Verification of Concurrent Client-Server Real-Time Scheduling Systems

Pao-Ann Hsiung, Farn Wang, and Yue-Sun Kuo
Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
{eric,farn,yskuo} @iis.sinica.edu.tw

Abstract

Formally verifying complex real-time systems is a
formidable task due to state-space explosions. We propose a
formal framework in which not only is system concurrency
modeled, but scheduling policies are also taken into con-
sideration for verifying temporal properties. We show how
the verification of concurrent real-time systems, modeled as
client-server systems, using the model-checking approach
can benefit from taking advantage of scheduling policies.
Integration of these two concepts, namely scheduling and
model-checking, provides a reduction of the state space
when compared to pure model-checking strategies. Our im-
plementation and experiments corroborate the feasibility of
our approach. Wide-applicability, significant state-space
reduction, and several scheduling semantics are important
features of our framework.

Keywords: concurrent real-time client-server systems,
model-checking, automata, scheduling algorithms, state-
space reduction, verification,

1. Introduction

Complex real-time systems and applications such as
avionics, vehicle controllers, and multimedia systems often
have several concurrent parts or components. Each com-
ponent may function according to some kind of scheduling
policy (8, 7, 6, 4]. The correctness of a real-time system
depends on the satisfaction of stringent real-time temporal
constraints and is often verified using model-checking [1].
Verifying the correctness of concurrent real-time systems
with several scheduling policies is a formidable task due to
high system complexity, degree of concurrency, and state-
space explosions. Engineering paradigms such as schedul-
ing could be taken advantage of for verification. We propose
a formal framework where such complex real-time systems
can be verified by taking advantage of both model-checking
and scheduling. Our implementation and experiments show
its benefit by comparing with a naive verification effort, that
is, pure model-checking. Experiment data show that signif-

228

0-7695-0306-3/99 $10.00 © 1999 IEEE

icant reductions in state-space sizes can be reached.

In our framework, a concurrent real-time system is mod-
eled as a client-server scheduling system, which consists of
a set of concurrent servers, with scheduling policies speci-
fied, and a set of concurrent client automata which are ba-
sically automata extended with scheduling tasks specified
in different modes. Due to concurrency among servers and
among clients, there arise several issues which eventually
lead to a great variety of execution semantics. We will clas-
sify 64 semantics, how they are implemented, and finally
how their verifications differ from each other.

One major issue in precisely modeling such systems is
the difficulty of compromising between two time scales :
the job-computation time unit A and the schedulability-
check time unit As. A is the time unit in which client tasks
are specified. Ag is the time unit in which task schedulabil-
ity checks done by servers are specified. Usually A is sev-
eral orders of magnitude larger than Ag. In real-time system
model-checking, very often the time and space complexities
are proportional to the timing constants used in the system
description. With such a big disparity between A ; and Ag,
the complexity of scheduling system model-checking can
easily grow beyond manageable.

If the time spent for schedulability check is ignored, the
above issue will not occur, but then the model would not be
realistic. There are two ways to handle such a situation.

e Schedulability-Check Time Approximation: One
way is to use Ay, the job computation time unit, as
a common base time unit and then approximate all
schedulability check times into the next larger integer
(if it is itself not an integer), expressed in job compu-
tation time units.

e Resolved Time Units: Another way is to use Ag,
the schedulability-check time unit, as a common
base time unit such that jobs are terminated non-
deterministically by the servers, which are now mod-
eled by separate finite-state machines.

The first method was introduced and discussed in details
in a related work of the authors [4]. The advantage of this
method is that all automata models are uniform and verifi-
cation straightforward. The disadvantage is that the model

is not very accurate and not conforming to real systems.

For the second method of resolved time units, verifica-
tion complexity is controlled by modeling each server by a
separate automata. Each server keeps a record of all jobs
that have been scheduled to run on the server and are cur-
rently running in the server. Jobs are then terminated non-
deterministically by the servers and then clients are notified
of job-termination by the servers. Clients may also move on
to a sucessor mode (hence a different set of tasks) by first
informing the servers to terminate their respective jobs. In
this way, time units are resolved into the non-deterministic
models and verification complexity decreased.

Another issue is who plays the active part in job termina-
tion. Either the clients or the servers can play the active part
in terminating job executions. The passive part will have
to be further characterized. All these will be explained in
Section 3 with different semantics of a scheduling system.

A final issue is when exactly should the checking for
schedulability of the tasks in a mode be performed. Two
alternatives arise here, namely, (1) checking before an in-
coming transition of the mode is taken, or (2) checking af-
ter an in-coming transition of the mode is taken. Several
kinds of semantics related to schedulability checking are
possible. These are discussed in Section 3. Following is a
Video-On-Demand (VOD) system example of a concurrent
client-server real-time system.

Example 1 : Video System

As illustrated in Fig. 1, there are two servers and two clients
in a Video-on-Demand system. The two clients issue task
service requests to both servers concurrently. The two
servers check if requests are schedulable and then either
acknowledge or reject the requests. One server for movies
schedules with the rate-monotonic (RM) [8] scheduling pol-
icy while the other schedules with the earliest deadline first
(EDF) scheduling policy [8].

Movie Server stores a set of movie files ready for ac-
cess by clients under the rate-monotonic scheduling pol-
icy. Commercials Server stores a set of commercial files
and work with the earliest-deadline first scheduling policy.
As shown in Fig. 1, the clients are modeled by finite-state
automata that are enhanced with scheduling tasks. In the
figure, boxes represent different operational modes of the
clients and the arrows represent transitions between modes.

Within each box, we specify tasks by a tuple
(a,¢,p,d, f) where a is the server identification, ¢ is the
computation time of the task within each period, p is the
period for the task, d is the deadline for each instance of a
task, and f specifies if task priorities are fixed (f = 1) or
dynamic (f = 0). I

In a practical client-server scheduling system, the
transition-triggering conditions can be much more complex
than in Example 1. In our implementation, we allow users

S S2
Movie Server Commercial Server
. : Earliest Deadline
Rate-Monotonic e
~ ~
Client A Client B
Commercials Commercials
—{ — fe——
(52,5,9,9,0) (52,1,2,2,0)
/ \ ‘

Pretty Woman Batman II Lion King

(51,2,5,5,1) (51,2,5,5,1) (51,1,6,86,1)

Commercials Commercials Commercials

(52,2,7,7,0) (S2,1,9,9,0) (52,3,8,8,0)

>
Peewee Herman Terminator | Toy's Story
(51,2,3,3,1) (51,1,4,4,1) (51,1,8,3,1)
Commercials Commercials Commercials
(52,1,8,8,0) (52,3,7,7,0) (52,2,7,7,0)
N J

229

Figure 1. A video-on-demand system

to specify the following scheduling policies: EDF[8], RM-
safe (RM policy based on Liu and Layland’s number of
log, 2 [8]), RM-arbitrary (RM policy based on Lehoczky’s
formula of Alog, (2%1) [6] for arbitrary deadlines), RM-
exact (RM policy based on Lehoczky, Sha, and Ding’s
schedulability test [7]), and MP (Liu and Layland’s Mixed
Priority scheduling in [8]).

The outline of this paper is as follows. Section 2 presents
our formal client-server system model and describes how
model-checking is used to verify a system. Section 3
presents all the different semantics possible in a client-
server scheduling system. Section 4 describes our imple-
mentation of the model-checking approach using the pop-
ular HyTech tool. Section 5 shows the benefit of our ap-
proach using some application examples. Section 6 con-
cludes the paper. In the following, we use A" and R* to
denote the set of non-negative integers and the set of non-
negative real numbers.

2. Client-Server Scheduling System Model

Modeling a real-time system as a client-server schedul-
ing system, our target system of verification consists of a
constant number m of servers that perform scheduling and a
constant number n of clients that issue scheduling requests.
A server adopts a scheduling policy. Each client is modeled

with a client automaton such that the client issues different
scheduling requests in various modes. On receiving a re-
quest for scheduling a set of tasks, a server decides whether
the tasks are currently schedulable or not. In the following,
we define a periodic task. It is assumed for uniformity and
simplicity that all phasings are worst-case, that is h; = 0
for all ¢ as described in the previous section.

Definition 1 : A Periodic Task
A periodic task is a tuple ¢ = (a,c,p,d, f), where a is
the identification of the server on which the task is to be
processed, c is the constant computation time of a job, p is
the request period of a job, d is the deadline within which
a job must be completed before the next job request occurs,
and f specifies if the task must be scheduled using fixed
priority [2, 5] or dynamic priority, that is, f = 1 for fixed
priority and f = 0 for dynamic priority, ¢ < p, ¢ < d, and
¢,p,d € N, the set of nonnegative integers. I
Notationally, we let T3 be the universal set containing
all possible tasks in a system . We model the behavior of
clients with finite-state machines or automata. It is assumed
that the current mode of each client is broadcast to all the
clients in the same system. The behavior of a client in each
mode can be expressed through a state predicate, which is a
boolean combination of propositions. Given a set of propo-
sitions P, a state predicate 7 of P has the following syntax.

ni=false | v | ;A

where 7 € P and 1, 72 are state predicates. Let B(P) be
the set of all state predicates on P Given a set of proposi-
tions P, a client is modeled as follows.

Definition 2 : Client Automaton (CA)
A Client Automaton
(CA)is a tuple C = (M, m° P,x,u, E,7), where M is
a finite set of modes. m® € M is the initial mode. P is a
set of atomic propositions. x : M +— B(P) is a function
that labels each mode with a condition true in that mode.
&2 M — 27 maps each mode to a finite subset of tasks in
Ty. E C M x M is the set of transitions. 7 : E — B(P)
maps each transition to a triggering condition. [
CA C starts execution at mode m°. Transitions of the
CA may be fired when triggering conditions are satisfied.

Definition 3 : Servers
A server is a-tuple {a, ¢) where « is the unique identifi-
cation for the server and ¢ is the scheduling policy of the
server.

Now with a set of servers and a set of client automata,
we are ready to define a scheduling system.

Definition 4 : Scheduling systems
A scheduling system

H is defined

asatuple ({S1,52,...,5m},{C1,Ca,...,CL}, P), where

230

{S1,52,...,Sm} is aset of servers, {C1,C2,...,Cr}isa
set of client automata, and P is the set of atomic proposi-
tions used in Cy, ..., Cp. i

Definition 5 : State
Given a system H = ({S1,...,5m},{C1,...,Cn}, P)
with C; = (My,m?, P, X, i, E;, 7;), a state s of H is de-
fined as a mapping from {1,...,n} U P to J;c;«,, M; U
{true, false} such that T

e Vi€ {1,...,n}, s(i) € M; is the mode of C; in s;

e Vr € P, s(r) € {true,false} is the truth value of r in

s; and [

Definition 6 : Satisfaction of state predicate by a state

State predicate 7 is satisfied by a state s, written as s |= 7 iff
s [~ false; Vr € P,s = riff s(r) = true; and s =11 A1
iff s = and s =12 I

Definition 7 : Mode Transition
Given a system H = ({S1,...,5m},{C1,--.,Cr},P)
with C; = (M;, m?, P, xi, i, Ei, 7)), and two states s and
s', there is a mode transition from s to s’ in H, in symbols
s — &', iff there is an 1 < ¢ < n such that

o (s(2),s'()) € Ej;
e 5(d) = mi(s(d), '(4));

e foralll1 < j<mnandj#is(j) =5(0); A

3. Semantics of Scheduling Systems

In a client-server scheduling system, many different ex-
ecution semantics are possible. Different semantics result
in a difference in the verification results. The following are
the main factors that result in different semantics.

e concurrency among clients and among servers,

e possible behaviors exhibited by clients and servers,

e.g., passive and active, and :

e possibility of performing schedulability check at dif-

ferent instants of time during execution.

In our verification framework, when the schedulability
check time approximation model is used the servers are not
modeled, only the client automata are translated into au-
tomata [4]. When the resolved time units model is used
besides the client automata, each server is also modeled by
an individual automaton.

When servers are also modeled, there are totally 64
different semantics modeled in our framework. We clas-
sify them into eight different factors, which are further
grouped into two orthogonal classes, namely, Type and
Check classes. There are eight semantics in the Type class,
which differentiate between active and passive clients as
well as servers. There are also eight semantics in the Check
class, which differentiate between performing schedulabil-
ity check before or after a transition. Since the two classes

are orthogonal, we totally have 8 x 8 = 64 semantics pos-
sible. When servers are not modeled, the Type class of se-
mantics do not exists, hence only 8 different semantics of
the Check class are possible.

3.1. Type Class of Semantics

Recall that task scheduling requests are generated by
clients, schedulability is checked by servers, and if schedu-
lable, tasks are executed by servers. It remains to consider
whether job executions are: (1) terminated by the servers
and clients are notified, or (2) terminated by the clients and
servers are notified. One side of the client-server system
must play the active part (terminate jobs) and the other side
must be passive (wait for termination notification). The fol-
lowing five factors are considered in this class of semantics.

e active and passive parts played by clients and servers,
reliable and unreliable passive servers (see subsubsec-
tion 3.1.1),

o hard or soft passive clients (see subsubsection 3.1.2),
e time duration to wait for acknowledgments: zero, pos-
itive, forever, and

entering error mode when no acknowledgment is re-
ceived with a zero or a positive threshold time interval.

As shown in Fig. 2, eight different semantics can be dis-
tinguished by considering the above five factors.

3.1.1 Active-Clients & Passive-Servers

Clients actively terminate job executions by notifying
servers. Servers are distinguished as reliable and unreli-
able. Reliable servers will eventually terminate jobs and
send an acknowledgment to the clients. Unreliable servers
may or may not send an acknowledgment to the clients. The
following cases are possible.

o Active-Clients & Passive Reliable Servers (ACPRS):

Clients here block-wait for acknowledgment of job ter-
mination from servers.
Active-Clients & Passive Unreliable Servers (AC-
PUS): When job terminations are not guaranteed by
unreliable servers, clients may either move on to its
sucessor mode (ignoring the possibility that the jobs
may have not terminated), or enter an error mode (indi-
cating a dangerous state). Hence, we have the follow-
ing cases: Proceed Without Acknowledgment (PWA),
Enter Error Mode (EEM), and Wait for Acknowledg-
ment (WFA). Each of the former two is further distin-
guished into Zero-Timeout and Positive-Timeout.

3.1.2 Passive-Clients & Active-Servers

Here, jobs are terminated actively by servers and clients are
notified of job completion. Since clients are passive, they
can be further distinguished into hard and soft. Hard clients

231

move from one mode to another, that is perform a transition,
when both the transition triggering conditions are satisfied
and the currently executing jobs are complete or terminated.
Soft clients may perform a transition without waiting for the
current jobs to complete, only transition triggering condi-
tions must be satisfied. Hence, we have two more seman-
tics: Passive Hard Client & Active Server (PHCAS), and
Passive Soft Client & Active Server (PSCAS).

3.2. Check Semantics

This class of semantics distinguish between when
schedulability checks are performed, that is, either before
a transition or after one. The following four factors affect
execution semantics.

¢ Schedulability check of a set of tasks in a client mode
is performed by the servers, but requests for such
checks are generated by clients. Schedulability check
could be done either before a mode is entered or after.
Depending on whether these out-going transitions of
a mode are considered (that is, triggering conditions
tested) in parallel or sequentially, we can have differ-
ent computation semantics.

On the server side, where there are more than one
servers schedulability check could be performed in
parallel or sequentially.

When a set of tasks in a mode are not schedulable,
should the client have the choice of jumping to the next
mode or must it keep trying in the current mode until
the tasks are scheduled?

The first factor allows two different categories of seman-
tics, namely, Scheduling Check Before Transition (SCBT)
and Scheduling Check After Transition (SCAT). Within each
category, four semantics are possible depending on the other
factors listed above. Totally, eight different semantics are
described in the following two subsubsections. In a previ-
ous related paper [4], the authors only proposed four dif-
ferent semantics and the implementations were also partial.
Here, we present a more complete and organized classifica-
tion of different semantics possible in a scheduling system
and also implement all the semantics. The examples from
[4] were rerun to obtain more complete reduction results.

3.2.1 Scheduling Check Before Transition (SCBT)

In this category of semantics, each client must be sure that
all the tasks in a mode are schedulable by the servers be-
fore any transition that leads into that mode is taken, that
is, triggering condition tested. In the following, we assume
that a client has reached a mode m in some computation
and there are at least two successor modes from m, labeled
as ' and m”, with transitions e’ and e” leading from m to
m' and m", respectively. Based on second and third factors
described above, a system has the following four semantics.

Active-Client & Passive Reliable Server

Type Class of

Semantics . . .
Passive Hard Client & Active Server

Passive Soft Client & Active Server (PSCAS)

(ACPRS)

Active-Client & Passive Unreliable Server

(ACPUS)

Zero Timeout

Proceed Without Ack (PWA) ositive Timeout

Zero Timeout

Enter Error Mode (EEM) <
Positive Timeout

(PHCAS)

Wait For Ack (WFA)

Figure 2. Type Class of Semantics

(a) Sequential-Test Sequential-Check (STSC): A client
checks the schedulability of the tasks in a successor mode
m' by sequentially generating requests to the servers. After
a positive schedulable response is obtained from each of the
servers, indicating that the servers can concurrently sched-
ule all the tasks in a successor mode m/’, then the client will
test if the transition e’ leading from m to m/ is triggerable.
Each out-going transition of mode m is test for triggerabil-
ity in a sequential order.

(b) Sequential-Test Parallel-Check (STPC): In contrast to
SCBT/STSC described above, schedulability check is per-
formed concurrently by generating requests to all the
servers simultaneously. The transitions are still tested se-
quentially for triggerability.

(c) Parallel-Test Sequential-Check (PTSC): Here, a client
tests the triggering conditions of all out-going transitions of
a mode m simultaneously, but schedulability check requests
are generated to the servers sequentially.

(d) Parallel-Test Parallel-Check (PTPC): Here, both
schedulability check requests generation to all the servers
as well as testing of transition triggering conditions are per-
formed in parallel.

3.2.2 Scheduling Check After Transition (SCAT)

Based on the third and fourth factors described at the start
of Section 3, a scheduling system may have the following
four semantics.

(a) Strict-Scheduling Sequential-Check (SSSC): Under this
semantic, a client upon entering a mode after a transition,
generates requests to the servers sequentially for schedula-
bility check of the tasks in the mode. There are two cases:

e After each server has responded with a positive
(schedulable) answer, the client starts the job instances
associated with each task in the mode.

e If one server has returned a negative (unschedulable)
answer, then the client re-starts the whole procedure of
sequentially requesting each server for tasks schedula-
bility check. A client cannot proceed on the next mode
(along a triggerable transition) if the tasks in the cur-
rent mode are not scheduled.

(b) Strict-Scheduling Parallel-Check (SSPC): Under SSPC

232

semantic, a client upon entering a mode after a transi-
tion, generates request to all the servers simultaneously
for schedulability check of the tasks associated with the
mode. Strict scheduling is applied just as in SSSC (de-
scribed above). Briefly, a client cannot proceed on to a next
mode if the tasks in the current mode are not scheduled.
It must keep trying by generating schedulability check re-
quests to the servers. ' ‘

(¢) Loose-Scheduling Sequential-Check (LSSC): Under
LSSC, a client upon entering a mode after a transition, gen-
erates requests sequentially ‘to the servers for schedulabil-
ity check of the tasks in the mode. If a server returns a
negative (unschedulable) response, a client has the option
of whether to repeat the whole procedure of schedulabil-
ity check or proceed on to a next mode along some enable
transition. This option if referred to as loose scheduling,
that is, a client can non-deterministically choose whether to
continue scheduling the tasks in a mode or proceed onward.
Here, we restrict LSSC to at least checking for schedulabil-
ity once for each mode.

(d) Loose-Scheduling Parallel-Check (LSPC): Under LSPC
semantic, a client upon entering a mode after a transi-
tion, generates requests to all the servers simultaneously
for schedulability check of the tasks specified in the mode.
Loose scheduling is applied as in LSSC.

4. Implementation

The theoretical framework of a Client Server Schedul-
ing System Model as presented in Section 2 has been
implemented into a practical tool for verifying schedul-
ing systems. The implementation mainly constitutes two
parts: scheduling check time computation and translating a
scheduling system description into a pure automaton.

Since schedulability check time computation had been
dealt at length in [4], we will not go into the details here.
Instead we will concentrate how the translation mechanism
works. We developed a translator for translating the client-
server scheduling system specification (in our own input
language) to the HyTech specification. Although a schedul-
ing system can be encoded using the HyTech input lan-
guage, yet the specification would be very lengthy, tedious,

and error-prone. Using our input language, the specification
is short and compact and the translation is done system-
atically, thus avoiding any human-errors. For example, in
the real-time operating system example (described in Sec-
tion 5), using our input language the specification consisted
of only 12 modes and 17 transitions, whereas the result-
ing translation into HyTech input language consisted of 58
modes and 416 transitions. Thus, the translator is a neces-
sity for verifying scheduling systems.

HyTech [3] is a popular verification tool for systems
modeled as linear hybrid automata. HyTech has been used
to verify various different hybrid systems. Each client au-
tomaton is implemented as a linear hybrid automaton in
HyTech and the analysis tool is used to verify our system.
According to the different scheduling semantics, we have
different types of implementation schemes.

4.1 Type Class of Semantics

Each client and each server is modeled by an automa-
ton. A client automaton (Definition 2) is translated into
a pure automaton (without task specifications in modes),
while a server is modeled by a 3-modes automaton. Each
client must lock the servers (either sequentially or in par-
allel), makes schedulability check requests to the servers,
and then either enters an unschedulable error (retry) mode
or goes into a job execution mode (RunJob).

e ACPRS Implementation Since the servers are reli-

able here, we simply model each server as in Fig. 3.
A server synchronizes with a client on completion of
each task. A mode transition in a CA is directly imple-
mented as a location transition in HyTech.

¢ ACPUS Implementation Due to the servers being un-

reliable, each server automaton has one more location
called Ack. In this way, the timeout (either zero or pos-
itive) for acknowledgment waiting could be modeled.
An unreliable server automaton is shown in Fig. 4.
To model the timeout for acknowledgment waiting in
clients, one location and two transitions are used to im-
plement each mode transition in a client automaton.
As shown in Fig. 5 (Proceed Without Ack), a client
waits in Sync-Wait either for zero time units or a pre-
specified time period. In Fig. 5 (Enter Error Mode), a
client enters an error mode (on timeout). Further, in
Fig. 5 (Wait for Ack), a client waits indefinitely for job
termination acknowledgment.

¢ PHCAS Implementation An active server is modeled

as shown in Fig. 6. It non-deterministically terminates
a running (R; = 1) task by setting R; to 2. A client
is thus notified that a task has completed (R, = 2).
On trigger satisfaction, a client then performs a mode
transition, in synchrony with the servers. Here, a mode
transition is again modeled as a single location transi-

233

locked?

Figure 3. Passive Reliable Server

locked?

Figure 4. Passive Unreliable Server

tion except that there is a condition on task termination
(R; = 2) besides the original transition triggering con-
dition. This is illustrated in Fig. 7

e PSCAS Implementation The active servers are mod-
eled as in PHCAS. Passive soft clients perform a
mode transition with or without mode task termina-
tion. Hence, each mode transition in a client automa-
ton is modeled by two location transitions: one with
only the original transition triggering condition and an-
other with a boolean conjunction of the original transi-
tion triggering condition and job termination (R; = 2).
This is illustrated in Fig. 7.

4.2 Check Class of Semantics

For SCBT semantics, we have a transition-oriented im-
plementation and for SCAT, we have a mode-oriented im-
plementation. A transition-oriented implementation means
that the implementation of a transition is complex (needs
more than one HyTech location) while that of a mode is
simple (implemented by a single HyTech location). Sim-
ilarly, a mode-oriented implementation means that a mode
implementation needs more than one HyTech location while
that of a transition requires only a single HyTech transition.
SCBT and SCAT implementations are almost the same as
that given in [4] and hence omitted here.

Proceed Without Ack
Zero-Timeout

Proceed Without Ack
Positive-Timeout

Enter Error Mode
Zero-Timeout

Enter Error Mode Wait for Ack

Positive-Timeout

Figure 5. Active Clients

i = 0
done!

locked?

Figure 6. Active Server

5. Application Examples

To illustrate the generality of our approach, we demon-
strate the benefits of three different types of systems: a
hardware system such as a video-on-demand (VOD) sys-
tem, a software system such as a real-time operating system
(RTOS), and an agent system such as a package delivery
system (PDS).

There are two servers in the video examples (just as in
Fig. 1). The movie server schedules tasks with the rate-
monotonic (safe) policy, while the commercial server does
so with the earliest-deadline first policy. For the real-time
OS example [4], there are four servers: OS kernel, dis-
play, memory, and printer, which use rate-monotonic (safe),
earliest-deadline first, rate-monotonic (arb), rate-monotonic
(exact) policies, respectively, for scheduling the tasks. For
the delivery system example, it is assumed that there are
three delivery agents and four clients. The delivery agents
must deliver packages to the clients according to scheduling
policies: rate-monotonic (exact), earliest-deadline first, and
mixed scheduling.

Two versions are given for each of the three kinds of
systems. All the six examples (see [4]) were specified in
our input language which was then automatically translated
by our translator into the HyTech input language. Two sets

234

trigger AR; =2 trigger AR; = 2

trigger
done! done! donge!
Hard Soft

Figure 7. Passive Clients

of results have been obtained.

One set of results is obtained by running all examples
under the ACPRS type semantics with different check se-
mantics (SCBT). These results are tabulated in Table 1. An-
other set of results is obtained by running the VOD (Fig. 1)
example under different Type semantics (ACPRS, ACPUS,
...). These results are tabulated in Table 2. Both sets of
results show that our approach indeed reduces the total size
of the system state space for verification as compared to the
pure model checking approach. Here, pure model checking
means that we do not take advantage of the scheduling algo-
rithms and directly verify the systems which might contain
a lot of unschedulable states.

From the first set of results, we can make the follow-
ing observations. Significant reductions can be achieved in
systems that have a heavy workload. With each type of ex-
ample, either VOD or RTOS, it is observed that with a high
complexity in the client automata (i.e., the number of modes
and transitions) the SCBT implementation shows a larger
benefit (i.e., a smaller state space size) compared to all the
semantics of the SCAT implementation (not shown here).
This is due to the stronger semantics of a transition not
occuring before the tasks schedulability of its destination
mode is checked. Comparing the two semantics of SCAT:
SSS and LSS, in all the examples it is observed that strict

Table 1. Comparison of Pure Model Checking and
Our Approach (SCBT)

Number of regions (convex predicates)
Example STSC STPC

Pyc | Smc | % | Puc | Suc | %
VOD 3226 | 2602 | 80 122 73 | 60
VOD1 3874 | 2284 | 59 284 171 | 60
VOD2 1167 378 | 32 96 28 | 29
RTOS1 oM 2656 | 1941 | 73
RTOS2 oM 739 2151 29
PDS1 oM 4149 | 3134 | 76
PDS2 oM oM

STSC: Sequential Test Sequential Check, STPC: Sequential Test
Parallel Check, %: Smc | Puc, O/M: Out of Memory

semantics shows a larger benefit with our approach. This
is due to the stronger restriction in SSS of tasks required to
be scheduled before the client can progress on. Thus, we
can conclude that both theoretically and experimentally we
have shown that SCBT has the strongest notion of schedu-
lability and LSS of SCAT has the weakest notion with SSS
of SCAT in-between SCBT and LSS.

From the second set of results, we can see that ACPRS
had the smallest state-space size before and after reductions.
We also note that the greatest reduction was obtained in AC-
PUS/PWA, irrespective of the check semantics used. This is
due to the unreliable behavior of the servers that results in
a lot of states being unschedulable (thus unreachable) and
were thus eliminated by our approach, while they were still
considered by the pure model-checking approach. Further,
we also noted that ACPUS/EEM and ACPUS/WFA gave
the same state-space representation size and reduction. This
is because entering an error mode is semantically the same
as waiting forever for an acknowledgment.

6. Conclusion

Model-checking, though a popular verification method,
has yet to be made more efficient for verifying the current
highly complex systems. We have shown how complex
real-time systems can be easily verified using the popular
model-checking approach if we model the complex sys-
tem as a client-server scheduling system and then verify it.
This approach is meaningful when we observe that almost
all complex systems need some sort of scheduling so that
the tasks can be executed consistently and efficiently. Our
framework has been shown feasible through the implemen-
tation using our translator and the HyTech verification tool.
Different semantics have been implemented and compared
using several examples. Future work will consists of further
utilizing engineering paradigms for model-checking.

235

Table 2. Comparison of Different Type Semantics
(under SCAT/LSPC and SCBT/STPC)

[Type Pye | Sme | %
ACPRS 110 68 62
ACPUS/PWA 385 205 53
ACPUS/EEM 218 145 67
ACPUS/WFA 218 145 67
PHCAS 222 152 | 68.6
PSCAS 584 324 | 55.5

| Type | Puc | Sme | % |
ACPRS 122 73 | 60
ACPUS/PWA 428 226 | 53
ACPUS/EEM 239 157 | 66
ACPUS/WFA 239 157 | 66
PHCAS 245 162 | 66
PSCAS 671 366 | 55

ACPRS: Active-Client & Passive Reliable Server, ACPUS:
Active-Client & Passive Unreliable Server, PWA: Proceed With-
out Acknowledgment, EEM: Enter Error Mode, WFA: Wait For
Acknowledgment, PHCAS: Passive Hard Client & Active Server,
PSCAS: Passive Soft Client & Active Server, %: Smc | Puc

References

[1] R. Alur and D. Dill. Model checking for real-time systems. In

Sth IEEE Conference on Logics In Computer Science, 1990.
[2] M. Harbour, M. Klein, and J. Lehoczky. Fixed priority

scheduling of periodic tasks with varying execution priority.
In Procs. IEEE Real-Time System Symposium, pages 116-128,

1991.
T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next

generation. In Procs. IEEE Real-Time Systems Symposium,

pages 5665, 1995.
P-A. Hsiung, F. Wang, and Y.-S. Kuo. Scheduling system

verification. In Proc. of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’99), Lecture Notes in Computer Science (LNCS), vol-

ume 1579, pages 19-33, March 1999.
D. Katcher, H. Arakawa, and J. Strosnider. Engineering and

analysis of fixed priority schedulers. IEEE Trans. Software

Engineering, 19:920-934, September 1993.
J. Lehoczky. Fixed priority scheduling of periodic task sets

with arbitrary deadlines. In Procs. IEEE Real-Time Systems
Symposium, pages 201-209, 1990.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic schedul-
ing algorithm: exact characterization and average case behav-
ior. In Procs. IEEE Real-Time Systems Symposium, pages

166-171, 1989.
C. Liu and J. Laylang. Scheduling algorithms for multipro-

gramming in a hard-real-time environment. Journal of the
Association for Computing Machinery, 20(1):46-61, January
1973.

[31

4

[5]

[6]

7]

(8]

