples include VBX Controls and CORBA Object Services. A component
acts as a black-box allowing designers to reuse it through knowledge of its interface only.

An OO application framework (OOAF) is a reusable, ‘semi-complete’ application that can be
specialized to produce custom applications [3]. OOAF can support application–domain specific reuses,
for example in the domains of user interfaces or real-time avionics. Examples include MacApp,

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 901

ET++, Interviews, ACE, Microsoft’s MFC and DCOM, Javasoft’s RMI, and implementation of
OMG’s CORBA. Frameworks can be further distinguished by their scope into system infrastructure
frameworks (used internally within a software organization), middleware integration frameworks (used
to integrate distributed applications and components), and enterprise application frameworks (used in
application-specific domains) [4].

Since OOAFs provide the highest degree of reuse, we propose a new OOAF, called SESAG, for
developing real-time applications. Common tedious tasks encountered by a real-time application
developer during the creation of applications have been incorporated into SESAG. In this way,
a developer can devote more time and effort to the actual application tasks, instead of real-time
system peculiarities. SESAG is modularized into five replaceable components that are used at different
stages of generic application development. Currently, the most common application features have
been implemented in SESAG such as task extraction, task scheduling, resource allocation, and
code generation. More specific features such as network delay, network protocols, and on-line task
scheduling are not currently in the scope of SESAG. SESAG ensures that the applications created by a
user of SESAG satisfy all user-specified real-time constraints through the application of theoretically-
proven scheduling algorithms. As far as other system performance characteristics are concerned,
SESAG currently does not provide any sort of optimization, just leaving them to either the application
developer or the environment designer. However, features such as context switch time and rate, external
events handling, I/O timing, mode changes, transient overloading, and setup time will be incorporated
into SESAG in the future.

The above short description sets SESAG in a generic scope such that most real-time applications
can be developed using SESAG, but with varying efforts. Simplicity has been a major goal in SESAG’s
development, while at the same time providing extension flexibility so that different applications can be
designed. The target systems designed by SESAG are limited to real-time systems that have statically
schedulable periodic tasks. Safety analysis and verification are also not within the scope of SESAG,
only scheduling feasibility is considered.

The rest of this article is organized as follows. Section 2 gives some previous and related work
on applying OO technology to real-time system design. Section 3 describes the five components of
SESAG using a components-patterns view. Section 4 describes all the classes provided in SESAG,
thus giving a class view of SESAG. Section 5 describes the implementation of SESAG and proposes
an evaluation metric for frameworks such as SESAG. Section 6 illustrates how a designer may
use SESAG to develop a real-time application. Section 7 presents the experimental results of
two complex examples developed using SESAG. Section 8 gives the final conclusion with some
future work.

2. PREVIOUS WORK

OO technology has been used in the development of real-time systems for quite some time. Research
literatures have shown how the concept of objects is useful in real-time systems. OO real-time system
models such as MO2 [5], evaluation taxonomy such as in [6], OO real-time language design [7,8],
concurrency exploitation in OO real-time systems using metrics-driven approach [9], checking time
constraints [10], and verification of function and performance for such systems [11] are some of the
recent work on applying OO technology to real-time system design.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

902 P.-A. HSIUNG ET AL.

Though OO technology has been applied to the design of real-time systems in several proposed
works, as yet there has been little work on the development of an OOAF for real-time system
application design. An OO real-time system framework (OORTSF) [12–14] is a simple framework
showing the classes used in the development of real-time applications. No design patterns were
proposed specific to real-time system application design. This results in a difficult comprehension of
the collaboration among the classes. Exactly how a real-time application is developed using OORTSF
is not very clear from the work. It is also unclear how the application code is generated from OORTSF,
how the resources are allocated, and how the tasks are scheduled. Further, the flexibility of specifying
real-time objects, the ease of using OORTSF, the benefits of applying OORTSF, and other issues related
to OOAFs are not described in the work.

According to the knowledge of the author, besides OORTSF, there is no other work on enterprise
application frameworks devoted to general real-time system application development. As far as
middleware integration frameworks are concerned, the TAO real-time object request broker has been
proposed by Schmidt [15].

3. SESAG COMPONENTS

SESAG derives the name from its five constituent components namely specifier, extractor, scheduler,
allocator, and generator, ordered by the sequence in which they are used. For ease of comprehension,
we present two different views of the framework: a components-patterns view and a class view.
The components-patterns view of the framework allows a designer to better understand how exactly
SESAG must be used and the class view allows him/her to grasp what exactly are the classes to be used.
Our presentation is thus based on two complementary levels of description: an abstract components-
patterns view (presented in this section) and a concrete class view (presented in Section 4).

Figure 1 illustrates the components-patterns view of SESAG using Unified Modeling Language
(UML) notations [16]. An application designer uses the five components of SESAG as follows.
Objects specific to a real-time application are specified by a designer using Specifier. Real-time
constraints are specified in two ways: (1) embedded within user-defined application specific objects,
or (2) independently using the Timed Object Constraint Language (OCL). In the former case, Extractor
is used for extracting constraints. Extractor is also used to extract tasks from the given domain objects.
Scheduler schedules the tasks using some scheduling algorithm and Allocator allocates resources
among the tasks that are running concurrently. Finally, Generator is used to generate the application
code based on the decisions made in the other components.

3.1. Specifier

Specifier is the main interface component between a user and SESAG. Using Specifier, a user of
SESAG defines objects specific to an application under design, which are called application domain
objects (ADOs). Three design patterns are used in this component: objects-with-constraints, objects-
and-constraints, and tasks-with-constraints. We call them design patterns because often the real-world
objects are not specified as tasks, whereas a real-time system application is generally described in terms
of a set of canonical tasks. This semantic gap has become a design issue [10] and topic of research [8]
for the OO model of real-time systems. The three design patterns correspond, respectively, to how

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 903

�����

��������	 �
�	���
	 ��������	 ���
���
	 ����	��
	

��������
�����
���	
�
��

�
��
���
�����
���	
�
��

����	��

�
��
�
�����
���

����	�� �
�����
���

�����
�����	�
�

�
�����
���
�����	�
�

�	�����
��
�
�
	�
����	�
�

�	������
�������
�

����

�
�
�
	

����
���

!����
��
"
���

���
��

�
��

���
��	�
#��
	��
�

���
��	�

�
���
	�
��
�
���
�

 �
�

��
����

�	������

�
��

���
��	�
�
��

����
�����

����	�
�
��

Figure 1. Components-patterns view of SESAG.

SESAG provides a designer with the flexibility of choosing: (1) to specify application domain objects
with constraints coupled to the objects; (2) to specify application domain objects with constraints
as a separate entity; (3) to specify real-time tasks with constraints. The first two design patterns do
not explicitly specify what the tasks are, which are instead automatically extracted by the Extractor
component in SESAG, as described Section 3.2.

For the objects-with-constraints pattern, there are two types of method in an object namely event-
triggered and time-triggered. Event-triggered methods are invoked by other methods or by the main
function. Once started, time-triggered methods are invoked periodically, until stopped. When a method
has timing constraints associated with it, it is called a time-triggered method, otherwise it is event-
triggered. Timing constraints consist of the specification of at least period and deadline. Other timing
constraints such as arrival time, execution time, stop time may also be specified. There are two ways in
which timing constraints may be specified with a time-triggered method, including (1) annotations in
a programming language such as C++ [10], and (2) language extensions such as a real-time extension
of C++ called RTC++ [7], ARTS/C and ARTS/C++ used in the ARTS real-time distributed operating
system kernel [17], real-time Euclid [18], real-time Mentat [19], or FLEX [20]. SESAG supports the
first method namely C++ with annotations. An annotation example is shown in Figure 2(a), where the
class xyz has two real-time tasks represented by time-triggered methods t1 and t2 with periods 5
and 3, deadlines 10 and 12, respectively. It also has one event-triggered method t3 that is invoked by
both t1 and t2.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

904 P.-A. HSIUNG ET AL.

class xyz {
void t1() {
// p = 5; d = 10;
... call t3; ...}
void t2() {
// p = 3; d = 12;
... call t3; ...}
void t3() { ... }
...}

(a)

class xyz {
void t1() {
... call t3; ...}
void t2() {
... call t3; ...}
void t3() { ... }
...}
xyz.t1.p = 5; xyz.t1.d = 10;
xyz.t2.p = 3; xyz.t2.d = 12;

(b)

Task-Table
task p d r

t1 5 10 〈1, 2〉
t2 3 12 〈2, 0〉

t1() t2()

t3()

Call-Graph
(c)

Figure 2. An illustration example using the three design patterns in specifier: (a) objects-with-constraints;
(b) objects-and-constraints; and (c) tasks-with-constraints.

For the objects-and-constraints pattern, constraints are specified using the OCL that was proposed
along with UML. An example is shown in Figure 2(b) that is equivalent to the one in Figure 2(a).

For the tasks-with-constraints pattern, a set of real-time tasks are specified along with timing
constraints and resource requirements by instantiating two classes: Task-Table and Call-Graph,
where the former records information about each task and the latter record the invoke relationships
among the tasks. An example is shown in Figure 2(c) that is equivalent to the one in Figure 2(a).
Here, the resource usages are explicitly specified as r = 〈r1, r2〉, where r1, r2 ∈ Q≥0 are the amount
of resources of type 1 and type 2 used by a task and Q≥0 is the set of non-negative rational numbers.

3.2. Extractor

The Extractor component transforms the specification provided by a designer within Specifier into a
uniform intermediate format suitable for schedulability analysis. The intermediate format is necessary
since Specifier allows a designer to have several choices of specifying his/her application. The main
job of Extractor is to extract important information from the objects and formulate them into two parts:
a Task-Table object and a Call-Graph object.

For users using the objects-with-constraints pattern for specification in an application domain object,
there may be one or more time-triggered methods, each of which represents a real-time task. The time
constraints associated with each time-triggered method are automatically extracted by Extractor.
For users using the objects-and-constraints pattern for specification, each method that has associated
OCL constraints is extracted as a real-time task with time constraints. All task related information are
then stored in a Task-Table object for reference by other SESAG components. Each task record in
a Task-Table object consists of the task index, the associated method name, its execution time, period,
deadline, type of priority (fixed or dynamic), and its resource requirements. The resource requirement
is specified as a real-numbered vector, where each element corresponds to some system resources

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 905

such as memory, processor utilization, . . . , and the real-number corresponds to the amount of each
resource required by the particular task. System resources are specified by a designer within Specifier
by defining passive application domain objects that can only be accessed. Figure 2(c) shows an example
of a Task-Table that can be automatically instantiated from the user requirements in Figure 2(a)
or (b).

Extractor also generates a Call-Graph object, which is a directed graph G = (V ,E), nodes in V

represent tasks and arcs in E represent the call relationships between two tasks. Each time-triggered
method or method with associated OCL constraints is traversed to find all the other methods that are
invoked by it. Arcs are then generated from the caller to the callee. For example, method t3 is invoked
by both methods t1 and t2 in Figure 2(c). As shown in the following sections, the Call-Graph is
useful for schedulability test, resource allocation, and conflict resolution.

3.3. Scheduler

The Call-Graph and the Task-Table objects, either generated by Extractor or instantiated by a
user in Specifier, are scheduled into a feasible application by Scheduler. There are many priority-based
real-time scheduling policies such as rate-monotonic, earliest-deadline first, and mixed priority [1]. It is
sometimes evident from the application as to which scheduling policy should be applied. However,
in most applications, the prime concern is the satisfaction of the timing constraints, irrespective of
which scheduling algorithm is applied. Scheduler includes a design pattern similar to the strategy
pattern [2] adapted to real-time systems. In this pattern, one and only one scheduling algorithm must be
chosen from the set of all scheduling algorithms for scheduling the tasks in the Call-Graph and the
Task-Table.

This component mainly consists of two parts: a policy selector and a schedule generator. A designer
can choose to assign a particular scheduling policy he deems fit or the designer can also choose to allow
SESAG to automatically determine the right choice. The choice is made by performing schedulability
tests with respect to each scheduling algorithm. One of the scheduling algorithms in the successful
cases is then selected as the automatic decision result. This selection can be arbitrary or based on
some criteria such as the shortest schedule length (i.e. the shortest scheduled time). Currently, SESAG
leaves this option to the designer. The schedule generator generates the actual start/end timing of each
task based on the schedule policy chosen and on the Call-Graph constraints such as precedence
relationships. Resources and their allocation are not considered here as they will be dealt with in
allocator.

The tasks recorded in a Task-Table are not independent because they have precedence
relationships among themselves as given by the corresponding Call-Graph, thus the set of tasks
that is concurrently ready to run is not static, but changes dynamically depending on which task is
scheduled to run at any given time. In the scheduling terminology, this means that the initial phase of
each task is constrained by the latest end-time of all of its predecessors in the Call-Graph. The tasks
are all assumed to be preemptive as required by the scheduling policies. In SESAG, static schedules
are generated by applying EDF or RM scheduling to each set of concurrently enabled task at any point
of time. When the deadlines are equal to corresponding periods of all tasks, the schedules generated by
SESAG using EDF and RM are identical. An EDF unschedulable task set is also RM unschedulable,
hence EDF is more powerful in terms of scheduling a given task set and of utilizing a microprocessor
processing time. However, it is easier to ensure that deadlines will be satisfied by RM than by EDF.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

906 P.-A. HSIUNG ET AL.

Due to priority-based scheduling, the well-known priority inversion problem exists. This problem
occurs when a higher-priority task is blocked from execution due to resources being held by a lower-
priority task. A middle priority which is not blocked can then run for a long time preventing both the
low- and high-priority tasks from running. To solve this problem, we adopt the priority inheritance
approach [21].

Consider the illustrative example given in Figure 2, suppose the execution times for tasks t1 and t2
are 2 and 1, respectively, and that they are concurrently enabled. Then, their processor utilization is 2

5
and 1

3 , respectively, which gives a total utilization of 11
15 = 0.733. Thus, by the schedulability constraint

given in [1], we can conclude because 0.733 < 0.83, where 0.83 is the upper bound for two tasks, the
system is schedulable using RM. The RM schedule for this example is thus 〈t2,t1〉.

3.4. Allocator

Resource allocation is handled by this component. The scheduled Call-Graph does not yet contain
any resource information. It is in this component that resources are allocated to each task based on its
resource requirements as recorded in the Task-Table and defined in Definition 1.

Definition 1 (Task resource requirement). Given a system with n resources, a task resource
requirement for a task t is defined as r(t) = 〈r1, r2, . . . , rn〉, where ri ∈ Q≥0 is the amount of the
ith resource required by task t and will be denoted in short as ri(t).

Allocator is composed of two modules: resource allocator and conflict eliminator. The former
allocates resources to each task and detects resource conflicts, which are then eliminated by the latter.

It may happen that certain tasks, scheduled to be simultaneously executing, conflict in their resource
requirements. For example, if the resource requirements of task A is 〈0, 1, 3〉 and that of task B is
〈3, 2, 1〉, suppose the system has only three of each resource type, then tasks A and B cannot be
simultaneously executed as they totally require four of the last type of resource while the system has
only three. In general, a resource conflict is defined formally as in Definition 2.

Definition 2 (Tasks with resource conflict). Given a set of m concurrently enabled tasks {t1, . . . , tm}
that use n system resources such that the amount of available ith resource is maxri ∈ Q≥0, the tasks
are said to be in conflict if there is some j th resource such that

∑
i rj (ti) > maxri .

Several conflict resolution methods can be used. For example, rescheduling of both tasks (as in the
message-passing CSMA/CD network protocol), or rescheduling of any one of the tasks. We adopt a
straightforward solution to resource conflicts in the same principle as priority inheritance. Suppose
a task is using some resource, then all other tasks that arrive later and need the same resource are
delayed and rescheduled. Conflicts in resource requirements of scheduled tasks are thus eliminated
and the resulting scheduled Call-Graph is a feasible one for code generation.

Take the illustration example from Figure 2 again. As described in Section 3.3, the scheduler
generated a schedule 〈t2,t1〉 for this example with the two tasks t2 and t1 having execution times
1 and 2. The schedule generator from the scheduler component generates the start and end times for
each task shown in Figure 3, marked by Original schedule. In this schedule, task t2 preempts task t1
at time 6 because t2 arrives at 6 and its priority by RM scheduling policy is higher than that of t1.
Now suppose there are two instances of the first type of resource in this system. As we see from the
task resource requirements in Figure 2, the two tasks totally need 3 instances of the first resource.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 907

0 1 2 3 4 5 6 7 8

t2 t1 t2 t1 t2

t2 arrives, but has
resource conflict with t1

t2 t1 t2 t1 t2 t1

Feasible schedule

Original schedule

conflict
resolution

Figure 3. Example of resource conflict and resolution.

Main OO

Program

Schedule Code Resource Code

Call Graph

User-given Object Code

Resource

Table

Task

Table

Figure 4. Code hierarchy in SESAG.

Thus, t2 cannot run by preempting t1 at time 6 because t1 has one of the first resource which is
needed by t2. Thus, there is a resource conflict here. By the conflict resolution mechanism in SESAG,
t1 is allowed to run to completion and t2 starts at time 7. This new schedule is a feasible one and is
shown as Feasible schedule in Figure 3.

3.5. Generator

Generator is responsible for producing OO code for a real-time application under development by a
designer using SESAG. The hierarchical structure of the generated code as shown in Figure 4 consists
of five parts: a main OO program, schedule code, resource allocation code, Call-Graph code, and
user-given application domain object code. The hierarchy is a calling hierarchy, that is, the main
OO program calls schedule code functions and the resource allocation code functions, which in turn
call the Call-Graph code methods, and finally the user-given object code is called for execution.
Two auxiliary codes used for reference are Resource-Table and Task-Table, which contain all
the information for system resources and tasks, respectively.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

908 P.-A. HSIUNG ET AL.

(1) INT MAIN()
{ // var declarations

(2) foreach schedule time point { // see Figure 3
(3) if (SETJMP(jmpbuf)==0) then SET ALARM(next time point);
(4) else continue;
(5) while (REQUEST RESOURCE(task)==NULL) ;
(6) CALL RESUME(task);
(7) RELEASE RESOURCE(task); // interrupts disabled during release
(8) WAIT(); } }

Algorithm 1. Pseudo code for the example.

The main OO program maintains a global clock which is used for recording progress in the
developed system or application. It also contains exception handlers for error recovery, fault handling,
and other mechanisms to handle exceptions such as constraint violations. The main program ensures
that the system is always in an acceptable state. This is achieved by calling the schedule code functions
and resource handling functions in the resource allocation code.

The schedule code is an implementation of the schedules of the tasks in the Call-Graph and after
all resource conflicts are eliminated. This code depends on the scheduling policy selected either by
the user or by SESAG. The schedule code consists of the actual time a task must start execution, is
preempted, is resumed, and is terminated. Everything is settled statically for optimal performance and
satisfaction of timing constraints in real-time systems.

Resource-related information are recorded in a Resource-Table object. Resource allocation
code is responsible for accepting resource allocation/deallocation requests, transmitting them to the
resource codes (or the actual physical resources in case of an embedded real-time system), handling
exceptional situations such as dynamic resource failure and recovery, and resource conflict handling.
Although resource conflicts among tasks were eliminated statically in the scheduled Call-Graph
(refer to the Allocator component of SESAG), conflicts may still arise in exceptional situations
when resources become faulty or when tasks violate timing constraints due to external environmental
disruptions.

The Call-Graph code is an implementation of the resource-allocated, scheduled Call-Graph
object. This code is required in spite of the calling scheme of tasks (method calls) being implicit in the
user-given domain object code, because scheduling information and resource requests are, respectively,
not given and not explicit in the object code. The object code is just the user-given code for all the
application domain objects.

The hierarchical structure of the code generated by SESAG has many advantages including easy
debugging, code modularization, and explicit interface with user-given code.

For our illustration example from Figure 2, which was scheduled and resource allocated in the
previous sections, a partial pseudo code is shown in Algorithm 1, where static preemptive schedules
are executed along with resource requests and releases.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 909

 SESAG

Application
Objects

Scheduling
Policy

Resource
Manager

Global
Clock

Domain
Objects Task-Table

Active
Objects

Passive
Objects

Call-Graph

Precedence
Constraints

Fixed
Priority

Scheduling

Dynamic
Priority

Scheduling

Rate
Monotonic

Earliest
Deadline

First

Mixed
Priority

Resources

Tasks

Fixed
Priority

Dynamic
Priority

With
Constraints

Without
Constraints

Shared Exclusive

Mixed
Priority

Scheduling

Resource
Monitor

Reusable

Exhaustible

Sharable Exclusive

Resource-
Table

Error
Handling

Mechanism

Sharable Exclusive

1+ 1 0+ 1

1 0+ 1

1+ 1+ 1
0+

isa

contains

Figure 5. Class view of SESAG.

4. SESAG CLASSES

After an overview of how SESAG generates an application by using the five constituent components,
we now describe the classes in SESAG that are used by a designer to specify an application. Figure 5
shows the hierarchy of classes provided by SESAG. The notation used is UML [16]. SESAG classes are
classified into three categories: application objects, scheduling policy, and resource manager. There is
also a Global-Clock class that is responsible for maintaining the global timing of a system under
design. A designer can instantiate any class in the hierarchy by filling in the data attributes and the
member function definitions or derive a new class from the given classes. When information is partially
entered, requests for more data values or function definitions will be made by SESAG after an overall
analysis.

4.1. Application specification

In SESAG, there are two ways to specify the objects in a real-time application. A designer can either
choose to define application domain objects that represent real-world entities used in an application,

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

910 P.-A. HSIUNG ET AL.

or to instantiate two given classes, Task-Table and Call-Graph, which provide a more abstract
but useful view of an application. When specification is made in the form of application domain objects,
the Extractor in SESAG (as introduced in Section 3.2) automatically instantiates the Task-Table and
Call-Graph classes.

The Task-Table class is an aggregation of one or more Task class(es), each of which consists
of data attributes such as the computation time of each instance of a task (called a job), the period of
execution, the deadline for a job (this is usually the same as its period, but could also be a multiple),
the phase (this is normally assigned values after scheduling and resource conflict elimination), and
the resource requirements (this is a vector specifying how much of each resource is required).
Task class also consists of member functions such as task-setup(), task-execution(), task-start(),
task-end(), request-resource(), and deadline-violation-handler().

The Call-Graph class is defined as a separate class so as to segregate the task objects from their
call relationships. This class mainly consists of data attributes such as precedence constraints (the
predecessors and the successors of each task) and delay constraints (the time delay between two tasks).
The member functions include context-switch(), context-delay(), and switch-error-handler().

Application domain objects are defined by a designer and are classified into two types: active and
passive. An active object accesses and changes the state of other objects, whereas a passive object is
one whose state is accessed and changed by other objects and who does not access or change the state
of other objects. For example, a system controller is an active object, whereas a database or memory
record is a passive one. This classification is useful for identifying system resources. Proper access of
system resources is critical to system correctness. An active object can be instantiated in two ways:
with and without constraints. In the case of without constraints, a designer must instantiate the Task-
Table class at the same time to specify the task constraints. Constraints can also be specified inside
the objects as method annotations in C++ [10]. A passive object can be shared or exclusive depending
of the characteristic of the resource being modeled.

4.2. Scheduling policy

Application is statically scheduled in SESAG for optimal performance, hence task schedules
are embedded within the generated application code. Scheduling-Policy, a SESAG class,
is responsible for providing the schedule code for the statically scheduled tasks. Three kinds
of priority-based scheduling policies are supported in SESAG, namely fixed, dynamic, and
mixed. For fixed priority-based scheduling, the popular rate-monotonic scheduling algorithm is
supported. For dynamic priority-based scheduling, the earliest deadline first scheduling algorithm
is supported. For mixed priority, the scheduling algorithm given in [1] is supported. The data attributes
of the Scheduling-Policy class include priority type, scheduling algorithm, and scheduling mode
(automatic or user-specified). Member functions include assign-task-start-time() and assign-task-end-
time().

4.3. Resource manager

Resources in a real-time system can be user-defined through the definition of new passive application
domain objects by a designer, as described in Section 3. Resources can also be standard ones
such as flash memory and communication interfaces which are represented as an explicit reusable

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 911

Resource class. All resources defined and instantiated by a designer are collected into a
Resource-Table class that contains all resource related information. Errors related to resource
problems such as resource conflicts and read/write failures are handled in SESAG by the instantiation of
one or more Error-Handler classes. A pair of classes Resource-Table and Error-Handler
is aggregated into a single Resource Monitor class.

Each Resource object has data attributes including use-type (exhaustible or reusable), share-type
(sharable or exclusive use), value (it may be a simple integer or a complex record), and status (currently
in use, free, or allocated). Member functions of a Resource object include grant-resource(), free-
resource(), read-value(), change-value(), and get-status(). The Error-Handler class mainly handles
errors due to resource conflicts such as when two or more tasks need the same resource but the amount
of that resource available is not enough for their requirements. This class has a method called conflict-
handler(), which resolves conflicts according to the resolution method described in Section 3.4.

4.4. Global clock

This special class maintains the system time. The temporal increment can be changed by a designer
as required. The initial value of Global-Clock is zero and it increments at a uniform rate.
The data attributes include value (the time of the system), initial value, breakpoint value, and final
value. Member functions include start-timer(), stop-timer(), reset-timer(), record-breakpoint-value(),
change-increment(), and read-value().

5. FRAMEWORK IMPLEMENTATION AND EVALUATION

SESAG is implemented in C, C++, and Java. It generates application code also in these three languages,
however, the Java code conforms to the real-time specification for Java. The previous two sections
described what each component of SESAG does and the patterns and classes that may be used by
an application designer. Before describing how one actually develops an application program using
SESAG, we describe in this section how SESAG is implemented by describing auxiliary programming
and class programming, thus co-relating the two views of SESAG described in Sections 3 and 4.

5.1. Auxiliary programming

SESAG was implemented in five parts, each corresponding to one of the five components.
Some classes are shared among the parts, while some were exclusively implemented. Besides the
implementation of user-level classes as described in Section 4, special-purpose functions such as graph
algorithms, decision schemes, and database managements are indispensable for the implementation
of a framework. Our experiences in the implementation of SESAG show that the following auxiliary
programming can be generalized.

1. Object interface: interactions among user-defined objects and framework objects require type-
checking, parameter transformation, constraints checking, and interface generation. All of these
are implemented as special-purpose functions.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

912 P.-A. HSIUNG ET AL.

2. Information extraction: information extraction from user-defined objects such as task extraction
and constraints extraction in SESAG require scanning of the object specification and human
domain-expert knowledge. All of these are also implemented as special-purpose functions.

3. High-level manipulation: high-level objects are often composed of a network of elementary
objects which form some kind of interconnection topology, for example, SESAG uses a Call-
Graph for a uniform intermediate format. Manipulation of such high-level objects requires
graph algorithms, such as graph traversal and shortest-path.

4. Database management: objects that rarely do anything actively are termed as passive objects.
Physically, these objects are resources or some form of databases. For example, in SESAG
we have Task-Table and Resource-Table. When such resources or databases become
large, we require database management procedures to ensure the most efficient handling which
is critical to real-time processing.

5. Design automation: design automation besides design reuse is another crucial issue in both
hardware and software. It is our experience that automation in frameworks often helps the user in
making complex decisions, thus saving considerable design time. By automation in frameworks,
we mean the framework uses some decision algorithms to decide upon an optimal or near-
optimal solution to some difficult problem at hand. For example, in SESAG the scheduling policy
needs to be decided before the tasks can be scheduled. This decision is complex in the sense it
is difficult for a human to accurately schedule several tasks using different algorithms. SESAG
uses a decision procedure as described in Section 3.3 to decide upon a good scheduling policy.

5.2. Framework evaluation

It is difficult to evaluate a framework since each application developed using the framework may
exhibit different characteristics pertaining to the specific domain. In our experiments using SESAG,
we found that though applications differ from each other, yet the complexities of the applications are
generally indicative of how much design effort can be saved using a framework instead of designing
from scratch or some simple libraries. Our experimental results indicate that the more complex an
application, the more design effort is saved through the use of a framework. This is intuitive because
a complex application requires greater effort to design and if much of the decision and house-keeping
tasks are carried out by a framework, then the design time can be reduced significantly.

The new evaluation metric we propose for OOAFs is called relative design effort (RDE) as defined
in the following.

Definition 3 (RDE). RDE is the sum of products of application complexity fraction and design time
fraction. The summation is over the team members involved in a project. Application complexity
fraction is the fraction of application domain objects and the total number of objects in the final
application program. Design time fraction is the fraction of design time required for developing the
application with a framework and that without the framework.

RDE(t) =
∑

i

(
#ADOi

#ADOi + #AFOi

× FTi + ITi + LTi (t)

FT′
i + IT′

i

)
(1)

where t is a measure of the time elapsed since starting use of SESAG, i represents the index of the ith
team member, #ADOi is the number of application domain objects designed by the ith team member,

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 913

#AFOi is the number of application framework objects in the ith application subprogram (without
counting the application domain objects), FTi is the design time using the framework, FT′

i is the design
time without using the framework, ITi is the integration time required by the ith team member using the
framework, IT′

i is the integration time required by the ith team member without using the framework,
and LTi (t) is the non-monotonic framework learning time required by the ith team member, which
may depend on a lot of factors in addition to time, such as programmer experience, capability, etc., and
which decreases as time increases.

From Equation (1), we observe that the value of the metric decreases when the complexity of an
application complexity increases because the first term, application complexity fraction, increases to
a value approximately one while the design time fraction approaches zero. This shows that the more
complex an application is, the smaller is the relative design effort. This is by no means an indication
of the absolute design effort since the actual design effort must increase with application complexity.
The relative design effort is merely an indication of how well a framework helps an application designer
to save design efforts (in terms of coding objects and coding time). We will use this metric to evaluate
SESAG in later sections.

For example, if there is only one team member, 25 application domain objects, 10 application
framework objects, and the design time with framework is a half of that without framework, then the
RDE for this application is 5

14 = 35.7%, whereas the absolute design effort is 25 × t when framework
is used and 35 × 2 × t = 70 × t when the framework is not used, where t is the average design,
integration, and learning time using the framework.

6. APPLICATION DEVELOPMENT

After an overview of the SESAG framework and its implementation. This section will describe how
one designs a real-time application using SESAG. Figure 6 illustrates the development strategy (central
column) in context with both the components-patterns view (left column) and the class view (right
column) of SESAG. Rectangular boxes represent processes to be accomplished either by the user
or by SESAG as indicated on the left corner of the boxes. Diamonds represent a branching choice.
Ovals represent class instantiations. There are three phases in the application development of SESAG,
namely, specification, integration, and generation.

From our experiences, irrespective of the type of OOAF, we recommend the ‘SIG’ strategy
for application development (SIG stands for specification, integration, and generation). Such a
modularized development will be helpful in program debugging, code generation, and future
maintenance. In the following we describe each part of the SIG strategy for SESAG. Two example
applications on avionics and vehicle control developed using SESAG are illustrated in Section 7.

• Specification. A user of SESAG (also called an application designer) begins with specifying
his/her system. The user may either define application domain objects (such as in the autonomous
intelligent cruise controller (AICC) example presented in Section 7) or directly input tasks by
instantiating the Task-Table class and the Call-Graph class (as in the avionics example
of Section 7). When application domain objects are specified, Task-Table and Call-
Graph are instantiated by SESAG through the Extractor component. An example of real-time
applications has been developed using SESAG as described in Section 3.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

914 P.-A. HSIUNG ET AL.

������ ��� ���	��	��	�

����
�	��� ����
	�

����������

���	��	��	��

����������

���	��	��	��

��	��
	 �����

��	��
	 ����	����	�

���	������� ����
	�

�����	�� ������
�

�
������ �����

���
�	� ������
��

�������	� ������
�

������
	�

������	� ����

����

 ��

!�

 ��

!�

�����

�����

�����

����������

����������

����������

����������

�����

������

����
	�

�����

���
���	���

��

����������

����������

������
���

����

�
��������

"���
#

$�������

����������

��

����
�	���

"������

����	
	��

�������
�

���������

���
���
�

�������
�

�����

�
��
�����

����� ����	���	
�

�����
����� ��������

����� �����

	������	��	
�

Figure 6. Application development using SESAG.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 915

• Integration. At this stage, we have the Task-Table and Call-Graph instantiated either
by the user or by Extractor in SESAG. SESAG then distinguishes passive objects from active
ones. This distinction is required so that implicit resources may be classified as resources
and registered in the Resource-Table class. Any object that does not actively call other
object methods is called a passive object, otherwise it is an active one. Tasks from the Task-
Table and their interdependencies from the Call-Graph are scheduled using a user-specified
scheduling policy or through automatic decision by SESAG (as described in Sections 3.3
and 5). Resources are then allocated to the scheduled tasks. Resource conflicts are eliminated
as described earlier in Section 3.4.

• Generation. After integration, we already have the skeleton for a feasible application where tasks
have been explicitly distinguished, registered, scheduled, resources allocated without conflicts,
and timing constraints satisfied through scheduling. Code generation is carried out by SESAG as
described in Section 3.5.

The above description gives an idea of which parts a user must define and code, what SESAG does
at each stage, and how the application is completely crafted into a working program. In contrast to
commercial code generators based on the RT-UML design language [22], SESAG is not only a code
generator, but it also helps schedule concurrent tasks such that real-time and resource constraints are
satisfied. Thus, code generated by SESAG will meet user-given constraints, whereas code generated
by RT-UML-based tools may not meet user-given constraints.

7. APPLICATIONS AND EXPERIMENTAL RESULTS

Two application examples developed using SESAG are presented in this section. An avionics example
consisting of 24 tasks used to control an aircraft and a cruiser example consisting of 12 tasks
used to control the vehicle speed under different circumstances. Both examples are industrial ones
whose specifications [23,24] were used for development in SESAG. The benefits of using SESAG
in developing the two examples have been evaluated and the results show a marked improvement in
design productivity and efficiency. The relative design efforts (see Definition 3) for both the examples
were quite small, 9 and 18%, respectively.

7.1. Avionics example

An illustrative example is an avionics system application: digital flight control [23]. The 24 tasks
in this example are specified as shown in Table I [23,25,26]. The hardware resource for executing
these tasks is the Software-Implemented Fault-Tolerance (SIFT) computer [25] as shown in Figure 7,
where P is a processor, M is memory, and S is a switch. We consider eight processors, with each
processor having an instruction execution rate of 0.5 MIPS and an address space of 64 Kbytes. Since the
total utilization [23] of the tasks on a single processor does not exceed the rate-monotonic scheduling
upper bound of 0.693 [1], rate-monotonic scheduling is used. The Call-Graph as produced using
SESAG is shown in Figure 8. There were three resources identified by SESAG, namely, Graphics-
Display, Text-Display, and Memory. Each of them required a separate Error-Handler
class to resolve conflicts. This application when developed with SESAG took only one week for

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

916 P.-A. HSIUNG ET AL.

Table I. Avionics example: digital flight control tasks [23].

Execution
Index Task description time (ms) Period (ms) Utilization Memory

1 Attitude control 2.456 50.00 0.049 12 2075
2 Flutter control 0.276 4.00 0.069 00 92
3 Gust control 0.116 4.17 0.027 84 60
4 Autoland 0.684 6.25 0.109 44 1025
5 Autopilot 0.400 200.00 0.002 00 250
6 Attitude director 5.120 33.33 0.153 60 1310
7 Inertial navigation 2.700 40.00 0.067 50 2250
8 VOR/DME 1.540 200.00 0.007 00 300
9 Omega 1.600 200.00 0.008 00 505

10 Air data 0.400 200.00 0.002 00 135
11 Signal processing 3.500 5000.00 0.000 70 315
12 Flight data 11.040 200.00 0.055 20 550
13 Airspeed 1.098 62.50 0.017 57 430
14 Graphics display 7.950 125.00 0.063 60 6250
15 Text display 3.800 100.00 0.038 00 9340
16 Collision avoidance 0.064 1.49 0.042 88 1150
17 Onboard communication 0.056 4.00 0.014 00 705
18 Offboard communication 0.310 250.00 0.001 24 687
19 Data integration 0.720 250.00 0.002 88 1300
20 Instrumentation 5.584 200.00 0.027 92 1900
21 System management 4.640 2000.00 0.002 32 950
22 Life support 4.640 2000.00 0.002 32 950
23 Engine control 7.194 30.30 0.237 40 1500
24 Executive 0.400 200.00 0.002 00 1100

Recalculated from [23].

two real-time system designers. The same two designers took totally five weeks to design the same
application a second time without using SESAG. For the second time, the designers were already
quite familiar with the system design, so they were much faster in designing the application domain
objects, but they had to spend a large amount of time designing the objects that were provided by
SESAG, such as schedulers. The integration of application domain objects with self-designed SESAG
objects also incurred a substantial amount of time during the second time of designing the avionics
system.

SESAG evaluation

The avionics example was evaluated using the relative design effort as defined earlier in Definition 3.
There were totally 10 application domain objects (five designed by each of two designers) and
35 application framework objects (20 and 15 objects, respectively, designed by the two designers).
Thus, there are totally 45 objects in the final program code generated. The integration time using the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 917

�

� �

� �

�

� �

� �

�

� �

� �

�

�

�

� ��

Figure 7. Avionics example: SIFT computer [23].

Flight Data

Air Data

Air Speed

Attitude Director

Data Integration

Collision Avoidance

Engine Control

Executive

On Board Comm.

Off Board Comm.

Signal Processing

Graphics Display

Text Display

Computers

I/O System

Inertial Navigation

Auto Pilot

Auto Land

Attitude Control

Flutter Control

Gust Control

Actuators/Controllers

Instrumentation

System Management

Life Support

Auxiliaries

Sensors

Figure 8. Avionics example: Call-Graph.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

918 P.-A. HSIUNG ET AL.

Electronic
Servo Throttle

(SW)

EBS Gateway
(HW/SW)

DS Gateway
(HW/SW)

SRC Gateway
(SW)

SRC MMI
(SW)

System Control
Unit (HW)

Main Instrument
Controller
(HW/SW)

Electronic
Brake System

Distance
Sensor

Short Range
Communication

Transponder
Display

Throttle speed brake

RS232 RS232

Cruise Control
Switches

Controller Area Network (CAN)-bus

RS232

Figure 9. AICC example: System architecture.

framework was two days and that without using the framework was 10 days. The framework learning
time is taken as one day for each designer amortized during the time span of the project. Using the
RDE equation (1), we get the following result:

RDE = 5

5 + 20
× 7 + 2 + 1

35 + 10
+ 5

5 + 15
× 7 + 2 + 1

35 + 10
= 0.09 (2)

We observe that the relative design effort is only 9% of that required without using SESAG.

7.2. AICC cruiser example

Another illustrative example application developed using SESAG is the AICC system application [24],
which had been developed and installed in a Saab automobile by Hansson et al. The AICC system
can receive information from road signs and adapt the speed of the vehicle to automatically follow
speed limits. Also, with a vehicle in front and cruising at lower speed, the AICC adapts the speed
and maintains safe distance. The AICC can also receive information from the roadside (e.g. from
traffic lights) to calculate a speed profile which will reduce emission by avoiding stop and go at traffic
lights. The system architecture consisting of both hardware (HW) and software (SW) is as shown in
Figure 9. The software development methodology used in [24] is based on sets of interconnected so-
called software circuits (SCs). Each SC has a set of input connectors where data are received and a set
of output connectors where data are produced. We model the SCs in [24] as active application domain
objects in SESAG.

As shown in Figure 10, there are five domain objects specified by the designer of AICC for
implementing a basement system. Basement is a vehicle’s internal real-time architecture developed
in the Vehicle Internal Architecture (VIA) project [24], within the Swedish Road Transport Informatics
Programme. As observed in Figure 10, each object may correspond (map) to one or more tasks.
Task-Table and Call-Graph instantiated by the Extractor component are as shown in Table II

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 919

Traffic

Light Info

(SRC)

Speed

Limit Info

(SRC)

SRC

T=200ms

Preceding Vehicle

Estimator

(Distance Sensor)

Speed

Sensor

(EBC)

Distance

Control

Green
wave

Control

Speed Limit

Control
ICC Regulator

T=100ms

Cruise
Switches

(Main
Instrument
Controller)

ICC

Main

Control

Coordination &

Final Control

Cruise
Info
(Main

Instrument
Controller)

Speed
Actuator

(EST)

T=100msSupervisor

Final Control
EST

T=50ms

Figure 10. AICC example: Call-Graph.

Table II. AICC example: task table.

Period Execution Deadline
Task description Object (ms) time (ms) (ms)

1 Traffic light info SRC 200 10 400
2 Speed limit info SRC 200 10 400
3 Proceeding vehicle estimator ICCReg 100 8 100
4 Speed sensor ICCReg 100 5 100
5 Distance control ICCReg 100 15 100
6 Green wave control ICCReg 100 15 100
7 Speed limit control ICCReg 100 15 100
8 Coordination and final control Final Control 50 20 50
9 Cruise switches Supervisor 100 15 100

10 ICC main control Supervisor 100 20 100
11 Cruise info Supervisor 100 20 100
12 Speed actuator EST 50 5 50

SRC: Short Range Communication, ICCReg: ICC Regulator, EST: Electronic Servo Throttle.

and Figure 10, respectively. There are a total of 12 tasks performed in five objects. Two different
resources were identified in SESAG, namely, SRC and Display. This application took five days
for three real-time system designers using SESAG. The same application took the same designers
20 days to complete development a second time, without using SESAG. The large difference in
design times was because SESAG automatically extracted the tasks and constraints from the object
specifications.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

920 P.-A. HSIUNG ET AL.

SESAG evaluation

The AICC example was also evaluated using the RDE metric (Definition 3 and Equation (1)).
There were five application domain objects specified by the designer and 21 application framework
objects. The integration time using the framework was one day and that without using the framework
was four days. The framework learning time is taken as one day for each designer, amortized over the
time span of the project. In total, 26 objects were in the final program code generated. We have the
following result:

RDE = 2

2 + 10
× 5 + 1 + 1

20 + 4
+ 2

2 + 5
× 5 + 1 + 1

20 + 4
+ 1

1 + 6
× 5 + 1 + 1

20 + 4
= 0.174 (3)

We observe that for this application, we also obtain a relative design effort of only 17.4%.
It should be noted here, that the integration time for a designer without using SESAG in both of the

above examples would have been more than that stated here if the application was developed for the
first time, instead of for the second time as was the case given for the above examples. This is because
the designers have already become familiar with the systems so the integration time was smaller.

From the above two examples, we observe that with the first avionics example being more complex,
the design effort saved by using SESAG is greater than the second cruiser example. We see that for both
the examples, using SESAG the design effort required is only approximately between 9 and 18% of
that required without using SESAG. This is obtained using our newly proposed framework evaluation
metric called RDE. Significant design reuse and increased design productivity justify the use of SESAG
in real-time application development.

8. CONCLUSION

An OO application framework, called SESAG, was proposed for the development of real-time system
applications that consists of a set of statically schedulable periodic tasks. Safety analysis was not
covered as it is not within the scope of SESAG. The presentation included two different perspectives
of SESAG: a components-patterns view and a class view. Several design patterns related to real-time
system design were proposed and implemented in SESAG. The framework implementation and a new
evaluation metric for OOAFs were also presented. Two application examples were developed using
SESAG. Both the examples have shown how design time is significantly reduced due to a large extent
of object and code reuse from SESAG. In addition to reuse, SESAG also automates several design
phases of real-time system application development, including tasks extraction, constraints extraction,
scheduling, and resource allocation. All of these design phases were very painstaking and laborious
originally, when a designer had to develop either from scratch or using different specialized tools such
as scheduling analysis tool, allocation tool, etc.

SESAG can be easily extended since new specification languages, scheduling algorithms, etc. can
always and easily be integrated into it. Future extensions will support other scheduling algorithms.
More examples will also be developed using SESAG. This basic version of SESAG will be enhanced
in the future by considering more advanced features of real-time applications, such as network delay,
network protocols, and on-line task scheduling. Performance related features such as context switch
time and rate, external events handling, I/O timing, mode changes, transient overloading, and setup
time will also be incorporated into SESAG in the future.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

SESAG: AN OO APPLICATION FRAMEWORK FOR REAL-TIME SYSTEMS 921

REFERENCES

1. Liu CL, Layland JW. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the
Association for Computing Machinery 1973; 20(1):46–61.

2. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley: Reading, MA, 1995.

3. Johnson R, Foote B. Designing reusable classes. Journal of Object-Oriented Programming 1988; 1(5):22–35.
4. Fayad M, Schmidt DC. Object-oriented application frameworks. Communications of the ACM (Special Issue on Object-

Oriented Application Frameworks) 1997; 40(10):32–38.
5. Attoui A, Schneider M. An object oriented model for parallel and reactive systems. Proceedings of the Real-Time Systems

Symposium. IEEE Computer Society Press: Los Alamitos, CA, 1991; 84–93.
6. Hammer DK, Welch LR, van Roosmalen OS. A taxonomy for distributed object-oriented real-time systems. ACM OOPS

Messenger (Special Issue on Object-Oriented Real-Time Systems) 1996; 7(1):78–85.
7. Ishikawa Y, Tokuda H, Mercer CW. Object-oriented real-time language design: Constructs for timing constraints.

ECOOP/OOPSLA’90 Proceedings, ACM SIGPLAN Notices 1990; 25(10):289–298.
8. Achauer B. Objects in real-time systems: Issues for language implementors. ACM OOPS Messenger 1996; 7(1):21–27.
9. Welch LR. A metrics-driven approach for utilizing concurrency in object-oriented real-time systems. ACM OOPS

Messenger 1996; 7(1):70–77.
10. Gergeleit M, Kaiser J, Streich H. Checking timing constraints in distributed object-oriented programs. ACM OOPS

Messenger (Special Issue on Object-Oriented Real-Time Systems) 1996; 7(1):51–58.
11. Browne JC. Object-oriented development of real-time systems: Verification of functionality and performance. ACM OOPS

Messenger (Special Issue on Object-Oriented Real-Time Systems) 1996; 7(1):59–62.
12. See WB, Chen SJ. Object-oriented real-time system framework. Domain-Specific Application Frameworks, Fayad ME,

Johnson RE (eds.). Wiley: New York, 2000; 327–338.
13. See WB, Chen SJ. High-level reuse in the design of an object-oriented real-time system framework. Proceedings of

the International Conference on Distributed Systems, Software Engineering, and Database Systems, ICS’96, Kaohsiung,
Taiwan, ROC, 1996; 363–370.

14. Kuan TY, See WB, Chen SJ. An object-oriented real-time framework and development environment. Proceedings of the
OOPSLA’95 Workshop #18, ACM OOPS Messenger 1995; 6(4):207.

15. Schmidt DC. Applying design patterns and frameworks to develop object-oriented communication software. Handbook of
Programming Languages, vol. I, Salus P (ed.). Macmillan Computer Publishing, 1997.

16. Rumbaugh J, Booch G, Jacobson I. The UML Reference Guide. Addison-Wesley: Reading, MA, 1999.
17. Tokuda H, Mercer CW. ARTS: A distributed real-time kernel. Operating Systems Review 1989; 23(3):29–53.
18. Kligerman E, Stoyenko AD. Real-time Euclid: A language for reliable real-time systems. IEEE Transactions on Software

Engineering 1986; SE-12(9):941–949.
19. Grimshaw AS, Silberman A, Liu JWS. Real-time Mentat programming language and architecture. Proceedings of the IEEE

Globecom. IEEE Computer Society Press: Los Alamitos, CA, 1989; 141–147.
20. Lin KJ, Natarajan S. Expressing and maintaining timing constraints in flex. Proceedings of the Real-Time Systems

Symposium. IEEE Computer Society Press: Los Alamitos, CA, 1988; 96–105.
21. Sha L, Rajkumar R, Lehoczky JP. Priority inheritance protocols: an approach to real-time synchronization. Technical

Report CMU-CS-87-181, Computer Science Department, Carnegie Mellon University, 1987.
22. Douglass BP. Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns. Addison-

Wesley: Reading, MA, 1999.
23. Bannister JA, Trivedi KS. Task allocation in fault-tolerant distributed systems. Acta Informatica 1983; 20(3):261–281.
24. Hansson HA, Lawson HW, Stromberg M, Larsson S. BASEMENT: A distributed real-time architecture for vehicle

applications. Real-Time Systems 1996; 11(3):223–244.
25. Ratner RS, Shapiro EB, Zeidler HM, Wahlstrom SE, Clark CB, Goldberg J. Design of a fault-tolerant airborne digital

computer, vol. 2, computational requirements and technology, SRI Final Report, NASA Contract NAS1-10920, 1973.
26. Potkonjak M, Wolf W. A methodology and algorithms for the design of hard real-time multi-tasking ASICs. ACM

Transactions on Design Automation of Electronic Systems 1999; 4(4):430–459.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:899–921

	1 INTRODUCTION
	2 PREVIOUS WORK
	3 SESAG COMPONENTS
	3.1 Specifier
	3.2 Extractor
	3.3 Scheduler
	3.4 Allocator
	3.5 Generator

	4 SESAG CLASSES
	4.1 Application specification
	4.2 Scheduling policy
	4.3 Resource manager
	4.4 Global clock

	5 FRAMEWORK IMPLEMENTATION AND EVALUATION
	5.1 Auxiliary programming
	5.2 Framework evaluation

	6 APPLICATION DEVELOPMENT
	7 APPLICATIONS AND EXPERIMENTAL RESULTS
	7.1 Avionics example
	SESAG evaluation

	7.2 AICC cruiser example
	SESAG evaluation

	8 CONCLUSION

