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Abstract
In this work, we present our experiences in designing an
object-oriented application framework for real-time sys-
tems, called SESAG. A components-patterns view is pro-
vided so that application developers may easily use the
framework to design his/her applications. SESAG con-
sists of five components: Specifier, Extractor, Scheduler,
Allocator, and Generator. Within SESAG, several design
patterns have been proposed for real-time systems. Experi-
ences of using SESAG show a significant increase in design
productivity through design reuse, and a decrease in design
time and effort.

1 Introduction

Real-time systems such as telecommunications, avionics,
multimedia, robotics, ... impose timing constraints on ex-
ecuting tasks. Violation of such constraints usually result
in an incorrect system. Hence, appropriate task scheduling
and resource allocation become a crucial part of all real-
time systems design. It is here that object-oriented appli-
cation frameworks can be taken advantage of for reusing
classes and design strategies. Corresponding to different
specification styles and scheduling policies, different de-
sign patterns can be proposed. Combining design patterns
and components, a novel object-oriented application frame-
work called SESAG is proposed for the design of real-time
systems. SESAG helps designers of real-time systems in-
crease productivity, decrease design time and effort, en-
hance manageability, and increase design reuse.

A real-time system is generally specified as a collection
of tasks which might share resources. The tasks are usually
independent and periodic. Execution time, period, dead-
line, type of priority and resource requirements are speci-
fied for each task. Hard real-time systems do not allow the
violation of any timing constraint. Soft real-time systems
strive to minimize deadline violations. To statically guaran-
tee satisfaction of all timing constraints, the tasks must be
scheduled using priority-based scheduling algorithms such
as rate-monotonic (RM) [16], earliest-dealine first (EDF)

[16], mixed-priority (MP) [16], pin-wheel, etc. or using
timed-based scheduling algorithms.

An object-oriented application framework (OOAF) is
a reusable, “semi-complete” application that can be spe-
cialized to produce custom applications [12]. OOAF
are application-domain specific reuse methods, such as
user interfaces or real-time avionics. Examples include
MacApp, ET++, Interviews, ACE, Microsoft’s MFC and
DCOM, Javasoft’s RMI and implementation of OMG’s
CORBA. Frameworks can be further distinguished by their
scope into system infrastructure frameworks (used inter-
nally within a software organization), middleware integra-
tion frameworks (used to integrate distributed applications
and components), and enterprise application frameworks
(used in application-specific domains) [5].

The rest of this paper is organized as follows. Section 2
gives some previous and related work on applying object-
oriented technology to real-time system design. Section 3
describes the SESAG framework, application development
strategy, and an example application. Section 4 gives the
final conclusion.

2 Previous Work

Object-oriented technology has been used in the develop-
ment of real-time systems for quite some time now. Re-
search literatures have shown how the concept of objects in
real-time systems can be useful. Object-oriented real-time
(OORT) system models such as MO2 [2], evaluation tax-
onomy such as in [9], object-oriented real-time language
design [11, 1], concurrency exploitation in OORT systems
using metrics-driven approach [24], checking time con-
straints [7], and verification of function and performance
for OORT systems [4] are some of the recent work on ap-
plying OO technology to real-time system design.

Although object-oriented technology has been applied
to the design of real-time systems in several proposed
work, but there has been little work on the development
of an OOAF for real-time system application design, ex-
cept for a single one called Object-Oriented Real-Time Sys-



tem Framework (OORTSF) [21, 14]. OORTSF is a simple
framework and only lists the classes used in the develop-
ment of real-time applications. No design patterns have
been proposed specific to real-time system application de-
sign. This results in a difficult comprehension of the col-
laboration among the classes. How exactly is a real-time
application developed using OORTSF is not clear from the
work. It is also unclear how is the application code gen-
erated from OORTSF, how are the resources allocated, and
how are the tasks scheduled. Further, the flexibility of spec-
ifying real-time objects, the ease of using OORTSF, the
benefits of applying OORTSF, and other issues related to
OOAFs are not described in the work. No example appli-
cation was given for OORTSF in [21, 14]. According to
the knowledge of the author, besides OORTSF, there is no
other work on enterprise application frameworks devoted
to general real-time system application development. As
far as middleware integration frameworks are concerned,
there has been a TAO Real-Time Object Request Broker
(ORB) proposed by Schmidt recently [20]. We mainly
compare our work with OORTSF since they belong to the
same class of enterprise application frameworks.

In contrast, the SESAG framework proposed in this pa-
per proposes design patterns specific to real-time applica-
tions, provides flexibility in specification of application ob-
jects, describes how the tasks are scheduled, how the re-
sources are allocated, the hierarchy of code generated is
explained clearly, and lastly the application development
strategy is also described. The specific classes used and the
interface are described in a related work [10]. An example
application is given at the end of the paper to support our
claims on reduced design efforts through SESAG.

3 The SESAG Framework

SESAG derives its name from the five components that
constitute our object-oriented application framework for
real-time system application design. The five compo-
nents, ordered by the sequence in which they are used,
are Specifier, Extractor, Scheduler, Allocator, and Gener-
ator. SESAG is illustrated in Fig. 1. The notation used in
this paper is based on that proposed in Rumbaugh’s Object
Modeling Technique (OMT) [19]. The order of the SESAG
components used by a designer to design a system is: Spec-
ifier, Extractor, Scheduler, Allocator, and Generator. Ap-
plication domain objects are specified using the Specifier.
Real-time constraints are either specified separately or cou-
pled with the application domain objects. In the latter case,
Extractor is used for extracting constraints. Extractor is
also used to extract tasks from the given domain objects.
Scheduler schedules the tasks using some scheduling al-
gorithm and Allocator allocates resources among the tasks
that are running concurrently. Finally, Generator is used to
generate the application code based on the decisions made
in the other components.

3.1 Specifier

This component is the main interface between application
domain objects and SESAG. Application domain objects
are those objects that constitute the application that the de-
signer desires to design. Three design patterns are used
in this component: Objects-with-Constraints, Objects-
without-Constraints, and Tasks-with-Constraints. We call
them design patterns because often the real-world objects
are not specified as tasks, whereas a real-time system appli-
cation is generally described in terms of a set of canonical
tasks. This semantic gap has become a design issue [7] and
topic of research [1] for the object-oriented model of real-
time systems. The three design-patterns correspond to how
SESAG provides the designer with the flexibility of choos-
ing either (1) to specify application domain objects with
constraints coupled to the objects, or (2) to specify appli-
cation domain objects with constraints as a separate entity,
or (3) to specify real-time tasks with constraints. The first
two design patterns do not explicitly specify what the tasks
are. This specification is left to SESAG and SESAG ac-
complishes it using Extractor as will be described in the
next subsection. Timing constraints coupled to the objects
are specified as annotations to methods [7]. The specifi-
cation language could be C++ with annotations [7], a real-
time extension of C++ called RTC++ [11], ARTS/C and
ARTS/C++ used in the ARTS real-time distributed oper-
ating system kernel [23], real-time Euclid [13], real-time
Mentat [8], or FLEX [15]. Currently, only C++ with an-
notations is supported in SESAG. Future implementations
will include RTC++ and other languages.

3.2 Extractor

This component transforms the specification provided by
the designer within Specifier into a uniform intermediate
format suitable for schedulability analysis. The intermedi-
ate format is necessary since Specifier allows the designer
several choices of specifying his/her application. The main
job of Extractor is to extract important information from the
objects and formulate them into two parts: a Task-Table ob-
ject and a Call-Graph object. All task-related information
are instantiated into a Task-Table object for future refer-
ence. This object consists of the task index, the method
name, its execution time, period, deadline, type of prior-
ity (fixed or dynamic), and its resource requirements. The
resource requirement is specified as an real-numbered vec-
tor, where each element corresponds to some system re-
source such as memory, processor utilization, � � � and the
real-number corresponds to the amount of each resource
required by the particular task. System resources are spec-
ified by the designer within Specifier through instantiation
of application domain objects. Extractor also generates a
Call-Graph object which is a directed graph � � �����,
nodes in � represent tasks and arcs in � represent the
call relationships between two tasks. This graph is useful



SESAG

Specifier Extractor Scheduler Allocator Generator

Separate
Input

Specifier

Combined
Input

Specifier

Objects
With

Constraints
Objects Constraints

Tasks
Extractor

Constraints
Extractor

Scheduling
Policy

Selector

Schedule
Generator

Rate
Monotonic

Earliest
Deadline

First

Mixed
Priority

Resource
Allocator

Resource
Conflict

Eliminator

Main
Program

Schedule
Code

Resource
Code

Call
Graph

Object
Code

Figure 1: Components-Patterns View of SESAG

for schedulability test, resource allocation, scheduling, and
conflict resolution.

3.3 Scheduler

The Call-Graph and the Task-Table objects instantiated
in Extractor is scheduled into a feasible application by
Scheduler. As described in Section 2, there are many
priority-based scheduling policies such as rate-monotonic,
earliest-deadline first, mixed priority, pin-wheel, et al. It
is sometimes evident from the application, as to which
scheduling policy should be applied. But, in most appli-
cations, the prime concern is the satisfaction of the tim-
ing constraints, irrespective of which scheduling algorithm
is applied. Scheduler includes a design pattern similar to
the Strategy Pattern [6] adapted to real-time systems. In
this pattern, one and only one scheduling algorithm must
be chosen from the set of all scheduling algorithms for
scheduling the tasks in the Call-Graph and the Task-Table.

This component mainly consists of two parts: a Pol-
icy Selector (PS) and a Schedule Generator (SG). The de-
signer can choose to assign a particular scheduling pol-
icy he deems fit or the designer can also choose to al-
low SESAG determine automatically the right choice. The
choice is made by performing schedulability tests with re-
spect to each scheduling algorithm. One of the schedul-
ing algorithms in the successful cases is then selected as
the automatic decision result. This selection can be arbi-
trary or based on some criteria such as the shortest sched-
ule length (i.e., the shortest scheduled time). Currently,

SESAG leaves this option to the designer. Schedule Gener-
ator generates the actual start/end timing of each task based
on the schedule policy chosen and on the Call-Graph con-
straints such as precedence relationships.

Before moving on to the next component, one must note
that the set of tasks in the Task-Table object are not inde-
pendent, they have precedence/succession relationships as
given in the Call-Graph, so the set of tasks that are sched-
uled to run concurrently is, in fact, not a fixed one. In the
scheduling terminology, this means that the initial phase of
each task is constrained by the latest end-time of all of its
predecessors in the Call-Graph. Thus, another well-known
problem arises here, namely the priority inversion problem.
When higher priority tasks are blocked from execution due
to resources being held by lower priority tasks. We adopt
the priority inheritance approach [22] to solve this problem.
The tasks are all assumed to be preemptive as required by
the scheduling policies.

3.4 Allocator

Resource allocation is handled by this component, which
is composed of two modules: a Resource Allocator and a
Conflict Eliminator. The scheduled Call-Graph does not
yet contain any resource information. It is in this com-
ponent that resources are allocated to each task based on
its resource requirements recorded in the Task-Table. It
may happen that certain tasks, scheduled to be simulta-
neously executing, conflict in their resource requirements.
The last arriving task (i.e., the task with the latest starting
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phase) is delayed and rescheduled. If more than one con-
flicting tasks start at the same time, then the task that has a
smaller requirement of the conflicting resources is delayed
for rescheduling. If no partial order can be assigned to the
resource requirements of two or more conflicting tasks then
an arbitrary choice of task is made for delay and reschedul-
ing. Conflicts in resource requirements of scheduled tasks
are thus eliminated and the resulting scheduled Call-Graph
is a feasible one for code generation.

3.5 Generator

The final component of SESAG is responsible for generat-
ing the OO code for the real-time application under devel-
opment by the designer. The hierarchical structure of the
generated code is shown in Fig. 2. It consists of mainly
five parts: the main OO program, the schedule code, the re-
source allocation code, the tasks Call-Graph code and the
user-given domain object code. The hierarchy is a call-
ing hierarchy, that is, the main OO program calls sched-
ule code functions and the resource allocation code func-
tions, which in turn call the call-graph code methods, and
finally the user-given object code is called for execution.
Two auxiliary codes used for reference are Resource-Table
and Task-Table, which contain all the information for sys-
tem resources and tasks.

The main OO program maintains a global clock which
is used for recording progress in the developed system or
application. It also contains exception handles to error re-
covery, fault handling, and other mechanisms to handle ex-
ceptions such as constraint violations. The main program
ensures that the system is always in an acceptable state.
This is achieved by calling the schedule code functions and
resource handling functions in the resource allocation code.

The schedule code is an implementation of the actual
scheduling of the tasks in the Call-Graph and after any re-
source conflicts are eliminated. This code depends on the
scheduling policy selected either by the user or by SESAG.

The schedule code consists of the actual time a task must
start execution and the time it should terminate. Everything
is settled statically for optimal performance and satisfaction
of timing constraints in real-time systems.

Resources related information are all recorded in the
Resource-Table object. Resource allocation code is re-
sponsible for accepting resource allocation/deallocation re-
quests, transmitting them to the resource codes (or the ac-
tual physical resources in case of a hardware real-time sys-
tem), handling exceptional situations such as dynamic re-
source failure and recovery, and resource conflict handling.
Although resource conflicts among tasks were eliminated
statically in the scheduled Call-Graph (refer to the Alloca-
tor component of SESAG), yet conflicts may still arise in
exceptional situations when resources become faulty, when
tasks violate timing constraints due to external environ-
mental disruptions, � � �.

The Call-Graph code is an implementation of the
resource-allocated, scheduled Call-Graph object. This
code is required in spite of the calling scheme of tasks
(method calls) being implicit in the user-given domain ob-
ject code, because scheduling information and resource re-
quests are, respectively, not given and not explicit in the
object code. The object code is just the user-given code.
The hierarchical structure of the code generated by SESAG
has many advantages including easy debugging, code mod-
ularization, and explicit interface with user-given code.

Due to page-limit, the actual classes used in SESAG are
not presented here. Figure 3 illustrates the development
strategy. A user of SESAG (also called the designer) begins
with specifying his/her system. Either application domain
objects may be defined or tasks directly input by instanti-
ating the Task-Table class and the Call-Graph class. When
application domain objects are specified, Task-Table and
Call-Graph are instantiated by SESAG through the Extrac-
tor component. An example of real-time applications has
been developed using SESAG.

3.6 Avionics Example

An illustrative example is an avionics system application:
digital flight control [3]. The 24 tasks in this example are
specified as shown in Table 1 [18, 3, 17]. The hardware
resource for executing these tasks is the SIFT (Software-
Implemented Fault-Tolerance) computer [18]. We consider
8 processors, with each processor having an instruction ex-
ecution rate of 0.5 MIPS and an address space of 64 Kbytes.
Since the total utilization [3] of each task does not exceed
the rate-monotonic scheduling upper bound of 0.693 [16],
rate-monotonic scheduling is used. This application when
developed with SESAG took only one week for a real-time
system designer. The same designer took approximately
five weeks to design the same application. This is because
a lot of things need only be specified into SESAG without
caring for the details such as how tasks are scheduled, how
resources are allocated, etc.
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Table 1: Avionics Example: Digital Flight Control Tasks [3]
Index Task Description Execution Time (ms) Period (ms) Utilization Memory

1 Attitude Control 2.456 50.00 0.04912 2,075
2 Flutter Control 0.276 4.00 0.06900 92
3 Gust Control 0.116 4.17 0.02784 60
4 Autoland 0.684 6.25 0.10944 1,025
5 Autopilot 0.400 200.00 0.00200 250
6 Attitude Director 5.120 33.33 0.15360 1,310
7 Inertial Navigation 2.700 40.00 0.06750 2,250
8 VOR/DME 1.540 200.00 0.00700 300
9 Omega 1.600 200.00 0.00800 505

10 Air Data 0.400 200.00 0.00200 135
11 Signal Processing 3.500 5000.00 0.00070 315
12 Flight Data 11.040 200.00 0.05520 550
13 Airspeed 1.098 62.50 0.01757 430
14 Graphics Display 7.950 125.00 0.06360 6,250
15 Text Display 3.800 100.00 0.03800 9,340
16 Collision Avoidance 0.064 1.49 0.04288 1,150
17 Onboard Communication 0.056 4.00 0.01400 705
18 Offboard Communication 0.310 250.00 0.00124 687
19 Data Integration 0.720 250.00 0.00288 1,300
20 Instrumentation 5.584 200.00 0.02792 1,900
21 System Management 4.640 2000.00 0.00232 950
22 Life Support 4.640 2000.00 0.00232 950
23 Engine Control 7.194 30.30 0.23740 1,500
24 Executive 0.400 200.00 0.00200 1,100

Recalculated from [3]

4 Conclusion

An object-oriented application framework, called SESAG,
was proposed for real-time systems application develop-
ment. A components-patterns view of SESAG was pre-
sented. Design patterns related to real-time system design
were proposed and implemented in SESAG. Several ap-
plication examples were developed using SESAG. Due
to page-limit, only one has been described in this paper.
The example has shown how design time is significantly
reduced due to a large extent of object and code reuse from
SESAG. Besides reuse, SESAG also automates several de-
sign phases of real-time system application development,
including tasks extraction, constraints extraction, schedul-
ing, and resource allocation. All of these design phases
were very pain-staking and laborious originally when a de-
signer had to develop either from scratch or using different
specialized tools such as scheduling analysis tool, alloca-
tion tool, etc.

SESAG can be easily extended since new specification
languages, scheduling algorithms, etc. can always and eas-
ily be integrated into it. Future extensions will include
RTC++ support and other scheduling algorithms. More ex-
amples will also be developed using SESAG. One major

work to be accomplished in this field is the formal defini-
tion of design effort and how the metric could be used to
compare different frameworks. This research work is still
on-going.
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