
 1

Real-Time Constraints
Pao-Ann Hsiung†
Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
E-mail: hpa@computer.org

Abstract

Real-time constraints are restrictions on the timings of events, such that they occur
on-time. A system with real-time constraints is called a real-time system. Not merely
the performance of such systems, but also their feasibility depends on the satisfaction
of real-time constraints. Hard constraints must be satisfied for system correctness,
while the violation of soft constraints only degrades a system. Specification of
real-time constraints requires either some extensions of programming languages
through annotations and logic expressions, or the use of temporal logics or some
formal declarative language with temporal constructs. Stringent timing restrictions
complicate system design and verification. The time model can be dense or discrete,
thus giving different methods for real-time system synthesis and verification. This
article surveys the specification, design, and verification of real-time constraints and
systems. The most important technique for guaranteeing real-time, namely scheduling,
is briefly surveyed. Different system models are presented for handling real-time
constraints such as Petri nets, timed automata, process algebra and object-oriented
model. Design techniques for real-time hardware systems and for real-time software
applications are introduced and discussed. Hardware-software codesign is also
introduced. Verification techniques for real-time constraints, such as model checking,
are also presented.

† The author will be moving to the Department of Computer Science and Information Engineering,
National Chung-Cheng University, Chiayi, Taiwan, starting February 2001. The work was supported by
several research grants from the National Science Council, Taipei, Taiwan.

 2

Contents

Abstract..1

1 Introduction...3

2 Un-timed and Real-Time Systems...5

2.1 Petri Nets ..6

2.2 Timed Automata ..9

2.3 Process Algebra..10

2.4 Object-Oriented Techniques... 11

3 Real-Time Constraints ...12

3.1 Real-Time Languages..13

3.2 Constraints Checking and Real-Time Logic ...14

4 Real-Time System Design...17

4.1 Real-Time Scheduling ...17

4.2 Hardware System Design..20

4.3 Software System Design ..21

4.3.1 Formal Software Synthesis...21
4.3.2 Object-Oriented Application Frameworks ..22
4.3.3 Real-Time Operating Systems ..23
4.3.4 Hardware-Software Co-design...23

5 Real-Time System Verification ..24

6 Conclusion and Future Work ..27

References ..28

 3

1. Introduction

Should real-time be fast? No, that is a myth! In fact, real-time is just in time. For
example, an avionics flight control system must spend 2.5 ms for attitude control
every 50 ms period and 0.28 ms for flutter control every 4 ms period. The period
restriction must be strictly abided, no faster and no slower, otherwise an airplane
might crash! These just-in-time aspects constitute what are called real-time
constraints.

With the increased use of intelligent everyday-life systems, such as electric home
appliances, office automation contrivances, and medical equipments, it has become
increasingly important to assimilate knowledge on how real-time constraints can be
specified, modeled, implemented, and verified. Without trying to be exhaustive, this
article tries to cover most aspects of real-time constraints, such that both a novice and
an expert may benefit from referring to it.

Informally speaking, a real-time constraint is any condition on the timing of events,
including event enabling, firing, initiation, resource usage, synchronization, and
termination. A real-time constraint may be as simple as the specification of a deadline
for a particular task to complete execution. A periodic real-time task may be further
associated with a period constraint. For example, task A must execute once every 50
ms period with a deadline of 60 ms. Further details on the specification of real-time
constraints are given in Section 3.

Constraints may be classified in several ways [1]. As far as strictness of timing is
concerned, constraints may be classified as hard or soft. Hard constraints must be
satisfied, the failure of which results in system crashes or serious consequences. Soft
constraints may be satisfied and have tolerance ranges associated, the violation of
which merely degrades a system behavior, without endangering it or the environment.
Hard real-time constraints are found in high-assurance systems, such as nuclear
reactors, avionics, power systems, medical emergency equipments, and space
navigation systems. Soft real-time constraints are found in low-assurance systems,
such as telecommunication systems, network systems, electric home appliances,
flexible manufacturing systems, and office automation systems.

Constraints can also be classified based on the type of specification. There are two
types: (1) abstract specifications in the form of an assertion language that is
independent from the design or implementation language, and (2) integrated
specifications that are inseparable from the implementation language and make use of

 4

language variables like actual time and resource status.

Timing constraints can be evaluated in different ways: (1) static evaluation (i.e.
pre-runtime), which implies that the timing specifications are implementation
independent, (2) dynamic evaluation (i.e. at runtime), which is necessary if priorities
are specified, and (3) hybrid evaluation, which is a combination of the above two and
is necessary in off-line schedulability analysis with exact runtimes.

The time domain in a real-time system can be discrete or dense. Discrete time
allows simpler analysis and instrumentation procedures because the tasks in a
real-time system may then be simply taking turns as in a card game of poker.
Examples of such systems are telephone networks, communication protocols, and
manufacturing systems, where automatic control can be applied by enabling and
disabling of system events. Here, the domain of integers is used to model time [2], [3].
A smallest measurable time unit is specified a priori in the discrete time model. The
fictitious clock approach includes an explicit tick transition making time a global state
variable [4], [5]. Each tick increments time by some predetermined time quantum. In
this model, events between the i-th and (i+1)-th clock ticks are assumed to occur at
some unspecified time between times i and i+1. Thus, it is impossible to know the
exact time delay between any two events. The model can be interpreted as an
approximation to real-time, where events between time i and i+1 have their
occurrence times truncated to i.

Dense time domain makes analysis and instrumentation procedures much more
complex due to requirement of exact timeliness. Some systems must be analyzed and
implemented using the dense time model for it to correctly satisfy given real-time
constraints. Examples of such systems include automation of transport systems, such
as railway and flight control, which depends critically on reaction times. Computer
networks demand a maximal response time [6]. There are four strong reasons why a
dense model of time is necessary [7]. A dense model of time is needed for correctness.
It is more expressive than the others. Composition of processes is straightforward in
the dense-time model. Finally, some important problems for finite-state systems have
the same complexity using a dense-time model as for the other models.

This article is organized as follows. Section 2 introduces differences between
un-timed and real-time systems along with system models. Section 3 presents
real-time constraints, specification methods, language constructs, and constraint
checker. Section 4 deals with real-time system design, including hardware, software,
and their models. Section 5 covers real-time system verification, including
model-checking, verification tools, and verification techniques. Section 6 concludes

 5

this article with pointers to future research directions and technology improvements.

2. Un-timed and Real-Time Systems

Control systems such as certain flexible manufacturing systems perform a sequence
of tasks based on external events, such as the push of a switch or a lever. The
correctness of such systems depends on the execution sequence and not on time. Thus,
they are called un-timed systems. Although un-timed systems do not depend on time
for task execution, their overall performance may still be related to time. For example,
a scheduling criterion for an un-timed flexible manufacturing system may be the
minimization of total execution time or the maximization of total throughput. But,
often such types of timing constraints affect neither the correctness nor the stability of
a system. These timing constraints are thus not real-time constraints and are out of
scope of our discussion in this article.

From the above discussion, it can be stated that real-time constraints include only
those constraints that actually affect a system’s correctness, feasibility, or stability.
Real-time systems are control systems that have constraints on the exact timing of
task executions, which are expressed as real-time constraints. For example as shown
in Fig. 1, an Autonomous Intelligent Cruise Controller (AICC) developed by Swedish
Road Transport Informatics Programme and installed in a Saab automobile [8]
requires traffic light and speed information to be polled every 200 ms, information
processing to be performed every 100 ms, and final coordination control to be
performed every 50 ms. In the figure, SRC stands for Short Range Communication
and EST stands for Electronic Servo Throttle. This is an example of a typical
embedded real-time system.

Traffic
Light Info

(SRC)

Speed
Limit Info

(SRC)

SRC

T=200ms

Preceding Vehicle
Estimator

(Distance Sensor)

Speed
Sensor
(EBC)

Distance
Control

Green
wave

Control

Speed Limit
Control

ICC Regulator

T=100ms

Cruise
Switches

(Main
Instrument
Controller)

ICC
Main

Control

Coordination &
Final Control

Cruise
Info
(Main

Instrument
Controller)

Speed
Actuator

(EST)

T=100msSupervisor

Final Control
EST

T=50ms

Fig. 1 Autonomous Intelligent Cruise Controller [8]

 6

In the rest of this section, different models of real-time systems will be introduced
and compared, including timed variants of Petri Nets, timed automata, process algebra,
and object-oriented models.

2.1 Petri Nets

Petri nets are a graphical form of formal system model, which can be used to
efficiently model transition systems characterized by concurrency, non-determinism
or conflicts, synchronization, merging, confusion, mutual exclusion, and priority [9].
We first define a standard Petri net and then introduce its timed versions, which can
be used to model real-time systems.

In the following, the set of integers and non-negative real numbers are denoted by
N and R≥0, respectively A standard Petri net can be defined as follows:

Definition 1: Petri Net
A Petri net is a 5-tuple (P, T, I, O, M0), where

 P = {p1, p2, …, pm} is a finite set of places,
 T = {t1, t2, …, tn} is a finite set of transitions, P∪T≠∅, and P∩T= ∅,
 I: (P × T) → N is an input function that defines directed arcs from places to

transitions,
 O: (P × T) → N is an output function that defines directed arcs from transitions

to places, and
 M0: P → N is the initial marking, where a marking is an assignment of tokens

to the places of a Petri net.

A token is a primitive concept for Petri nets (like places and transitions). Tokens
are assigned to, and can be thought to reside in, the places of a Petri net. The number
and position of tokens may change during the execution of a Petri net. The tokens are
used to define the execution of a Petri net.

2 4

Fig. 2 A standard Petri net

 7

A Petri net can be graphically represented as shown in Fig. 2, where a circle
represents a place, a bar or a box represents a transition, an arrow represents an arc
connecting a place and a transition, and a black dot represents a token. If I(pj, ti) = k
(or O(pj, ti) = k), then there exist k arrows connecting place pj to transition ti (or
connecting transition ti to place pj). An arc may be labeled by an integer, which
represents its multiplicity or weight.

A transition t is said to be enabled if each input place p of t contains at least the
number of tokens equal to the weight of the directed arc connecting p to t, i.e., M(p) ≥
I(p, t) for any p in P, where M is the current marking. An enabled transition t may or
may not fire depending on additional interpretation. A firing of an enabled transition t
removes from each input place p the number of tokens equal to the weight of the
directed arc connecting p to t. It also deposits in each output place p the number of
tokens equal to the weight of the directed arc connecting t to p.

Petri nets can be used to analyze system properties such as reachability,
boundedness, conservativeness, and liveness. Analysis methods of Petri nets include
the coverability tree, incidence matrix and state equation, invariant analysis, and
reduction rules.

The standard Petri net has been extended into high-level Petri nets by several
domain experts, including extensions such as fuzzy, object-oriented, stochastic,
generalized, colored, and timed. Three timed versions of Petri nets are introduced here,
namely Deterministic Timed Petri Nets (DTPN), Time Petri Nets (TPN), and Timing
Constraint Petri Nets (TCPN).

There are three types of DTPN, depending on where deterministic time labels
(representing time delays) are placed. If time labels are associated with transitions,
then it is called Deterministic Timed Transitions Petri Nets (DTTPNs) [10]. If time
labels are associated with places, then it is called Deterministic Timed Places Petri
Nets (DTPPN). If time labels are associated with arcs, then it is called Deterministic
Timed Arcs Petri Nets (DTAPN). Only DTTPNs are defined here, because the other
DTPNs can be defined similarly.

Definition 2: Deterministic Timed Transitions Petri Net
A deterministic timed transitions Petri net (DTTPN) is a 6-tuple (P, T, I, O, M0, D),
where (P, T, I, O, M0) is a standard Petri net, and D: T → R≥0 is a function that
associates transitions with deterministic time delays. A transition ti in a DTTPN can
fire at time d if and only if

 in any input place p of ti, w(p, t) tokens have resided for the time interval [d−di, d],
where w(p, t) is the weight associated with arc connecting p to t and di is the

 8

associated firing time of ti, and
 after a transition fires, tokens are produced at output places at time d.

Depending on a given real-time system, different DTPNs may be used to model it.
DTAPN is more general and can thus be used to model complex real-time systems.

Merlin and Farber [11] proposed Time Petri Nets (TPN), in which two time values
are associated with each transition. The values constitute a time interval within which
a transition is enabled and may fire. A formal definition is as follows.

Definition 3: Time Petri Net
A Time Petri net (TPN) is a 6-tuple (P, T, I, O, M0, S), where (P, T, I, O, M0) is a
standard Petri net, and S: T → Q+ × (Q+ ∪ ∞) is a mapping called static interval,
where Q+ is the set of positive rational numbers.

If a transition ti has an interval (a, b) associated with it, then a is the minimum time
ti must wait for after it is enabled and before it is fired, and b is the maximum time the
transition can wait for before firing if it is still enabled. Transition firing is
instantaneous, that is, firing a transition takes no time to complete. When a pair (a, b)
is not defined, then it is implicitly assumed that the corresponding transition is a
classical Petri net transition and (a = 0, b = ∞).

Sloan and Buy [12] developed a set of reduction rules for TPNs, such as serial
fusion, pre-fusion, post-fusion, and lateral fusion. These reduction rules can reduce
the size of the exponentially large state-spaces and thus help in analyzing TPNs.
Further compositional TPNs are also defined for augmenting Petri nets with module
constructs. A compositional TPN consists of two basic elements: component TPN
models and inter-component connections.

One more type of timed Petri nets is called Timing Constraint Petri Nets (TCPN)
[13], which was inspired from DTPN and TPN. The major difference is that TCPN
assume a weak firing mode, in contrast to the strong firing mode of the other two
types of timed Petri nets. The weak firing mode does not force any enabled transition
to fire. The strong firing mode forces an enabled transition to fire immediately. The
strong firing mode is not suitable for some nets with conflict structures, which results
in contradictions.

Definition 4: Timing Constraint Petri Net
A Timing Constraint Petri net (TCPN) is a 7-tuple (P, T, I, O, M0, C, D), where (P, T,
I, O, M0) is a standard Petri net, C is a set of integer pairs, (TCmin(ptj), TCmax(ptj)),
where TCmin(ptj) ≤ TCmax(ptj) and ptj is either a place or a transition, and D is a set of
firing durations, {FIREdur(ptj)}.

 9

A transition tj with a time pair, (TCmin(tj), TCmax(tj)), is said to be enabled if each of
its input places has at least one token. A transition tj, which is enabled at time t, is said
to be firable during the time period t + TCmin(tj) to t + TCmax(tj). A firable transition
can fire but there is no guarantee that the firing will complete successfully because the
firing of a transition takes a period of time FIREdur(tj).

2.2 Timed Automata

When real-time systems are more control-oriented, they can be modeled by Timed
Automata (TA), which are a timed extension of finite state machines. Before defining
TA, some necessary terms are defined as follows, where the set of integers and
non-negative real numbers are denoted by N and R≥0, respectively.

Definition 5: Mode Predicate
Given a set C of clock variables and a set D of discrete variables, the syntax of a mode
predicate η over C and D is defined as: η := false | x~c | x−y~c | d~c | η1∧η2 | ¬η1,
where x, y ∈ C, ~ ∈ {≤, <, =, ≥, >}, c ∈ N, d ∈ D, and η1, η2 are mode predicates.

Let B(C, D) represent the set of all mode predicates over C and D. A TA is
composed of various modes interconnected by transitions. Variables are distinguished
into clock and discrete. Clock variables increment at a uniform rate and can be reset
on a transition. Discrete variables change values only when assigned a new value on a
transition.

Definition 6: Timed Automaton
A Timed Automaton (TA) is an 8-tuple A = (M, m0, C, D, X, E, T, R) such that: M is a
finite set of modes, m0 ∈ M is the initial mode, C is a set of clock variables, D is a set
of discrete variables, X: M → B(C, D) is an invariance function that labels each mode
with a condition true in that mode, E ⊆ M×M is a set of transitions, T: E → B(C, D)
defines the transition triggering conditions, and R: E → 2C∪(D×N) is an assignment
function that maps each transition to a set of assignments such as resetting some clock
variables and setting some discrete variables to specific integer values.

We further define the semantics of a TA by defining its state, mode transition, and
a feasible computation run as follows.

Definition 7: State
Given a TA A = (M, m0, C, D, X, E, T, R), a state s of A is defined as a mapping from
C ∪ D to R≥0 ∪ N such that for all x in C, s(x) ∈ R≥0 is the reading of clock x in s, and
for all d in D, s(d) ∈ N is the value of d in s.

Definition 8: Mode Transition

 10

Given two states s1, s2, there is a mode transition from s1 to s2, in symbols s1 → s2, iff
both s1 and s2 belong to some defined modes, mode invariants are satisfied by the
states, there is a transition between the two modes, the triggering condition of the
transition is satisfied by s1 and for all clocks x in C, s2(x) = 0 when x is in the reset
assignment of the transition and all other clocks are unchanged.

A real-time system is often modeled as a network of communicating TA. The TA
may share global variables including clock and discrete. State-spaces of a real-time
system modeled by a set of TA are generally very large and grows exponentially with
the large time constant and the system degree of concurrency.

2.3 Process Algebra

Process Algebra [14], [15] is a term-based formal specification language for
system design and analysis. Calculus of Communicating Systems (CCS) [14] was
extended in several works to model real-time systems, resulting in real-time process
algebras [15], [16]. Another recent work tackles state-space explosions by using
dynamic priorities, called CCS with dynamic priority, which extends CCS by
assigning priority values to actions. Unlike other real-time process algebras, CCS with
dynamic priority avoids the unfolding of delay values into sequences of elementary
steps, each consuming one time unit, thereby providing a formal foundation for
efficiently implementing real-time semantics. CCS with dynamic priority has been
proved to be bisimilar to CCS with real-time.

The syntax of CCS with real-time and with dynamic priority can be defined as
follows.

Definition 9: CCS with real-time and with dynamic priority
The syntax of CCS with real-time and dynamic priority is defined as follows:

P ::= 0 | x | α:k.P | P+P | P◊P | P|P | P[f] | P\L | µx.P

where x is a variable taken from some countable domain V, α is an action, k ∈ N, the
mapping f: A→A is a relabeling, L ⊆ A \ {τ} is a restriction set, A is the set of all
actions, and τ is an internal action. As far as the binary operators are concerned, + is a
non-deterministic choice, ◊ is a disabling operator, | is a parallel operator, and \ is the
set subtraction operator.

The semantics can be defined by action transitions and clock transitions. Here, in
CCS with real-time, α:k.P means the action α has a delay equal to k time units
associated with it and the resulting process is P. In CCS with dynamic priority, α:k.P
means the action has a priority k associated with it and the priority can be changed

 11

dynamically. The labeled transition system for a process P is a 4-tuple (P, A∪{1},→
P), where P is the set of states, A∪{1} is the alphabet, → is the transition relation, and
P represents the start state. Maximal progress is assumed here, that is, no idling is
allowed when a communication can take place. Further in CCS with dynamic priority,
higher priority processes can pre-empt lower priority tasks.

2.4 Object-Oriented Techniques

Real-time systems can be modeled by object-oriented techniques [17], [18], which
have been widely accepted in the software as well as the hardware design community.
Object-orientation has many benefits not found in traditional structured design. In a
real-time system, each process thread can be modeled by a class and each resource
can also be modeled by a class. Encapsulations of data and time in a class result in
safer systems, which can be upgraded more easily than conventional systems.

A standard for object-oriented modeling language, called Unified Modeling
Language (UML) [19] has been extended with a real-time profile. Real-time UML [20]
is currently a well-received design modeling paradigm in the real-time community
[21]. Further, programming languages like Java has also been recently extended for
real-time application design, with a Real-Time Specification for Java [22], by the
Real-Time for Java Experts Group. CORBA is another standard in designing
distributed object-oriented real-time applications [23].

In real-time UML modeling resources [24], QoS (quality of service) characteristics
are taken as the basis for quantitative analysis. These characteristics are given as
constraints to model elements that specify behavior at runtime, including use cases,
interactions, operations, state machine transitions, activities, and individual actions. A
realization mapping is used to compare QoS characteristics. This mapping is a
syntactical declaration that a particular resource supports a particular logical element
in some unspecified way. The user must determine the realization’s semantics and
validity. More formal and more sophisticated forms such as standard stereotypes,
involve semantic knowledge of the nature of the logical and engineering model
elements being bound. For example, a CORBA or a COM channel can realize a
communication link between two objects in a logical model. A realization package is
modeled as a UML package and represents a consistent set of mappings that are
mutually compatible and nonexclusive. A given logical model can have any number
of realization packages, each of which represents one distinct mapping of the logical
model to exactly one engineering model.

The real-time specification for Java (RTSJ) was recently proposed by the

 12

Real-Time for Java Experts Group (RTJEG), which begin development in March
1999 under the Java Community Process. The programming language Java itself was
left untouched. The specification merely enhances Java by defining new classes that
provide real-time behavior. Seven areas were proposed that required new specification,
namely scheduling, memory management, synchronization, asynchronous event
handling, asynchronous transfer of control, asynchronous thread termination, and
physical memory access. Each area considered the state-of-art technology in real-time
system and application development.

For scheduling, the only specification was that a fixed-priority preemptive
scheduler with no fewer than 28 priorities was required. For memory management,
several areas of memory were newly defined, namely scoped memory, immortal
memory, and Java heap. For synchronization, the priority inheritance protocol was
required to be implemented by default and wait queues were defined for
communication among regular Java threads, Real-Time (RT) threads, and No-Heap
Real-Time (NHRT) threads. For asynchronous event handling, two new classes were
defined: AsyncEvent and AsyncEventHandler, where the former represents something
that can happen, e.g., a Posix signal, and the latter is a schedulable object that handles
an asynchronous event. A Clock class is also specified for modeling time. More than
one clock may also be implemented. For asynchronous control transfer,
AsynchronouslyInterruptedException (AIE) is specified asynchronously transfer
control. For asynchronous thread termination, safe stopping of threads is implemented.
For physical memory access, RTSJ defines two classes: RawMemoryAccess, which
allows memory access in terms of byte, word, long, and multiple-byte granularity, and
PhysicalMemory, in which Java objects can be located.

3. Real-Time Constraints

A real-time constraint is defined as a Boolean condition on the values of clock
variables. Clock variables are variables whose value increases with time. Clock
variables, or clocks in short, may be either global or local. The values of global clocks
are visible to all processes of a system and those of local clocks are visible only to
their owner processes. Clocks may be either absolute or relative. Absolute clocks take
values from a global timer, which is never reset after initialization. Relative clocks
take values from a timer, which could be a difference of two other clock values.
Clocks may be discrete or dense. Discrete clocks increase value by integral
increments, while dense clocks increase value by real-time quantums. In a single
real-time system, all clocks are discrete or all clocks are dense, but absolute and

 13

relative clocks, just as global and local clocks, may co-exist a system. Since different
models propose different syntaxes for real-time constraint specification, the exact
syntax of a Boolean condition on clock variables is dependent on the system model
used. In general, the condition evaluates to either true or false in a system state. For
example, in a timed automaton, x < 3 ∧ y ≥ 8 is a Boolean condition on clock
variables x and y, such that it evaluates to true in a particular system state only when
both the clocks have values satisfying the two predicates, respectively, in the
condition.

In the following subsection, real-time extensions to existing programming and
modeling languages are described such that real-time constraints can be specified.
Real-time languages often add statements about the temporal constraints of
computations to the syntax of the language. However, most current real-time
languages using the process model for programming also assume the conventional
run-time model which manages a set of processes preempting one another according
to their execution priority, competing for resources, and blocking when resources are
already in use, which tends to limit their ability to predict execution behavior. In the
final subsection, constraints checking for temporal correctness is described and an
associated Real-Time Logic (RTL) introduced.

3.1 Real-Time Languages

Real-time Euclid [25] was one of the earliest real-time languages, which is an
extension of Euclid. It restricts language constructs such as recursion and dynamic
memory allocation. Concurrency can also be controlled through signal and wait
constructs. Real-time Euclid was designed mainly for schedulability analysis under a
number of assumptions on the system and process behavior.

Real-time Mentat [26] is an object-oriented real-time language, which is an
extension of C++. In real-time Mentat, a programmer may specify timing constraints
in statement level. Both soft and hard deadlines can be specified. A block with soft
deadline may be skipped if the hard real-time tasks cannot meet their deadlines. It
does not support preemption of objects.

RTC++ [17] is an object-oriented real-time language, which is also an extension of
C++. It supports preemption, but not soft deadlines. Active objects are introduced and
active objects with timing constraints are called real-time objects. It supports
inheritance in active objects, synchronous communications among active objects, and
exception handling. Time is encapsulated in an active object so as to specify timings
for an operation. A critical region is realized in RTC++ by implementing an object

 14

with a guard expression. Rate monotonic scheduling is assumed.

The programming language for the Maruti system, MPL [27], also extends C++.
MPL provides several ways to specify temporal constraints on blocks of code within
an object. Loop bounds are specified and recursion forbidden to increase
predictability.

Kenny and Lin describe the Flex language [28], another extension of C++, which
includes a number of timing constraint expressions and exception handling clauses. A
polymorphism analogous to operator overloading is adopted for approximate
processing [29]. Here, polymorphism refers to providing several routines
implementing the same function, which have different properties in space and/or time.
Flex also supports monotonic algorithms, which support computations with
unpredictable behavior by establishing an initial result early and then iteratively
refining it until the deadline is reached.

Real-Time Concurrent C [30] extends Concurrent C by providing facilities for
building systems with strict timing constraints. Real-Time Concurrent C allows
processes to execute activities with specified periodicity or deadline constraints, to
seek dynamic guarantees that timing constraints will be met, and perform alternative
actions when either the timing constraints cannot be met or the guarantees are not
available.

Spring system’s real-time system description language, SDL [31], explicitly
supports specifying a computation's real time behavioral constraints, end-to-end
constraints, concurrency, and details of the hardware-software platform that are
required to accurately analyze the system and achieve predictability. The
programming language, Spring-C [32], works in concert with the specification
language. Its structure constrains the programmer in ways, which ensure that
worst-case execution behavior, including execution times, can be automatically
predicted for the particular hardware platform being used. Of course, such platforms
should have predictable instruction execution times. A key aspect of the Spring-C
compiler is that it automatically identifies all of a computation's potential blocking
points, i.e., points during execution when it can block for resources or wait for
synchronous communication to occur [33].

3.2 Constraints Checking and Real-Time Logic

A reactive real-time system has to compute a result to an external trigger event
within certain timing constraints even in the presence of faults. It has to initiate some
adaptive reactions when an assumption is violated [34]. Possible reactions include the

 15

activation of stand-by resources, a rescheduling of the remaining resources, or the
execution of alternative algorithms for solving the problem under certain emergency
conditions. For a reaction to be made, a system has to be informed of the occurrence
of a violation. Run-time monitoring and checking of constraints are thus a part of such
reactive systems. A constraint checker is the required facility.

Major work in the area of checking timing constraints in a real-time system were
done by Jahanian and Mok, which was initiated by proposing Real-Time Logic (RTL)
language [35] for the specification of real-time systems. The semantics of RTL is
based on the occurrence of events, which result on the execution of a real-time system,
such as the start and the end of code blocks or the assignment of values to state
variables. Algorithms for checking safety assertions [36] and for partial event-traces
[37] against RTL-specifications were developed. A distributed on-line monitoring and
checking tool, which allows to specify timing assertions in a subset of RTL and to
check whether these assertions are violated or not, was later developed [38], [39].
Events storing, definition of timing constraints, and evaluation of constraints in a
distributed environment are all handled by the monitoring tool. Later, the work was
extended to object-oriented models, integrated into standard programming languages
like C++, and code instrumented with event-triggers [34].

As far as constraints checking is concerned, RTC++ and Flex provide
schedulability analysis, but do not provide static worst-case execution time analysis.
Real-time Euclid provides static worst-case execution time analysis. Using a real-time
language cannot guarantee that timing violations will not happen. To cope with such
violations, most real-time languages contain a checker for deadline violations and an
exception-handling mechanism. In [34], a new component called “constraint” section
is added to a class description. This section contains a list of named RTL-like
formulas, which are composed out of basic events such as “start” and “end” of code
sections and changes of state variables. When a constraint is violated, the object
produces an event with the static name of the constraint, the dynamic context of the
object that violated the constraint and a time-stamp that is the earliest point in time
when the checker could evaluate that the constraint will be violated. This
independence of functional and timing specifications avoids inheritance anomalies
and it allows the construction of two separate systems: the object-oriented real-time
system and its constraint checker.

As shown in Fig. 3, there are two constraints in the constraints section of a class
description. Constraint 1, named “max_time” states that an execution of the member
function compute() must not take longer than 8 ms. The expression
@(compute.start, -1) denotes the start time of the most recent execution of the

 16

member function compute() and @(compute.end, -1) evaluates to the end
time of the same execution. Constraint 2, named “recovery”, expresses that two
successive calls to compute() must have a distance of at least 2 seconds.

For constraints checking, a compile-time and run-time support is required. A
compiler for a proposed language extension has to do two additional tasks besides the
production of the object code. It has to translate the timing constraints into a) an
instrumentation of the object-oriented program in order to produce the required events,
and b) a representation of the constraints that can be evaluated by the constraint
checker. An eventing system is the run-time support. It has to receive event records
from code instrumentations, it has to provide time-stamps from a global clock, and it
has to filter out irrelevant events. It then collects the events from the different nodes
of a distributed system and merges them into a global event stream according to the
total order imposed by the time-stamps. The constraint checker has to receive static
information about the structure of the timing constraints from the compiler. During
run-time, it has to react to incoming events. It maintains a global event dispatch table
that maps other incoming events to the objects and the constraints that might be
affected. A constraint violation is detected by constructing a current instance of a
graph out of the graph-templates. Upon detection of a constraint violation, the
checker itself produces a corresponding event, which will immediately be checked
(since it is the next event in the total order of events).

There are three possible modes in which a checker can be used: off-line, on-line,
and real-time. In the off-line mode, performance of the checker has not effect on the
system being checked. An on-line checker has to cope with the average event rate, so
that it can keep track of a running system. If it is a real-time checker, then all of its
parts must have known worst case execution times and they must be scheduled with
the application itself.

class sensor {
public:
 int compute();

:
[[// The Constraint Section
// Constraint 1:
// compute() must not take longer than 8 ms
 max_time: @(compute.start, -1) >= @(compute.end, -1) – 4ms;
// Constraint 2:
// compute() must not be called more than once per second
 recovery: @(compute.start, -2) <= @(compute.end, -1) – 2s;
]]

}

Fig. 3 A C++ Class with Constraints Section

 17

4. Real-Time System Design

Real-time system design deals with how real-time constraints may be feasibly
implemented in working systems that might contain pure hardware, pure software, or
both hardware and software. In general, a real-time system is designed as follows. A
set of system specifications, including real-time constraints, is specified by a designer.
A synthesis methodology uses some kind of system models, performance models,
estimation models, and exploration models, to design a system that satisfies all the
system specifications. The final design is then validated through simulation, testing,
or rapid prototyping. A target design could be a sequential system, consisting of either
one CPU or one ASIC, or a parallel system, consisting of multiple CPUs or multiple
ASICs. The latter is much more complex to design than the former, as described in
Section 4.2. Irrespective of hardware or software implementations, real-time
scheduling of multiple tasks on a single CPU or ASIC is essentially the most validated
and theoretically proven. Real-time scheduling will be discussed briefly in Section 4.1.
Hardware design is introduced in Section 4.2. Different paradigms for software design
are discussed in Section 4.3. Hardware-software co-design methodologies are
presented in Section 4.4.

Definition 10: Synthesis of multiple tasks hard-real time multiprocessor systems
Given a set of tasks with hard real-time constraints such as period, start time, and
finish time or deadline, design a system consisting of multiple CPUs or multiple
ASICs such that the set of tasks is partitioned into several subsets, each subset is
implemented on one dedicated CPU or ASIC, all the given real-time constraints are
satisfied, and the overall system cost is minimal.

The above defined optimization design problem is NP-complete [40]. Even several
sub-problems of the above problem are NP-complete, such as scheduling of a single
task on minimal resources [41], or minimization of only one type of resource [42], or
register minimization [42]. This layering of computationally intractable sub-problems
does not affect overall worst-case asymptotic computational complexity, but it makes
the synthesis problem exceptionally challenging in practice because numerous
contradictory effects along several hardware dimensions, at both process and task
granularity levels, must be taken into account.

4.1 Real-Time Scheduling

A real-time system generally needs to process various concurrent tasks. Real-time
scheduling is defined as assigning the exact execution times for a set of real-time
tasks such that all temporal constraints including period, phase, deadline, priority, and

 18

resource requirements are satisfied.

A task is a finite sequence of computation steps that collectively perform some
required action of a real-time system and may be characterized by its execution time,
deadline, etc. Periodic tasks are tasks that are repeatedly executed once per period of
time. Each execution instance of a periodic task is called a job of that task.

In a processor-controlled system, when a processor is shared between time-critical
tasks and non-time-critical ones, efficient use of the processor can only be achieved
by careful scheduling of the tasks. Here, time-critical tasks are assumed to be
preemptive, independent, periodic, and having constant execution times with hard,
critical deadlines.

Scheduling may be time-driven or priority-driven. A time-driven scheduling
algorithm determines the exact execution time of all tasks. A priority-driven
scheduling algorithm assigns priorities to tasks and determines which task is to be
executed at a particular moment.

In the following, we mainly discuss time-critical periodic tasks with the above
assumptions and scheduled using priority-driven scheduling algorithms. Depending
on the type of priority assignments, there are three classes of scheduling algorithms:
fixed priority, dynamic priority, and mixed priority scheduling algorithms. When the
priorities assigned to tasks are fixed and do not change between job executions, the
algorithm is called fixed priority scheduling algorithm. When priorities change
dynamically between job executions, it is called dynamic priority scheduling. When a
subset of tasks is scheduled using fixed priority assignment and the rest using
dynamic priority assignment, it is called mixed priority scheduling.

Before going into the details of scheduling algorithms, we define the task set to be
scheduled as a set of n tasks {φ1, φ2, …, φn} with computation times c1, c2, …, cn,
request periods p1, p2, …, pn, and phasings h1, h2, …, hn. A task φi is to be periodically
executed for ci time units once every pi time units. The first job of task φi starts
execution at a time hi. The worst-case phasing called a critical instant occurs when hi
= 0, for all i, 1 ≤ i ≤ n.

Liu and Layland [43] proposed an optimal fixed priority scheduling algorithm
called the rate-monotonic (RM) scheduling algorithm and an optimal dynamic priority
scheduling algorithm called earliest-deadline first (EDF) scheduling.

The RM scheduling algorithm assigns higher priorities to tasks with higher request
rates, that is, smaller request periods. Liu and Layland proved that the worst-case
utilization bound of RM was n × (21/n − 1) for a set of n tasks. This bound decreases

 19

monotonically from 0.83 when n = 2 to loge2 = 0.693 as n → ∞. This result shows
that any periodic task set of any size will be able to meet all deadlines all of the time
if RM scheduling algorithm is used and the total utilization is not greater than 0.693.

The exact characterization for RM was given by Lehoczky, Sha, and Ding [44].
They proved that given periodic tasks φ1, φ2, …, φn with request periods p1 ≤ p2 ≤ … ≤
pn, computation requirements c1, c2, …, cn, and phasings h1, h2, …, hn, φi is
schedulable using RM iff

Min{t ∈ Gi} Wi(t)/t ≤ 1 (1)

where Wi(t)=Σi
j = 1 cjt/pj, the cumulative demands on the processor by tasks over [0,

t], 0 is a critical instant (i.e., hi = 0 for all i), and Gi = {k × pj | j = 1, …, i, k = 1, …,
pi/pj}. Liu and Layland discussed the case when task deadlines coincide with
request periods, whereas Lehoczky [45] considered the fixed priority scheduling of
periodic tasks with arbitrary deadlines and gave a feasibility characterization of RM
in this case: given a task set with arbitrary deadlines d1≤ d2≤ … ≤ dn, φi is RM
schedulable iff Maxk ≤ Ni Wi(k, (k−1)pi+di) ≤ 1, where Wi(k, x) = mint ≤ x ((Σj =

1…i−1cjt/pj + k × ci)/t) and Ni = min{k | Wi(k, k × pi) ≤ 1}.

The worst case utilization bound of RM with arbitrary deadlines was also derived
in [45]. This bound (U∞) depends on the common deadline postponement factor ∆, i.e.,
di = ∆ pi, 1 ≤ i ≤ n.

U∞ (∆) = ∆ loge ((∆+1)/∆), ∆ = 1, 2, … (2)

For ∆ = 2, the worst-case utilization increases from 0.693 to 0.811 and for ∆ = 3 it
is 0.863. Recently, the timing analysis for a more general hard real-time periodic task
set on a uni-processor using fixed-priority methods was proposed by Härbour et al
[46].

Considering the earliest deadline first dynamic priority scheduling, Liu and
Layland [43] proved that given a task set, it is EDF schedulable iff

Σi = 1…n ci/pi ≤ 1 (3)

and showed that the processor utilization can be as high as 100%.

Liu and Layland also discussed the case of Mixed Priority (MP) scheduling, where
given a task set φ1, φ2, …, φn, the first k tasks φ1, …, φk, k < n, are scheduled using
fixed priority assignments and the rest n−k tasks φk+1, …, φn are scheduled using
dynamic priority assignments. It was shown that considering the accumulated
processor time from 0 to t available to the task set (ak(t)), the task set is mixed priority

 20

schedulable iff

Σi = 1…n−k t/pk+i ck+i ≤ ak(t) (4)

for all t which are multiples of pk+1 or … or pn. Here, ak(t) can be computed as
follows.

ak(t) = t − Σj=1…k cj t/pj

Although the EDF dynamic priority scheduling has a high processor utilization, in
recent years fixed priority scheduling has received great interests from both academy
and industry [44], [45] ,[46], [47], [48], [49], [50], [51].

Summarizing the above scheduling algorithms, we have five different cases of
schedulability considerations:

 RM-safe: all task sets are schedulable as long as the server utilization is below
loge 2 = 0.693,

 RM-exact: all task sets satisfying Equation (1) are schedulable,
 RM-arbitrary: all task sets are schedulable as long as the server utilization is

below ∆loge((∆+1)/∆) (Equation (2)),
 EDF: all task sets satisfying Equation (3) are schedulable, and
 MP: all task sets satisfying Equation (4) are schedulable,

4.2 Hardware System Design

As far as hardware system design is concerned, Potkonjak and Wolf [40] recently
developed a new two-domain iterative refinement multi-resolution synthesis strategy
to help manage the complexity of the above defined synthesis problem (Definition 10).
The final solution implements the set of processes into a partitioned system of
multiple ASICs.

Each process is initially considered in a single process domain. Estimations are
made using the Hyper high-level synthesis system [52] through area-time trade-off
curves for three types of hardware resources: execution units, interconnect, and
registers. Estimations are then made for each partition with respect to the required
hardware resources and feasibility of timing constraints. In the single process domain,
augmented Hyper-LP estimations are made for all hardware components and complete
implementations obtained. Inferior and non-feasible solutions are discarded. Finally,
the complete single process and task-level schedules are obtained using the Hyper
scheduler and a task-level scheduler. The proposed design methodology is a basis for
an optimal worst-case exponential time branch and bound synthesis algorithm as well
as fast heuristic synthesis algorithm.

 21

4.3 Software System Design

Designing a software system to solve the real-time synthesis problem (Definition
10) is a scheduling problem, such that a given set of tasks is to be scheduled on a set
of processors while simultaneously satisfying real time constraints and using the
processor and memory resources as efficiently as possible [53]. As mentioned at the
beginning of Section 4, this problem itself is NP-complete. Hence, many software
scheduling strategies have been proposed.

4.3.1 Formal Software Synthesis

Scheduling of software can be accomplished based on data computations and
control structures in a system specification. Three types of scheduling can be
combined to obtain an ideal scheduling technique. Firstly, static scheduling can be
used to exploit fixed dependencies between blocks of operation. Secondly,
quasi-static scheduling can be used to identify data-dependent operations with the
same rate and schedule them. Thirdly, dynamic scheduling can be used to determine
which tasks should be executed.

For the synthesis of software executing on a single processor, several researches
are still ongoing. Buck [54] proposed a quasi-static schedule computation algorithm
based on Boolean Data Flow (BDF) network model. Theon et al. [55] proposed a
technique to exploit static information in the specification and extract from a
constraint graph description of the system statically schedulable clusters of threads.
Lin [56], [57] used intermediate Petri net models to generate a software program from
a concurrent process specification. Here, it is assumed that the Petri nets are safe, i.e.
buffers can store at most one data unit, and hence cannot handle multi-rate
specifications, like FFT computations and down sampling. Zhu and Lin [58] then
proposed a compositional approach to software synthesis such that the size of the
resulting C program was directly proportional to the size of the original specification.
Later, Sgroi et al [53] proposed a software synthesis method based on quasi-static
scheduling (QSS) of Free Choice Petri Nets (FCPN). The proposed algorithm is
complete, in that it can solve QSS for any FCPN that is quasi-statically schedulable.
Recently, an approach that maximizes the amount of static scheduling to reduce the
need for context switching and operating system intervention was proposed by
Cortadella et al [59].

Formal real-time software synthesis based on Petri nets is still at a premature stage
and research work is ongoing in this area. Some work on using timed Petri nets to
schedule flexible manufacturing systems have been proposed. Onaga et al [60]

 22

proposed a linear programming based heuristic approach for generating minimal time
strict periodic schedules. Qadri and Robbi [61] uses a Timed Petri Net Simulation tool,
TPNS [62], to model the performance of a flexible manufacturing cell arrangement
with different scheduling approaches. Later, Zuberek [63] used invariant analysis of
timed Petri nets to provide performance characteristics of manufacturing cells with
composite schedules. Recently, Di Natale et al [64] proposed an iterative solution to
schedule reactive real-time transactions modeled by a network of Codesign Finite
State Machines (CFSM). It offers a priority assignment scheme together with a tight
worst-case analysis.

4.3.2 Object-Oriented Application Frameworks

Another paradigm of software development for real-time systems is
Object-Oriented Application Frameworks (OOAFs). An OOAF is a reusable,
“semi-complete” application that can be specialized to produce custom applications
[65]. Examples include MacApp, ET++, Interviews, ACE, Microsoft’s MFC and
DCOM, Javasoft’s RMI and implementation of OMG’s CORBA. Compared to other
application domains, real-time OOAFs are limited in number. Currently, there are
Real-Time Framework (RTFrame), which is also called SESAG [66] and
Object-Oriented Real-Time System Framework (OORTSF) [67].

SESAG is modularized into five components, namely Specifier, Extractor,
Scheduler, Allocator, and Generator. Two different views of SESAG were presented:
a Components-Patterns view and a Class view. Application domain objects are
specified using the Specifier. Real-time constraints are either specified separately or
coupled with the application domain objects. In the latter case, Extractor is used for
extracting constraints. Extractor is also used to extract tasks from the given domain
objects. Scheduler schedules the tasks using some scheduling algorithm and Allocator
allocates resources among the tasks that are running concurrently. Finally, Generator
is used to generate the application code based on the decisions made in the other
components. Through applications on avionics and cruiser controls, SESAG has been
shown to decrease design efforts to less than 5% of that required without using
SESAG. The evaluation was made based on a relative design effort metric.

OORTSF emphasizes on high-level design reuse. Several design patterns and
schedulers have been implemented into OORTSF. A five-step process is defined for
developing real-time applications using OORTSF. First, domain task objects are
identified and defined. Second, real-time requirements for each domain task object are
generated. Third, schedulability check is performed on the set of tasks. Fourth,
OORTSF is used to generate the target system code. Fifth, the generated target system

 23

is validated and verified. Currently, it has also been extended into a framework for
developing distributed real-time applications. Three components called AppNode,
AppControl, and RemotePipeDirector have been defined for a distributed application
environment. Its integration with CORBA [68] and with Java RMI [69] has also been
discussed. OORTSF has been used to design an airborne vehicle flight path control
real-time application.

4.3.3 Real-Time Operating Systems

Last but not least in real-time software development is Real-Time Operating
Systems (RTOS), which are stripped down and optimized versions of timesharing
operating systems. Some features of RTOS include: fast context switch, small size,
quick response to external interrupts, minimal interrupt-disable intervals, no virtual
memory, code and data locking in memory, and fast accumulation of data through
special sequential files [33]. RTOS kernels maintain a real-time clock, provide
priority-scheduling mechanisms, provide for special alarms and timeouts, and permit
tasks to pause/resume execution. In general RTOS kernels are multi-tasking and
inter-task communication and synchronization are achieved via standard primitives
such as mailboxes, events, signals, and semaphores. Many real-time UNIX OS [70]
and a standard for RTOS, called RT POSIX [71], have been developed. There are also
over 70 commercial proprietary RTOS including: QNX, LynxOS, OS-9, VxWorks,
and VRTXsa. Real-Time Mach [18] is a RTOS developed in academia.

4.4 Hardware-Software Co-design

An embedded system often contains both hardware in the form of one or more
ASICs or ASIPs and software executable on one or more microprocessors. Several
works have been done on synthesizing a hardware-software system [72], but there are
relatively fewer results targeted at hardware-software real-time systems. In the
following, a recently proposed methodology, called Distributed Embedded System
Codesign (DESC) methodology [73] is briefly presented.

DESC methodology uses three types of semantically equivalent models, namely,
Object Modeling Technique (OMT) [74] models for system description and input,
Linear Hybrid Automata (LHA) [75] models for system evaluation during partitioning
and for formal verification, and SES/workbench simulation [76] models for
performance evaluation after partitioning. A hierarchical partitioning algorithm [77]
is proposed specifically for distributed systems. Software is synthesized by task
scheduling and hardware is synthesized by object-oriented design techniques [78],
[79], [80]. Design alternatives for synthesized hardware-software systems are then

 24

checked for design feasibility through rapid prototyping using hardware-software
emulators. Timing coverification of real-time constraints is performed using LHA
models [81], [82]. DESC methodology has been applied to a case study on a Vehicle
Parking Management System (VPMS) [73], which shows the benefits of OO codesign,
and the benefits of considering physical restrictions.

5. Real-Time System Verification

Since the correctness of real-time systems depends on whether the specified
real-time constraints are satisfied or not, the validation or verification of such systems
are all the more crucial. Validation of real-time systems can be done in the following
ways: simulation, testing, emulation, rapid prototyping, and worst-case execution time
analysis. Validation is not a complete or full technique, in the sense that after
validation, a system designer still cannot guarantee 100% system correctness. Often
statistical or probabilistic figures are cited after a real-time system is validated. For
example, one can say after validation, that a real-time system is 99.99% correct with a
95% confidence range, or that it is correct for 99.5% of execution time.

In contrast, formal verification or analysis is complete, that is, a real-time system is
verified to be 100% correct, with respect to some kind of temporal specification. In
the recent few years, model-checking [83] has gained wide recognition due to its
algorithmic approach at verifying real-time systems. In the following, model-checking
is presented based on the timed automata (TA) system model and timed computation
tree logic (TCTL) specification, as defined in Definition 6 and Definition 11,
respectively.

Definition 11: Timed Computation Tree Logic (TCTL)
A timed computation tree logic formula has the following syntax.

φ ::= η | ∃□φ′ | ∃φ′U~cφ′′ | ¬φ′ | φ′∨φ′′ (5)

Here, η is a mode predicate (Definition 5), φ′, φ′′ are TCTL formulae, ~ ∈ {<, ≤, =, ≥,
>}, and c ∈ N. ∃□φ′ means there exists a computation, from the current state, along
which φ′ is always true. ∃φ′U~cφ′′ means there exists a computation, from the current
state, along which φ′ is true until φ′′ becomes true, within the time constraint of ~c.
Traditional shorthands like ∃◇, ∀□, ∀◇, ∀U, ∧, and → can all be defined [84].

Model checking is an automatic procedure to verify is a given system satisfies a
given temporal property. A dense real-time system can be described using a set of
timed automata and a property specified in TCTL. In the following, a brief

 25

introduction to the intrinsic of model checking is given.

Fig. 4 Symbolic Model Checking Procedure

A symbolic model checking procedure is given in Fig. 4, where two data-structures
are maintained: a queue of regions (Unvisited) and a set of reachable regions (Reach).
The former keeps a record of which regions are yet to be explored, while the latter
keeps a record of all the regions reached. The procedure starts from an initial region,
Rinit, which is a Cartesian product of the initial modes of all the TA in the input set of
TA, B. Initially, the initial region is queued in Unvisited and recorded in Reach. A
region, R′, is dequeued from Unvisited and corresponding to each out-going transition,
e, of R′ a successor region, R″, is constructed by the function Successor_Region(R′, e)
(see Fig. 5). If R″ is consistent and is not already in Reach, then it is recorded in
Reach and queued in Unvisited for further exploration of its successors. The
procedure loops until all regions in the queue have been explored. Finally, the regions
in Reach are labeled according to the labeling algorithm Label_Reach(Reach, φ) (see
Fig. 6), where φ is a TCTL formula, such that all regions in Reach satisfy φ. The
procedure finally outputs the label that has been assigned to the initial region, Rinit.

As detailed in Fig. 5 (Successor_Region()), the successor region is constructed as
follows. Given a region R and an out-going transition e, the successor region R′ is
constructed by first advancing (Advance()) all clock values till it satisfies the
triggering condition (e.Trigger) of e, while at the same time still satisfying the clock
condition R, R.ClockCond. This first step gives an intermediate symbolic condition
R′.ClockCond for the successor region R′. Second, the clock resets in e.Assign are
applied to R′.ClockCond by Assign(). Third, the clock conditions of all sub-regions of

Symbolic_Mcheck(B, φ)
Set of TA B;
TCTL formula φ;
{

Let Reach = Unvisited = {Rinit};
While (Unvisited ≠ NULL) {

R′ = Dequeue(Unvisited);
For all out-going transition e of R′ {

R′′ = Successor_Region(R′, e);
If R′′ is consistent and R′′∉Reach {
Reach = Reach ∪ {R″};
Queue(R″, Unvisited); }}}

Label_Region(Reach, φ);
Return L(Rinit);

}

 26

R′ have also to be satisfied by R′.ClockCond. Finally, the discrete variable values are
assigned to R.DvarCond to obtain the new symbolic condition R′.DvarCond. In this
way, both the clock and discrete variable symbolic conditions of the successor region
R′ are thus computed.

Fig. 5 Successor Region Function

The labeling algorithm, Label_Region(), is presented in Fig. 6. This algorithm
assigns a label, L(R, φ), to each region, R, in the set of regions RSet. The label
indicates if the region R satisfies φ. This labeling is computed as follows. For a mode
predicate (see Definition 5), the label is true if the region satisfies the mode predicate
and it is false otherwise. For a TCTL path formula, φ, the label is computed
recursively according to the semantics of the formula.

Fig. 6 Label Region Function

Successor_Region(R, e)
region R;
transition e;
{

R′ = New_Region();
R′.ClockCond = Advance(R.ClockCond) ∧ e.Trigger ∧ R.ClockCond;
R′.ClockCond = Assign(R′.ClockCond, e.Assign);
R′.ClockCond = R′.ClockCond ∧ (Λi R′.SubRegioni.ClockCond);
R′.DvarCond = Assign(R.DvarCond, e.Assign);
Return R′.;

}

Label_Region(RSet, φ)
set of region RSet;
TCTL formula φ;
{

For each R ∈ RSet, calculate recursively the label of R, L(R), as follows.
case φ = x ∼ c: L(R, φ):= true, if x ~ c is true in R; false otherwise;
case φ = x – y ∼ c: L(R, φ):= true, if x – y ~ c is true in R; false otherwise;
case φ = d ∼ c: L(R, φ):= true, if d ~ c is true in R; false otherwise;
case φ = η1 ∧ η2: L(R, φ):= true, if both η1, η2 are true in R; false otherwise;
case φ = η1: L(R, φ):= true, if η1 is false in R; false otherwise;
case φ = ∃◇φ′ U~c φ″: L(R, φ):= true, if there is a successor R′ of R such that

L(R′, φ″) is true, there is a path, π, from R to R′ such that for all regions
R″ along π, L(R″, φ′) is true, and timeπ(R, R′) ~ c is true; false otherwise;

Similarly, for the other cases:
φ = ∃□φ′U~cφ″, φ = ∀◇φ′U~cφ″, and φ = ∀□φ′U~cφ″.

}

 27

Model checking based tools can be mostly found in academia. Verification tools
that can be used to specify and verify real-time systems include UPPAAL [85],
Kronos [86], SGM [87], [88], NuSMV [89], RED [90], XTL [91], and several others.
Besides the above-presented symbolic model checking procedure, there are also
process algebra based [92] and logic-based [93] verification for real-time systems. As
for hardware-software coverification, there are also some recently proposed works on
it [81], [82], [94].

6. Conclusion and Future Work

At the turn of a new century, computer technology is no long confined in the
laboratories of academia and research institutes. In the last few years, the world has
experienced a burgeoning widespread increase of embedded systems in intelligent
appliances and high-assurance systems, which are mostly real-time. Software and
hardware standards in modeling and programming languages are all being extended to
cover the realm of real-time domain. Some examples include real-time UML,
real-time Java, and real-time CORBA. Real-time constraints have permeated from
highly advanced systems, such as nuclear reactors and spacecrafts, to everyday-life
systems such as telecommunications, transportation systems, and home appliances.
Real-time constraints have even entered the wireless technology such as the Bluetooth
technology, which allows users to make effortless, wireless and instant connections
between various communication devices, such as mobile phones and desktop and
notebook computers. Since it uses radio transmission, transfer of both voice and data
is in real-time. This article comes at a time where real-time constraints are here to stay,
both in academy and in industry, for a very long period into the future of computer
science history. Real-time constraints have been specified, modeled, designed, and
verified in this article. This introductory material did not intend to be exhaustive and
the technology is still developing! A major future work is the integration of the
Internet with real-time constraints. Real-time Internet is still a dream, though
real-time networking has already matured to some stage today with the use of
Video-On-Demand systems and other real-time multimedia applications and systems.
Another major breakthrough that most information technologists are awaiting for is
gigabit real-time wireless. This is currently a dream, too. Nevertheless, progressive
works are being carried out with an ambitious goal. Although the verification of
real-time systems has seen some breakthroughs through the automatic
model-checking procedure, some more efficient methods, either improved
model-checking or other formal methods, are required to really attack the large
exponential state-spaces of complex real-time systems.

 28

References

[1] D. K. Hammer, L. R. Welch, and O.S. van Roosmalen, “A taxonomy for
distributed object-oriented real-time systems,” ACM OOPS Messenger, Vol. 7,
No. 1, January 1996.

[2] Y. Brave and M. Heymann, “Formulation and control of real-time discrete event
processes,” In Proceedings of 27th Conference on Decision and Control,
December 1988.

[3] C. H. Golaszewski and P. J. Ramadge, “On the control of real-time discrete event
systems,” In Proceedings of 23rd Conference on Information Sciences and
Systems, pp. 98 – 102, March 1989.

[4] J. S. Ostroff, “Synthesis of controllers for real-time discrete event systems,” In
Proceedings of 28th Conference on Decision and Control, pp. 138-144, December
1989.

[5] J. S. Ostroff and W. M. Wonham, “A framework for real-time discrete event
control,” IEEE Transactions on Automatic Control, Vol. 35, No. 4, pp. 386-397,
April 1990.

[6] H. Wong-Toi and G. Hoffmann, “The control of dense real-time discrete event
systems,” Technical Report STAN-CS-92-1411, Stanford University, 1992.

[7] R. Alur, “Techniques for automatic verification of real-time systems,” Technical
report STAN-CS-91-1378, Department of Computer Science, Stanford University,
CA, August 1991, Ph.D. Thesis.

[8] H. A. Hansson, H. W. Lawson, M. Stromberg, and S. Larsson, “BASEMENT: A
distributed real-time architecture for vehicle applications,” Real-Time Systems,
Vol. 11, No. 3, pp. 223-244, Kluwer Academic Publishers, 1996.

[9] J. Wang, Timed Petri Nets — Theory and Application, Kluwer Academic
Publishers, USA, 1998.

[10] C. Ramamoorthy and G. Ho, “Performance evaluation of asynchronous
concurrent systems using Petri nets,” IEEE Transactions on Software
Engineering, Vol. SE-6, No. 5, pp. 440-449, 1980.

[11] P. Merlin and D. Farber, “Recoverability of communication protocols –
Implication of a theoretical study,” IEEE Transactions on Communications, pp.
1063-1043, September 1976.

[12] R. Sloan and U. Buy, “Reduction rules for time Petri nets,” Acta Informatica, Vol.
33, pp. 687-706, 1996.

[13] J. J. P. Tsai, S. J. Yang, and Y.-H. Chang, “Timing constraint Petri nets and their
application to schedulability analysis of real-time system specifications,” IEEE
Transactions on Software Engineering, Vol. 21, No. 1, pp. 32-49, January 1995.

[14] R. Milner, Communication and Concurrency, Prentice-Hall, London, UK, 1989.

[15] F. Moller and C. Tofts, “A temporal calculus of communication systems,” in

 29

Proceedings of CONCUR’90 (Concurrency Theory), J. Baeten and J. Klop, eds.,
Vol. 458 of Lecture Notes in Computer Science, pp. 401-415, August 1990,
Springer Verlag.

[16] W. Yi, “CCS + time = an interleaving model for real-time systems,” in Automata,
Languages, and Programming (ICALP’91), J. L. Albert, B. Monien, and M.R.
Artalejo, eds., Vol. 510 of Lecture Notes in Computer Science, pp. 217-228, July
1991, Springer Verlag.

[17] Y. Ishikawa, H. Tokuda, and C. Mercer, “Object-oriented real-time language
design: constructs for timing constraints,” Proceedings of OOPSLA/ECOOP,
ACM, October 1990.

[18] H. Tokuda, T. Nakajima, and P. Rao, “Real-time MACH: towards a predictable
real-time system,” Proceedings of the USENIX MACH Workshop, 1990.

[19] Object Management Group, The Unified Modeling Language Specification, Nov.
1999, http://www.omg.org.

[20] B. P. Douglass, Real-Time UML, Addison Wesley Publishing Company, Nov.
1999.

[21] B. P. Douglass, Doing Hard Time, Addison Wesley Publishing Company, May
1999.

[22] Bollella et al. (Real-Time for Java Experts Group), The Real-Time Specification
for Java, Addison Wesley Publishing Company, June 2000.

[23] Object Management Group, The Common Object Request Broker: Architecture
and Specification, 2.3 ed., June 1999.

[24] B. Selic, “A generic framework for modeling resources with UML,” IEEE
Computer, pp. 64-69, June 2000.

[25] E. Kligerman and A.D. Stoyenko, “Real-time Euclid: A language for reliable
real-time systems,” IEEE Transactions on Software Engineering, Vol. 12, No. 9,
pp. 941-949, September 1986.

[26] A. S. Grimshaw, A. Silberman, and J.W.S. Liu, “Real-Time Mentat: A
data-driven, object-oriented system,” Proceedings of IEEE Globecom, Dallas,
Texas, pp. 141-147, November 1989.

[27] V. Nirkhe, S. Tripathi, and A. Agrawala, “Language support for the Maruti
real-time system,” Proceedings of the IEEE Real-Time Systems Symposium,
December 1990.

[28] K. Kenney and K. Lin, “Building flexible real-time systems using the Flex
language,” IEEE Computer, Vol. 24, No. 5, pp. 70-78, May 1991.

[29] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao, “Algorithms for
scheduling imprecise calculations,” IEEE Computer, Vol. 24, No. 5, pp. 58-68,
May 1991.

[30] N. Gehani and K. Ramamritham, “Real-Time Concurrent C (C++): A language

 30

for programming dynamic real-time systems,” Real-Time Systems, Vol. 3, No. 4,
pp. 377-405, December 1991.

[31] D. Niehaus, J.A. Stankovic, and K. Ramamritham, “A real-time system
description language,” Proceedings of the IEEE Real-Time Technology and
Applications Symposium, May 1995.

[32] D. Niehaus, Program Representation and Execution in Real-Time Multiprocessor
Systems, PhD dissertation, University of Massachusetts, Amherst MA, 1994.

[33] J.A. Stankovic, K. Ramamritham, D. Niehaus, M. Humphrey, G. Wallace, “The
Spring System: Integrated support for complex real-time systems,” Technical
Report CS-98-18, University of Virginia, August 1998.

[34] M. Gergeleit, J. Kaiser, and H. Streich, “Checking timing constraints in
distributed object-oriented programs,” ACM OOPS Messenger, Vol. 7, No. 1,
Special Issue on Object-Oriented Real-Time Systems, January 1996.

[35] F. Jahanian and A. Mok, “Safety analysis of timing properties in real-time
systems,” IEEE Transactions on Software Engineering, Vol. SE-12, No. 9, pp.
890-904, September 1986.

[36] F. Jahanian and A. Mok, “A graph-theoretic approach for timing analysis and
implementation,” IEEE Transactions on Computers, Vol. C-36, No. 8, August
1987.

[37] F. Jahanian and A. Goyal, “A formalism for monitoring real-time constraints at
run-time,” Proceedings of IEEE Fault-Tolerant Computing Symposium, pp.
148-155, June 1990.

[38] S. E. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring of real-time
systems,” Proceedings of Real-Time Systems Symposium (RTSS), pp. 74-83,
December 1991.

[39] F. Jahanian, R. Rajkumar, and S. Raju, “Runtime monitoring of timing
constraints in distributed real-time systems,” Real-Time Systems, Vol. 7, No. 3, pp.
247-274, November 1994.

[40] M. Potkonjak and W. Wolf, “A methodology and algorithms for the design of
hard real-time multi-tasking ASICs,” ACM Transactions on Design Automation
of Electronic Systems, Vol. 4, No. 4, pp. 430-459, October 1999.

[41] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A.H.G. Rinnooy Kan,
“Optimization and approximation in deterministic sequencing and scheduling: a
survey,” Annals of Discrete Mathematics, Vol. 5, pp. 287-326, 1979.

[42] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and company, New York, 1979.

[43] C.-L. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a
hard-real time environment,” Journal of the Association for Computing
Machinery, Vol. 20, pp. 41-61, January 1973.

[44] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm:

 31

exact characterization and average case behavior,” Proceedings of the Real-Time
Systems Symposium, pp. 166-171, December 1989.

[45] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary
deadlines,” Proceedings of the Real-Time Systems Symposium, pp. 201-209,
December 1990.

[46] M. Harbour, M. Klein, and J. Lehoczky, “Timing analysis for fixed-priority
scheduling of hard real-time systems,” IEEE Transactions on Software
Engineering, Vol. 20, January 1994.

[47] L. Sha and J. Goodenough, “Real-time scheduling theory and Ada,” IEEE
Computer, Vol. 23, pp. 53-62, April 1990.

[48] M. Harbour, M. Klein, and J. Lehoczky, “Fixed priority scheduling of periodic
tasks with varying execution priority,” Proceedings of the Real-Time Systems
Symposium, pp. 116-128, 1991.

[49] L. Sha, M. Klein, and J. Goodenough, “Rate monotonic analysis for real-time
systems,” in Foundations of Real-Time Computing: Scheduling and Resource
Management, pp. 129-155, Kluwer Academy Publishers, New York, 1991.

[50] K. Tindell, A. Burns, and A. Wellings, “Mode changes in priority pre-emptively
scheduled systems,” Proceedings of the Real-Time Systems Symposium, pp.
100-109, 1992.

[51] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering and analysis of fixed
priority scheduler,” IEEE Transactions on Software Engineering, Vol. 19, pp.
920-934, September 1993.

[52] J. Rabaey, C. Chu, P. Hoang, and P. Potkonjak, “Fast prototyping of
datapath-intensive architectures,” IEEE Design and Test of Computers, Vol. 8,
No. 2, pp. 40-51, 1991.

[53] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli, “Synthesis
of embedded software using free-choice Petri nets,” Proceedings of the Design
Automation Conference, ACM Press, pp. 805-810, 1999.

[54] J. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory using the
Token Flow Model, Ph.D. dissertation, UC Berkeley, 1993.

[55] F. Theon et al, “Intellectual property re-use in embedded system codesign: an
industrial case study,” Proceedings of the International System Synthesis
Symposium, 1995.

[56] B. Lin, “Software synthesis of process-based concurrent programs,” Proceedings
of Design Automation Conference, pp. 502-505, ACM Press, June 1998.

[57] B. Lin, “Efficient compilation of process-based concurrent programs without
run-time scheduling,” Proceedings of the Conference on Design And Test in
Europe (DATE), pp. 211-217, February 1998.

[58] X. Zhu and B. Lin, “Compositional software synthesis of communicating
processes,” Proceedings of the International Conference on Computer Design, pp.

 32

646-651, October 1999.

[59] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot, S. Moral, C. Passerone, Y.
Watanabe, A. Sangiovanni-Vincentelli, “Task generation and compile-time
scheduling for mixed data-control embedded software,” Proceedings of Design
Automation Conference, pp. 489-494, ACM Press, 2000.

[60] K. Onaga, M. Silva, T. Watanabe, “On periodic schedules for deterministically
timed Petri net systems,” Proceedings of the 4th International Workshop on Petri
Nets and Performance Models (PNPM’91), pp. 210-215, 1991.

[61] F. Qadri and A. Robbi, “Timed Petri nets for flexible manufacturing cell design,”
Proceedings of the IEEE International Conference on Humans, Information, and
Technology, Vol. 2, pp. 1695-1699, 1994.

[62] J. Siddiqi, Y. Chen, and A. Robbi, “A timed Petri net simulation tool,”
Proceedings of the 9th International Conference on CAD/CAM, Robotics, and
Factories of the Future, August 1993.

[63] W. M. Zuberek, “Composite schedules of manufacturing cells and their timed
Petri net models,” Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, Vol. 4, pp. 2990-2995, 1996.

[64] M. Di Natale, A. Sangiovanni-Vincentelli, and F. Balarin, “Task scheduling with
RT constraints,” Proceedings of Design Automation Conference, pp. 483-488,
ACM Press, 2000.

[65] R. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, Vol. 1, pp. 22-35, June 1988.

[66] P.-A. Hsiung, “RTFrame: An object-oriented application framework for real-time
applications,” Proceedings of the 27th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS'98), pp. 138-147, IEEE
Computer Society Press, September 1998.

[67] W.-B. See and S.-J. Chen, “Object-oriented real-time system framework,” in
Domain-Specific Application Frameworks, M.E. Fayad and R.E. Johnson, eds.,
Chapter 16, pp. 327-370, John Wiley, 2000.

[68] D. C. Schmidt and F. Kuhns, “An overview of the real-time CORBA
specification,” IEEE Computer, Vol. 33, No. 6, pp. 56-63, June 2000.

[69] Sun Microsystems, “RMI specifications and tutorials,”
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/.

[70] B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, and M. McRoberts,
Real-Time Unix Systems, Design and Application Guide, Kluwer Academic
Publishers, Boton, M.A., 1991.

[71] B. Gallmeister, POSIX.4: Programming for the Real World, O’Reilly and
Associates, 1995.

[72] P.-A. Hsiung, “CMAPS: A cosynthesis methodology for application-oriented
parallel systems,” ACM Transactions on Design Automation of Electronic

 33

Systems, Vol. 5, No. 1, pp. 51-81, January 2000.

[73] T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen, “A case study in hardware-software
codesign of distributed systems — vehicle parking management system,”
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), Vol. 6, pp. 2982-2987,
June 1999.

[74] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ,
USA, 1991.

[75] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: the next generation,”
Proceedings of the 16th Real-Time Systems Symposium, pp. 56-65, IEEE
Computer Society Press, 1995.

[76] Scientific and Engineering Software, Inc., SES/Workbench User’s Manual,
Release 2.0, January 1991.

[77] T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen, “Hardware-software multi-level
partitioning for distributed embedded multiprocessor systems,” to appear in
IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 2001.

[78] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and S.-C. Wang, “PSM: An object-oriented
synthesis approach to multiprocessor system design,” IEEE Transactions on VLSI
Systems, Vol. 4, No. 1, pp. 83-97, March 1996.

[79] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and S.-J. Chen, “ICOS: An intelligent
concurrent object-oriented synthesis methodology for multiprocessor systems,”
ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, pp.
109-135, April 1998.

[80] P.-A. Hsiung, “POSE: A parallel object-oriented synthesis environment,” to
appear in ACM Transactions on Design Automation of Electronic Systems, Vol. 6,
No. 1, January 2001.

[81] P.-A. Hsiung, “Timing coverification of concurrent embedded real-time
systems,” Proceedings of the 7th IEEE/ACM International Workshop on
Hardware/Software Codesign (CODES’99), pp. 100-114, ACM Press, May 1999.

[82] P.-A. Hsiung, “Hardware-software timing coverification of concurrent embedded
real-time systems,” IEE Proceedings on Computers and Digital Techniques, Vol.
147, No. 2, pp. 81-90, March 2000.

[83] R. Alur, C. Courcoubetis, N. Halbwachs, and D. Dill, “Model checking for
real-time systems,” Proceedings of IEEE International Conference on Logics in
Computer Science (LICS), 1990.

[84] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model-checking for real-time systems,” Proceedings of IEEE Logics in Computer
Science (LICS), 1992.

[85] J. Bengtsson, F. Larsen, K. Larsson, P. Petterson, Y. Wang, and C. Weise, “New

 34

generation of UPPAAL,” Proceedings of the International Workshop on Software
Tools for Technology Transfer (STTT’98), July 1998.

[86] C. Daws, A. Olivers, S. Tripakis, and S. Yovine, “The tools KRONOS,” Hybrid
Systems III, Lecture Notes in Computer Science, Vol. 1066, pp. 208 – 219, 1996.

[87] P.-A. Hsiung and F. Wang, “A state-graph manipulator tool for real-time system
specification and verification,” Proceedings of the 5th International Conference
on Real-Time Computing Systems and Applications (RTCSA’98), October 1998.

[88] P.-A. Hsiung and F. Wang, “User-friendly verification,” Proceedings of the
International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols & Protocol Specification, Testing, and
Verification (FORTE/PSTV’99), October 1999.

[89] A. Cimatti, F. Clarke, E. Giunchiglia, and M. Roveri, “NuSMV: A
reimplementation of SMV,” Proceedings of the International Workshop on
Software Tools for Technology Transfer (STTT’98), July 1998.

[90] W. Farn, “Region encoding diagram for fully symbolic verification of real-time
systems,” Proceedings of IEEE Computer Software and Applications Conference
(COMPSAC’2000), IEEE CS Press, October 2000.

[91] R. Mateescu and H. Garavel, “XTL: A meta-language and tool for temporal logic
model checking,” Proceedings of the International Workshop on Software Tools
for Technology Transfer (STTT’98), July 1998.

[92] R. Cleaveland, J. Parrow, and B. Steffen, “The Concurrency Workbench: A
semantics-based tool for the verification of finite-state systems,” ACM
Transactions on Programming Languages and Systems, Vol. 15, pp. 36 – 72,
1993.

[93] J. Gulmann, J. Jensen, M. Jorgensen, N. Klarlund, T. Rauhe, and A. Sandholm,
“Mona: Monadic second-order logic in practice,” Proceedings of the 1st
International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’95), Vol. 1019 of Lecture Notes in Computer
Science, Springer-Verlag, May 1995.

[94] J.-M. Fu, T.-Y. Lee, P-A. Hsiung, and S.-J. Chen, “Hardware-software timing
coverification of distributed embedded systems,” to appear in IEICE
Transactions on Information and Systems, 2001.

