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Abstract 

Real-time constraints are restrictions on the timings of events, such that they occur 
on-time. A system with real-time constraints is called a real-time system. Not merely 
the performance of such systems, but also their feasibility depends on the satisfaction 
of real-time constraints. Hard constraints must be satisfied for system correctness, 
while the violation of soft constraints only degrades a system. Specification of 
real-time constraints requires either some extensions of programming languages 
through annotations and logic expressions, or the use of temporal logics or some 
formal declarative language with temporal constructs. Stringent timing restrictions 
complicate system design and verification. The time model can be dense or discrete, 
thus giving different methods for real-time system synthesis and verification. This 
article surveys the specification, design, and verification of real-time constraints and 
systems. The most important technique for guaranteeing real-time, namely scheduling, 
is briefly surveyed. Different system models are presented for handling real-time 
constraints such as Petri nets, timed automata, process algebra and object-oriented 
model. Design techniques for real-time hardware systems and for real-time software 
applications are introduced and discussed. Hardware-software codesign is also 
introduced. Verification techniques for real-time constraints, such as model checking, 
are also presented. 
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1. Introduction 

Should real-time be fast? No, that is a myth! In fact, real-time is just in time. For 
example, an avionics flight control system must spend 2.5 ms for attitude control 
every 50 ms period and 0.28 ms for flutter control every 4 ms period. The period 
restriction must be strictly abided, no faster and no slower, otherwise an airplane 
might crash! These just-in-time aspects constitute what are called real-time 
constraints. 

With the increased use of intelligent everyday-life systems, such as electric home 
appliances, office automation contrivances, and medical equipments, it has become 
increasingly important to assimilate knowledge on how real-time constraints can be 
specified, modeled, implemented, and verified. Without trying to be exhaustive, this 
article tries to cover most aspects of real-time constraints, such that both a novice and 
an expert may benefit from referring to it. 

Informally speaking, a real-time constraint is any condition on the timing of events, 
including event enabling, firing, initiation, resource usage, synchronization, and 
termination. A real-time constraint may be as simple as the specification of a deadline 
for a particular task to complete execution. A periodic real-time task may be further 
associated with a period constraint. For example, task A must execute once every 50 
ms period with a deadline of 60 ms. Further details on the specification of real-time 
constraints are given in Section 3. 

Constraints may be classified in several ways [1]. As far as strictness of timing is 
concerned, constraints may be classified as hard or soft. Hard constraints must be 
satisfied, the failure of which results in system crashes or serious consequences. Soft 
constraints may be satisfied and have tolerance ranges associated, the violation of 
which merely degrades a system behavior, without endangering it or the environment. 
Hard real-time constraints are found in high-assurance systems, such as nuclear 
reactors, avionics, power systems, medical emergency equipments, and space 
navigation systems. Soft real-time constraints are found in low-assurance systems, 
such as telecommunication systems, network systems, electric home appliances, 
flexible manufacturing systems, and office automation systems. 

Constraints can also be classified based on the type of specification. There are two 
types: (1) abstract specifications in the form of an assertion language that is 
independent from the design or implementation language, and (2) integrated 
specifications that are inseparable from the implementation language and make use of 
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language variables like actual time and resource status. 

Timing constraints can be evaluated in different ways: (1) static evaluation (i.e. 
pre-runtime), which implies that the timing specifications are implementation 
independent, (2) dynamic evaluation (i.e. at runtime), which is necessary if priorities 
are specified, and (3) hybrid evaluation, which is a combination of the above two and 
is necessary in off-line schedulability analysis with exact runtimes. 

The time domain in a real-time system can be discrete or dense. Discrete time 
allows simpler analysis and instrumentation procedures because the tasks in a 
real-time system may then be simply taking turns as in a card game of poker. 
Examples of such systems are telephone networks, communication protocols, and 
manufacturing systems, where automatic control can be applied by enabling and 
disabling of system events. Here, the domain of integers is used to model time [2], [3]. 
A smallest measurable time unit is specified a priori in the discrete time model. The 
fictitious clock approach includes an explicit tick transition making time a global state 
variable [4], [5]. Each tick increments time by some predetermined time quantum. In 
this model, events between the i-th and (i+1)-th clock ticks are assumed to occur at 
some unspecified time between times i and i+1. Thus, it is impossible to know the 
exact time delay between any two events. The model can be interpreted as an 
approximation to real-time, where events between time i and i+1 have their 
occurrence times truncated to i. 

Dense time domain makes analysis and instrumentation procedures much more 
complex due to requirement of exact timeliness. Some systems must be analyzed and 
implemented using the dense time model for it to correctly satisfy given real-time 
constraints. Examples of such systems include automation of transport systems, such 
as railway and flight control, which depends critically on reaction times. Computer 
networks demand a maximal response time [6]. There are four strong reasons why a 
dense model of time is necessary [7]. A dense model of time is needed for correctness. 
It is more expressive than the others. Composition of processes is straightforward in 
the dense-time model. Finally, some important problems for finite-state systems have 
the same complexity using a dense-time model as for the other models. 

This article is organized as follows. Section 2 introduces differences between 
un-timed and real-time systems along with system models. Section 3 presents 
real-time constraints, specification methods, language constructs, and constraint 
checker. Section 4 deals with real-time system design, including hardware, software, 
and their models. Section 5 covers real-time system verification, including 
model-checking, verification tools, and verification techniques. Section 6 concludes 
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this article with pointers to future research directions and technology improvements. 

2. Un-timed and Real-Time Systems 

Control systems such as certain flexible manufacturing systems perform a sequence 
of tasks based on external events, such as the push of a switch or a lever. The 
correctness of such systems depends on the execution sequence and not on time. Thus, 
they are called un-timed systems. Although un-timed systems do not depend on time 
for task execution, their overall performance may still be related to time. For example, 
a scheduling criterion for an un-timed flexible manufacturing system may be the 
minimization of total execution time or the maximization of total throughput. But, 
often such types of timing constraints affect neither the correctness nor the stability of 
a system. These timing constraints are thus not real-time constraints and are out of 
scope of our discussion in this article. 

From the above discussion, it can be stated that real-time constraints include only 
those constraints that actually affect a system’s correctness, feasibility, or stability. 
Real-time systems are control systems that have constraints on the exact timing of 
task executions, which are expressed as real-time constraints. For example as shown 
in Fig. 1, an Autonomous Intelligent Cruise Controller (AICC) developed by Swedish 
Road Transport Informatics Programme and installed in a Saab automobile [8] 
requires traffic light and speed information to be polled every 200 ms, information 
processing to be performed every 100 ms, and final coordination control to be 
performed every 50 ms. In the figure, SRC stands for Short Range Communication 
and EST stands for Electronic Servo Throttle. This is an example of a typical 
embedded real-time system. 
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Fig. 1 Autonomous Intelligent Cruise Controller [8] 
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In the rest of this section, different models of real-time systems will be introduced 
and compared, including timed variants of Petri Nets, timed automata, process algebra, 
and object-oriented models. 

2.1 Petri Nets 

Petri nets are a graphical form of formal system model, which can be used to 
efficiently model transition systems characterized by concurrency, non-determinism 
or conflicts, synchronization, merging, confusion, mutual exclusion, and priority [9]. 
We first define a standard Petri net and then introduce its timed versions, which can 
be used to model real-time systems.  

In the following, the set of integers and non-negative real numbers are denoted by 
N and R≥0, respectively A standard Petri net can be defined as follows: 

Definition 1: Petri Net 
A Petri net is a 5-tuple (P, T, I, O, M0), where 

 P = {p1, p2, …, pm} is a finite set of places, 
 T = {t1, t2, …, tn} is a finite set of transitions, P∪T≠∅, and P∩T= ∅, 
 I: (P × T) → N is an input function that defines directed arcs from places to 

transitions, 
 O: (P × T) → N is an output function that defines directed arcs from transitions 

to places, and 
 M0: P → N is the initial marking, where a marking is an assignment of tokens 

to the places of a Petri net. 

A token is a primitive concept for Petri nets (like places and transitions). Tokens 
are assigned to, and can be thought to reside in, the places of a Petri net. The number 
and position of tokens may change during the execution of a Petri net. The tokens are 
used to define the execution of a Petri net. 

2 4 

 

 

Fig. 2 A standard Petri net 
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A Petri net can be graphically represented as shown in Fig. 2, where a circle 
represents a place, a bar or a box represents a transition, an arrow represents an arc 
connecting a place and a transition, and a black dot represents a token. If I(pj, ti) = k 
(or O(pj, ti) = k), then there exist k arrows connecting place pj to transition ti (or 
connecting transition ti to place pj). An arc may be labeled by an integer, which 
represents its multiplicity or weight. 

A transition t is said to be enabled if each input place p of t contains at least the 
number of tokens equal to the weight of the directed arc connecting p to t, i.e., M(p) ≥ 
I(p, t) for any p in P, where M is the current marking. An enabled transition t may or 
may not fire depending on additional interpretation. A firing of an enabled transition t 
removes from each input place p the number of tokens equal to the weight of the 
directed arc connecting p to t. It also deposits in each output place p the number of 
tokens equal to the weight of the directed arc connecting t to p. 

Petri nets can be used to analyze system properties such as reachability, 
boundedness, conservativeness, and liveness. Analysis methods of Petri nets include 
the coverability tree, incidence matrix and state equation, invariant analysis, and 
reduction rules. 

The standard Petri net has been extended into high-level Petri nets by several 
domain experts, including extensions such as fuzzy, object-oriented, stochastic, 
generalized, colored, and timed. Three timed versions of Petri nets are introduced here, 
namely Deterministic Timed Petri Nets (DTPN), Time Petri Nets (TPN), and Timing 
Constraint Petri Nets (TCPN). 

There are three types of DTPN, depending on where deterministic time labels 
(representing time delays) are placed. If time labels are associated with transitions, 
then it is called Deterministic Timed Transitions Petri Nets (DTTPNs) [10]. If time 
labels are associated with places, then it is called Deterministic Timed Places Petri 
Nets (DTPPN). If time labels are associated with arcs, then it is called Deterministic 
Timed Arcs Petri Nets (DTAPN). Only DTTPNs are defined here, because the other 
DTPNs can be defined similarly. 

Definition 2: Deterministic Timed Transitions Petri Net 
A deterministic timed transitions Petri net (DTTPN) is a 6-tuple (P, T, I, O, M0, D), 
where (P, T, I, O, M0) is a standard Petri net, and D: T → R≥0 is a function that 
associates transitions with deterministic time delays. A transition ti in a DTTPN can 
fire at time d if and only if 

 in any input place p of ti, w(p, t) tokens have resided for the time interval [d−di, d], 
where w(p, t) is the weight associated with arc connecting p to t and di is the 
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associated firing time of ti, and 
 after a transition fires, tokens are produced at output places at time d. 

Depending on a given real-time system, different DTPNs may be used to model it. 
DTAPN is more general and can thus be used to model complex real-time systems. 

Merlin and Farber [11] proposed Time Petri Nets (TPN), in which two time values 
are associated with each transition. The values constitute a time interval within which 
a transition is enabled and may fire. A formal definition is as follows. 

Definition 3: Time Petri Net 
A Time Petri net (TPN) is a 6-tuple (P, T, I, O, M0, S), where (P, T, I, O, M0) is a 
standard Petri net, and S: T → Q+ × (Q+ ∪ ∞) is a mapping called static interval, 
where Q+ is the set of positive rational numbers. 

If a transition ti has an interval (a, b) associated with it, then a is the minimum time 
ti must wait for after it is enabled and before it is fired, and b is the maximum time the 
transition can wait for before firing if it is still enabled. Transition firing is 
instantaneous, that is, firing a transition takes no time to complete. When a pair (a, b) 
is not defined, then it is implicitly assumed that the corresponding transition is a 
classical Petri net transition and (a = 0, b = ∞). 

Sloan and Buy [12] developed a set of reduction rules for TPNs, such as serial 
fusion, pre-fusion, post-fusion, and lateral fusion. These reduction rules can reduce 
the size of the exponentially large state-spaces and thus help in analyzing TPNs. 
Further compositional TPNs are also defined for augmenting Petri nets with module 
constructs. A compositional TPN consists of two basic elements: component TPN 
models and inter-component connections. 

One more type of timed Petri nets is called Timing Constraint Petri Nets (TCPN) 
[13], which was inspired from DTPN and TPN. The major difference is that TCPN 
assume a weak firing mode, in contrast to the strong firing mode of the other two 
types of timed Petri nets. The weak firing mode does not force any enabled transition 
to fire. The strong firing mode forces an enabled transition to fire immediately. The 
strong firing mode is not suitable for some nets with conflict structures, which results 
in contradictions. 

Definition 4: Timing Constraint Petri Net 
A Timing Constraint Petri net (TCPN) is a 7-tuple (P, T, I, O, M0, C, D), where (P, T, 
I, O, M0) is a standard Petri net, C is a set of integer pairs, (TCmin(ptj), TCmax(ptj)), 
where TCmin(ptj) ≤ TCmax(ptj) and ptj is either a place or a transition, and D is a set of 
firing durations, {FIREdur(ptj)}. 



 9

A transition tj with a time pair, (TCmin(tj), TCmax(tj)), is said to be enabled if each of 
its input places has at least one token. A transition tj, which is enabled at time t, is said 
to be firable during the time period t + TCmin(tj) to t + TCmax(tj). A firable transition 
can fire but there is no guarantee that the firing will complete successfully because the 
firing of a transition takes a period of time FIREdur(tj). 

2.2 Timed Automata 

When real-time systems are more control-oriented, they can be modeled by Timed 
Automata (TA), which are a timed extension of finite state machines. Before defining 
TA, some necessary terms are defined as follows, where the set of integers and 
non-negative real numbers are denoted by N and R≥0, respectively. 

Definition 5: Mode Predicate 
Given a set C of clock variables and a set D of discrete variables, the syntax of a mode 
predicate η over C and D is defined as: η := false | x~c | x−y~c | d~c | η1∧η2 | ¬η1, 
where x, y ∈ C, ~ ∈ {≤, <, =, ≥, >}, c ∈ N, d ∈ D, and η1, η2 are mode predicates. 

Let B(C, D) represent the set of all mode predicates over C and D. A TA is 
composed of various modes interconnected by transitions. Variables are distinguished 
into clock and discrete. Clock variables increment at a uniform rate and can be reset 
on a transition. Discrete variables change values only when assigned a new value on a 
transition. 

Definition 6: Timed Automaton 
A Timed Automaton (TA) is an 8-tuple A = (M, m0, C, D, X, E, T, R) such that: M is a 
finite set of modes, m0 ∈ M is the initial mode, C is a set of clock variables, D is a set 
of discrete variables, X: M → B(C, D) is an invariance function that labels each mode 
with a condition true in that mode, E ⊆ M×M is a set of transitions, T: E → B(C, D) 
defines the transition triggering conditions, and R: E → 2C∪(D×N) is an assignment 
function that maps each transition to a set of assignments such as resetting some clock 
variables and setting some discrete variables to specific integer values. 

We further define the semantics of a TA by defining its state, mode transition, and 
a feasible computation run as follows. 

Definition 7: State 
Given a TA A = (M, m0, C, D, X, E, T, R), a state s of A is defined as a mapping from 
C ∪ D to R≥0 ∪ N such that for all x in C, s(x) ∈ R≥0 is the reading of clock x in s, and 
for all d in D, s(d) ∈ N is the value of d in s. 

Definition 8: Mode Transition 
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Given two states s1, s2, there is a mode transition from s1 to s2, in symbols s1 → s2, iff 
both s1 and s2 belong to some defined modes, mode invariants are satisfied by the 
states, there is a transition between the two modes, the triggering condition of the 
transition is satisfied by s1 and for all clocks x in C, s2(x) = 0 when x is in the reset 
assignment of the transition and all other clocks are unchanged. 

A real-time system is often modeled as a network of communicating TA. The TA 
may share global variables including clock and discrete. State-spaces of a real-time 
system modeled by a set of TA are generally very large and grows exponentially with 
the large time constant and the system degree of concurrency. 

2.3 Process Algebra 

Process Algebra [14], [15] is a term-based formal specification language for 
system design and analysis. Calculus of Communicating Systems (CCS) [14] was 
extended in several works to model real-time systems, resulting in real-time process 
algebras [15], [16]. Another recent work tackles state-space explosions by using 
dynamic priorities, called CCS with dynamic priority, which extends CCS by 
assigning priority values to actions. Unlike other real-time process algebras, CCS with 
dynamic priority avoids the unfolding of delay values into sequences of elementary 
steps, each consuming one time unit, thereby providing a formal foundation for 
efficiently implementing real-time semantics. CCS with dynamic priority has been 
proved to be bisimilar to CCS with real-time. 

The syntax of CCS with real-time and with dynamic priority can be defined as 
follows. 

Definition 9: CCS with real-time and with dynamic priority 
The syntax of CCS with real-time and dynamic priority is defined as follows: 

P  ::=  0 | x | α:k.P | P+P | P◊P | P|P | P[f] | P\L | µx.P 

where x is a variable taken from some countable domain V, α is an action, k ∈ N, the 
mapping f: A→A is a relabeling, L ⊆ A \ {τ} is a restriction set, A is the set of all 
actions, and τ is an internal action. As far as the binary operators are concerned, + is a 
non-deterministic choice, ◊ is a disabling operator, | is a parallel operator, and \ is the 
set subtraction operator. 

The semantics can be defined by action transitions and clock transitions. Here, in 
CCS with real-time, α:k.P means the action α has a delay equal to k time units 
associated with it and the resulting process is P. In CCS with dynamic priority, α:k.P 
means the action has a priority k associated with it and the priority can be changed 
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dynamically. The labeled transition system for a process P is a 4-tuple (P, A∪{1},→ 
P), where P is the set of states, A∪{1} is the alphabet, → is the transition relation, and 
P represents the start state. Maximal progress is assumed here, that is, no idling is 
allowed when a communication can take place. Further in CCS with dynamic priority, 
higher priority processes can pre-empt lower priority tasks. 

2.4 Object-Oriented Techniques 

Real-time systems can be modeled by object-oriented techniques [17], [18], which 
have been widely accepted in the software as well as the hardware design community. 
Object-orientation has many benefits not found in traditional structured design. In a 
real-time system, each process thread can be modeled by a class and each resource 
can also be modeled by a class. Encapsulations of data and time in a class result in 
safer systems, which can be upgraded more easily than conventional systems. 

A standard for object-oriented modeling language, called Unified Modeling 
Language (UML) [19] has been extended with a real-time profile. Real-time UML [20] 
is currently a well-received design modeling paradigm in the real-time community 
[21]. Further, programming languages like Java has also been recently extended for 
real-time application design, with a Real-Time Specification for Java [22], by the 
Real-Time for Java Experts Group. CORBA is another standard in designing 
distributed object-oriented real-time applications [23]. 

In real-time UML modeling resources [24], QoS (quality of service) characteristics 
are taken as the basis for quantitative analysis. These characteristics are given as 
constraints to model elements that specify behavior at runtime, including use cases, 
interactions, operations, state machine transitions, activities, and individual actions. A 
realization mapping is used to compare QoS characteristics. This mapping is a 
syntactical declaration that a particular resource supports a particular logical element 
in some unspecified way. The user must determine the realization’s semantics and 
validity. More formal and more sophisticated forms such as standard stereotypes, 
involve semantic knowledge of the nature of the logical and engineering model 
elements being bound. For example, a CORBA or a COM channel can realize a 
communication link between two objects in a logical model. A realization package is 
modeled as a UML package and represents a consistent set of mappings that are 
mutually compatible and nonexclusive. A given logical model can have any number 
of realization packages, each of which represents one distinct mapping of the logical 
model to exactly one engineering model. 

The real-time specification for Java (RTSJ) was recently proposed by the 
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Real-Time for Java Experts Group (RTJEG), which begin development in March 
1999 under the Java Community Process. The programming language Java itself was 
left untouched. The specification merely enhances Java by defining new classes that 
provide real-time behavior. Seven areas were proposed that required new specification, 
namely scheduling, memory management, synchronization, asynchronous event 
handling, asynchronous transfer of control, asynchronous thread termination, and 
physical memory access. Each area considered the state-of-art technology in real-time 
system and application development.  

For scheduling, the only specification was that a fixed-priority preemptive 
scheduler with no fewer than 28 priorities was required. For memory management, 
several areas of memory were newly defined, namely scoped memory, immortal 
memory, and Java heap. For synchronization, the priority inheritance protocol was 
required to be implemented by default and wait queues were defined for 
communication among regular Java threads, Real-Time (RT) threads, and No-Heap 
Real-Time (NHRT) threads. For asynchronous event handling, two new classes were 
defined: AsyncEvent and AsyncEventHandler, where the former represents something 
that can happen, e.g., a Posix signal, and the latter is a schedulable object that handles 
an asynchronous event. A Clock class is also specified for modeling time. More than 
one clock may also be implemented. For asynchronous control transfer, 
AsynchronouslyInterruptedException (AIE) is specified asynchronously transfer 
control. For asynchronous thread termination, safe stopping of threads is implemented. 
For physical memory access, RTSJ defines two classes: RawMemoryAccess, which 
allows memory access in terms of byte, word, long, and multiple-byte granularity, and 
PhysicalMemory, in which Java objects can be located. 

3. Real-Time Constraints 

A real-time constraint is defined as a Boolean condition on the values of clock 
variables. Clock variables are variables whose value increases with time. Clock 
variables, or clocks in short, may be either global or local. The values of global clocks 
are visible to all processes of a system and those of local clocks are visible only to 
their owner processes. Clocks may be either absolute or relative. Absolute clocks take 
values from a global timer, which is never reset after initialization. Relative clocks 
take values from a timer, which could be a difference of two other clock values. 
Clocks may be discrete or dense. Discrete clocks increase value by integral 
increments, while dense clocks increase value by real-time quantums. In a single 
real-time system, all clocks are discrete or all clocks are dense, but absolute and 
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relative clocks, just as global and local clocks, may co-exist a system. Since different 
models propose different syntaxes for real-time constraint specification, the exact 
syntax of a Boolean condition on clock variables is dependent on the system model 
used. In general, the condition evaluates to either true or false in a system state. For 
example, in a timed automaton, x < 3 ∧ y ≥ 8 is a Boolean condition on clock 
variables x and y, such that it evaluates to true in a particular system state only when 
both the clocks have values satisfying the two predicates, respectively, in the 
condition. 

In the following subsection, real-time extensions to existing programming and 
modeling languages are described such that real-time constraints can be specified. 
Real-time languages often add statements about the temporal constraints of 
computations to the syntax of the language. However, most current real-time 
languages using the process model for programming also assume the conventional 
run-time model which manages a set of processes preempting one another according 
to their execution priority, competing for resources, and blocking when resources are 
already in use, which tends to limit their ability to predict execution behavior. In the 
final subsection, constraints checking for temporal correctness is described and an 
associated Real-Time Logic (RTL) introduced. 

3.1 Real-Time Languages 

Real-time Euclid [25] was one of the earliest real-time languages, which is an 
extension of Euclid. It restricts language constructs such as recursion and dynamic 
memory allocation. Concurrency can also be controlled through signal and wait 
constructs. Real-time Euclid was designed mainly for schedulability analysis under a 
number of assumptions on the system and process behavior. 

Real-time Mentat [26] is an object-oriented real-time language, which is an 
extension of C++. In real-time Mentat, a programmer may specify timing constraints 
in statement level. Both soft and hard deadlines can be specified. A block with soft 
deadline may be skipped if the hard real-time tasks cannot meet their deadlines. It 
does not support preemption of objects. 

RTC++ [17] is an object-oriented real-time language, which is also an extension of 
C++. It supports preemption, but not soft deadlines. Active objects are introduced and 
active objects with timing constraints are called real-time objects. It supports 
inheritance in active objects, synchronous communications among active objects, and 
exception handling. Time is encapsulated in an active object so as to specify timings 
for an operation. A critical region is realized in RTC++ by implementing an object 
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with a guard expression. Rate monotonic scheduling is assumed. 

The programming language for the Maruti system, MPL [27], also extends C++. 
MPL provides several ways to specify temporal constraints on blocks of code within 
an object. Loop bounds are specified and recursion forbidden to increase 
predictability. 

Kenny and Lin describe the Flex language [28], another extension of C++, which 
includes a number of timing constraint expressions and exception handling clauses. A 
polymorphism analogous to operator overloading is adopted for approximate 
processing [29]. Here, polymorphism refers to providing several routines 
implementing the same function, which have different properties in space and/or time. 
Flex also supports monotonic algorithms, which support computations with 
unpredictable behavior by establishing an initial result early and then iteratively 
refining it until the deadline is reached. 

Real-Time Concurrent C [30] extends Concurrent C by providing facilities for 
building systems with strict timing constraints. Real-Time Concurrent C allows 
processes to execute activities with specified periodicity or deadline constraints, to 
seek dynamic guarantees that timing constraints will be met, and perform alternative 
actions when either the timing constraints cannot be met or the guarantees are not 
available. 

Spring system’s real-time system description language, SDL [31], explicitly 
supports specifying a computation's real time behavioral constraints, end-to-end 
constraints, concurrency, and details of the hardware-software platform that are 
required to accurately analyze the system and achieve predictability. The 
programming language, Spring-C [32], works in concert with the specification 
language. Its structure constrains the programmer in ways, which ensure that 
worst-case execution behavior, including execution times, can be automatically 
predicted for the particular hardware platform being used. Of course, such platforms 
should have predictable instruction execution times. A key aspect of the Spring-C 
compiler is that it automatically identifies all of a computation's potential blocking 
points, i.e., points during execution when it can block for resources or wait for 
synchronous communication to occur [33]. 

3.2 Constraints Checking and Real-Time Logic 

A reactive real-time system has to compute a result to an external trigger event 
within certain timing constraints even in the presence of faults. It has to initiate some 
adaptive reactions when an assumption is violated [34]. Possible reactions include the 
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activation of stand-by resources, a rescheduling of the remaining resources, or the 
execution of alternative algorithms for solving the problem under certain emergency 
conditions. For a reaction to be made, a system has to be informed of the occurrence 
of a violation. Run-time monitoring and checking of constraints are thus a part of such 
reactive systems. A constraint checker is the required facility. 

Major work in the area of checking timing constraints in a real-time system were 
done by Jahanian and Mok, which was initiated by proposing Real-Time Logic (RTL) 
language [35] for the specification of real-time systems. The semantics of RTL is 
based on the occurrence of events, which result on the execution of a real-time system, 
such as the start and the end of code blocks or the assignment of values to state 
variables. Algorithms for checking safety assertions [36] and for partial event-traces 
[37] against RTL-specifications were developed. A distributed on-line monitoring and 
checking tool, which allows to specify timing assertions in a subset of RTL and to 
check whether these assertions are violated or not, was later developed [38], [39]. 
Events storing, definition of timing constraints, and evaluation of constraints in a 
distributed environment are all handled by the monitoring tool. Later, the work was 
extended to object-oriented models, integrated into standard programming languages 
like C++, and code instrumented with event-triggers [34]. 

As far as constraints checking is concerned, RTC++ and Flex provide 
schedulability analysis, but do not provide static worst-case execution time analysis. 
Real-time Euclid provides static worst-case execution time analysis. Using a real-time 
language cannot guarantee that timing violations will not happen. To cope with such 
violations, most real-time languages contain a checker for deadline violations and an 
exception-handling mechanism. In [34], a new component called “constraint” section 
is added to a class description. This section contains a list of named RTL-like 
formulas, which are composed out of basic events such as “start” and “end” of code 
sections and changes of state variables. When a constraint is violated, the object 
produces an event with the static name of the constraint, the dynamic context of the 
object that violated the constraint and a time-stamp that is the earliest point in time 
when the checker could evaluate that the constraint will be violated. This 
independence of functional and timing specifications avoids inheritance anomalies 
and it allows the construction of two separate systems: the object-oriented real-time 
system and its constraint checker. 

As shown in Fig. 3, there are two constraints in the constraints section of a class 
description. Constraint 1, named “max_time” states that an execution of the member 
function compute() must not take longer than 8 ms. The expression 
@(compute.start, -1) denotes the start time of the most recent execution of the 
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member function compute() and @(compute.end, -1) evaluates to the end 
time of the same execution. Constraint 2, named “recovery”, expresses that two 
successive calls to compute() must have a distance of at least 2 seconds. 

For constraints checking, a compile-time and run-time support is required. A 
compiler for a proposed language extension has to do two additional tasks besides the 
production of the object code. It has to translate the timing constraints into a) an 
instrumentation of the object-oriented program in order to produce the required events, 
and b) a representation of the constraints that can be evaluated by the constraint 
checker. An eventing system is the run-time support. It has to receive event records 
from code instrumentations, it has to provide time-stamps from a global clock, and it 
has to filter out irrelevant events. It then collects the events from the different nodes 
of a distributed system and merges them into a global event stream according to the 
total order imposed by the time-stamps. The constraint checker has to receive static 
information about the structure of the timing constraints from the compiler. During 
run-time, it has to react to incoming events. It maintains a global event dispatch table 
that maps other incoming events to the objects and the constraints that might be 
affected. A constraint violation is detected by constructing a current instance of a 
graph out of the graph-templates.  Upon detection of a constraint violation, the 
checker itself produces a corresponding event, which will immediately be checked 
(since it is the next event in the total order of events). 

There are three possible modes in which a checker can be used: off-line, on-line, 
and real-time. In the off-line mode, performance of the checker has not effect on the 
system being checked. An on-line checker has to cope with the average event rate, so 
that it can keep track of a running system. If it is a real-time checker, then all of its 
parts must have known worst case execution times and they must be scheduled with 
the application itself. 

class sensor { 
public: 
 int compute(); 

: 
[[ // The Constraint Section 
// Constraint 1: 
// compute() must not take longer than 8 ms 
 max_time: @(compute.start, -1) >= @(compute.end, -1) – 4ms; 
// Constraint 2: 
// compute() must not be called more than once per second 
 recovery: @(compute.start, -2) <= @(compute.end, -1) – 2s; 
]] 

} 

Fig. 3 A C++ Class with Constraints Section 
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4. Real-Time System Design 

Real-time system design deals with how real-time constraints may be feasibly 
implemented in working systems that might contain pure hardware, pure software, or 
both hardware and software. In general, a real-time system is designed as follows. A 
set of system specifications, including real-time constraints, is specified by a designer. 
A synthesis methodology uses some kind of system models, performance models, 
estimation models, and exploration models, to design a system that satisfies all the 
system specifications. The final design is then validated through simulation, testing, 
or rapid prototyping. A target design could be a sequential system, consisting of either 
one CPU or one ASIC, or a parallel system, consisting of multiple CPUs or multiple 
ASICs. The latter is much more complex to design than the former, as described in 
Section 4.2. Irrespective of hardware or software implementations, real-time 
scheduling of multiple tasks on a single CPU or ASIC is essentially the most validated 
and theoretically proven. Real-time scheduling will be discussed briefly in Section 4.1. 
Hardware design is introduced in Section 4.2. Different paradigms for software design 
are discussed in Section 4.3. Hardware-software co-design methodologies are 
presented in Section 4.4. 

Definition 10: Synthesis of multiple tasks hard-real time multiprocessor systems 
Given a set of tasks with hard real-time constraints such as period, start time, and 
finish time or deadline, design a system consisting of multiple CPUs or multiple 
ASICs such that the set of tasks is partitioned into several subsets, each subset is 
implemented on one dedicated CPU or ASIC, all the given real-time constraints are 
satisfied, and the overall system cost is minimal. 

The above defined optimization design problem is NP-complete [40]. Even several 
sub-problems of the above problem are NP-complete, such as scheduling of a single 
task on minimal resources [41], or minimization of only one type of resource [42], or 
register minimization [42]. This layering of computationally intractable sub-problems 
does not affect overall worst-case asymptotic computational complexity, but it makes 
the synthesis problem exceptionally challenging in practice because numerous 
contradictory effects along several hardware dimensions, at both process and task 
granularity levels, must be taken into account. 

4.1 Real-Time Scheduling 

A real-time system generally needs to process various concurrent tasks. Real-time 
scheduling is defined as assigning the exact execution times for a set of real-time 
tasks such that all temporal constraints including period, phase, deadline, priority, and 
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resource requirements are satisfied. 

A task is a finite sequence of computation steps that collectively perform some 
required action of a real-time system and may be characterized by its execution time, 
deadline, etc. Periodic tasks are tasks that are repeatedly executed once per period of 
time. Each execution instance of a periodic task is called a job of that task. 

In a processor-controlled system, when a processor is shared between time-critical 
tasks and non-time-critical ones, efficient use of the processor can only be achieved 
by careful scheduling of the tasks. Here, time-critical tasks are assumed to be 
preemptive, independent, periodic, and having constant execution times with hard, 
critical deadlines. 

Scheduling may be time-driven or priority-driven. A time-driven scheduling 
algorithm determines the exact execution time of all tasks. A priority-driven 
scheduling algorithm assigns priorities to tasks and determines which task is to be 
executed at a particular moment. 

In the following, we mainly discuss time-critical periodic tasks with the above 
assumptions and scheduled using priority-driven scheduling algorithms. Depending 
on the type of priority assignments, there are three classes of scheduling algorithms: 
fixed priority, dynamic priority, and mixed priority scheduling algorithms. When the 
priorities assigned to tasks are fixed and do not change between job executions, the 
algorithm is called fixed priority scheduling algorithm. When priorities change 
dynamically between job executions, it is called dynamic priority scheduling. When a 
subset of tasks is scheduled using fixed priority assignment and the rest using 
dynamic priority assignment, it is called mixed priority scheduling. 

Before going into the details of scheduling algorithms, we define the task set to be 
scheduled as a set of n tasks {φ1, φ2, …, φn} with computation times c1, c2, …, cn, 
request periods p1, p2, …, pn, and phasings h1, h2, …, hn. A task φi is to be periodically 
executed for ci time units once every pi time units. The first job of task φi starts 
execution at a time hi. The worst-case phasing called a critical instant occurs when hi 
= 0, for all i, 1 ≤ i ≤ n. 

Liu and Layland [43] proposed an optimal fixed priority scheduling algorithm 
called the rate-monotonic (RM) scheduling algorithm and an optimal dynamic priority 
scheduling algorithm called earliest-deadline first (EDF) scheduling. 

The RM scheduling algorithm assigns higher priorities to tasks with higher request 
rates, that is, smaller request periods. Liu and Layland proved that the worst-case 
utilization bound of RM was n × (21/n − 1) for a set of n tasks. This bound decreases 
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monotonically from 0.83 when n = 2 to loge2 = 0.693 as n → ∞. This result shows 
that any periodic task set of any size will be able to meet all deadlines all of the time 
if RM scheduling algorithm is used and the total utilization is not greater than 0.693. 

The exact characterization for RM was given by Lehoczky, Sha, and Ding [44]. 
They proved that given periodic tasks φ1, φ2, …, φn with request periods p1 ≤ p2 ≤ … ≤ 
pn, computation requirements c1, c2, …, cn, and phasings h1, h2, …, hn, φi is 
schedulable using RM iff 

Min{t ∈ Gi} Wi(t)/t  ≤  1 (1) 

where Wi(t)=Σi
j = 1 cjt/pj, the cumulative demands on the processor by tasks over [0, 

t], 0 is a critical instant (i.e., hi = 0 for all i), and Gi = {k × pj | j = 1, …, i, k = 1, …, 
pi/pj}. Liu and Layland discussed the case when task deadlines coincide with 
request periods, whereas Lehoczky [45] considered the fixed priority scheduling of 
periodic tasks with arbitrary deadlines and gave a feasibility characterization of RM 
in this case: given a task set with arbitrary deadlines d1≤ d2≤ … ≤ dn, φi is RM 
schedulable iff Maxk ≤ Ni Wi(k, (k−1)pi+di) ≤ 1, where Wi(k, x) = mint ≤ x ((Σj = 

1…i−1cjt/pj + k × ci)/t) and Ni = min{k | Wi(k, k × pi) ≤ 1}. 

The worst case utilization bound of RM with arbitrary deadlines was also derived 
in [45]. This bound (U∞) depends on the common deadline postponement factor ∆, i.e., 
di = ∆ pi, 1 ≤ i ≤ n. 

U∞ (∆) = ∆ loge ((∆+1)/∆),  ∆ = 1, 2, … (2) 

For ∆ = 2, the worst-case utilization increases from 0.693 to 0.811 and for ∆ = 3 it 
is 0.863. Recently, the timing analysis for a more general hard real-time periodic task 
set on a uni-processor using fixed-priority methods was proposed by Härbour et al 
[46]. 

Considering the earliest deadline first dynamic priority scheduling, Liu and 
Layland [43] proved that given a task set, it is EDF schedulable iff  

Σi = 1…n ci/pi ≤ 1 (3) 

and showed that the processor utilization can be as high as 100%. 

Liu and Layland also discussed the case of Mixed Priority (MP) scheduling, where 
given a task set φ1, φ2, …, φn, the first k tasks φ1, …, φk, k < n, are scheduled using 
fixed priority assignments and the rest n−k tasks φk+1, …, φn are scheduled using 
dynamic priority assignments. It was shown that considering the accumulated 
processor time from 0 to t available to the task set (ak(t)), the task set is mixed priority 
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schedulable iff 

Σi = 1…n−k t/pk+i ck+i ≤ ak(t) (4) 

for all t which are multiples of pk+1 or … or pn. Here, ak(t) can be computed as 
follows. 

ak(t) = t − Σj=1…k cj t/pj 

Although the EDF dynamic priority scheduling has a high processor utilization, in 
recent years fixed priority scheduling has received great interests from both academy 
and industry [44], [45] ,[46], [47], [48], [49], [50], [51]. 

Summarizing the above scheduling algorithms, we have five different cases of 
schedulability considerations: 

 RM-safe: all task sets are schedulable as long as the server utilization is below 
loge 2 = 0.693, 

 RM-exact: all task sets satisfying Equation (1) are schedulable, 
 RM-arbitrary: all task sets are schedulable as long as the server utilization is 

below ∆loge((∆+1)/∆) (Equation (2)), 
 EDF: all task sets satisfying Equation (3) are schedulable, and 
 MP: all task sets satisfying Equation (4) are schedulable, 

4.2 Hardware System Design 

As far as hardware system design is concerned, Potkonjak and Wolf [40] recently 
developed a new two-domain iterative refinement multi-resolution synthesis strategy 
to help manage the complexity of the above defined synthesis problem (Definition 10). 
The final solution implements the set of processes into a partitioned system of 
multiple ASICs. 

Each process is initially considered in a single process domain. Estimations are 
made using the Hyper high-level synthesis system [52] through area-time trade-off 
curves for three types of hardware resources: execution units, interconnect, and 
registers. Estimations are then made for each partition with respect to the required 
hardware resources and feasibility of timing constraints. In the single process domain, 
augmented Hyper-LP estimations are made for all hardware components and complete 
implementations obtained. Inferior and non-feasible solutions are discarded. Finally, 
the complete single process and task-level schedules are obtained using the Hyper 
scheduler and a task-level scheduler. The proposed design methodology is a basis for 
an optimal worst-case exponential time branch and bound synthesis algorithm as well 
as fast heuristic synthesis algorithm. 
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4.3 Software System Design 

Designing a software system to solve the real-time synthesis problem (Definition 
10) is a scheduling problem, such that a given set of tasks is to be scheduled on a set 
of processors while simultaneously satisfying real time constraints and using the 
processor and memory resources as efficiently as possible [53]. As mentioned at the 
beginning of Section 4, this problem itself is NP-complete. Hence, many software 
scheduling strategies have been proposed. 

4.3.1 Formal Software Synthesis 

Scheduling of software can be accomplished based on data computations and 
control structures in a system specification. Three types of scheduling can be 
combined to obtain an ideal scheduling technique. Firstly, static scheduling can be 
used to exploit fixed dependencies between blocks of operation. Secondly, 
quasi-static scheduling can be used to identify data-dependent operations with the 
same rate and schedule them. Thirdly, dynamic scheduling can be used to determine 
which tasks should be executed. 

For the synthesis of software executing on a single processor, several researches 
are still ongoing. Buck [54] proposed a quasi-static schedule computation algorithm 
based on Boolean Data Flow (BDF) network model. Theon et al. [55] proposed a 
technique to exploit static information in the specification and extract from a 
constraint graph description of the system statically schedulable clusters of threads. 
Lin [56], [57] used intermediate Petri net models to generate a software program from 
a concurrent process specification. Here, it is assumed that the Petri nets are safe, i.e. 
buffers can store at most one data unit, and hence cannot handle multi-rate 
specifications, like FFT computations and down sampling. Zhu and Lin [58] then 
proposed a compositional approach to software synthesis such that the size of the 
resulting C program was directly proportional to the size of the original specification. 
Later, Sgroi et al [53] proposed a software synthesis method based on quasi-static 
scheduling (QSS) of Free Choice Petri Nets (FCPN). The proposed algorithm is 
complete, in that it can solve QSS for any FCPN that is quasi-statically schedulable. 
Recently, an approach that maximizes the amount of static scheduling to reduce the 
need for context switching and operating system intervention was proposed by 
Cortadella et al [59]. 

Formal real-time software synthesis based on Petri nets is still at a premature stage 
and research work is ongoing in this area. Some work on using timed Petri nets to 
schedule flexible manufacturing systems have been proposed. Onaga et al [60] 
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proposed a linear programming based heuristic approach for generating minimal time 
strict periodic schedules. Qadri and Robbi [61] uses a Timed Petri Net Simulation tool, 
TPNS [62], to model the performance of a flexible manufacturing cell arrangement 
with different scheduling approaches. Later, Zuberek [63] used invariant analysis of 
timed Petri nets to provide performance characteristics of manufacturing cells with 
composite schedules. Recently, Di Natale et al [64] proposed an iterative solution to 
schedule reactive real-time transactions modeled by a network of Codesign Finite 
State Machines (CFSM). It offers a priority assignment scheme together with a tight 
worst-case analysis. 

4.3.2 Object-Oriented Application Frameworks 

Another paradigm of software development for real-time systems is 
Object-Oriented Application Frameworks (OOAFs). An OOAF is a reusable, 
“semi-complete” application that can be specialized to produce custom applications 
[65]. Examples include MacApp, ET++, Interviews, ACE, Microsoft’s MFC and 
DCOM, Javasoft’s RMI and implementation of OMG’s CORBA. Compared to other 
application domains, real-time OOAFs are limited in number. Currently, there are 
Real-Time Framework (RTFrame), which is also called SESAG [66] and 
Object-Oriented Real-Time System Framework (OORTSF) [67]. 

SESAG is modularized into five components, namely Specifier, Extractor, 
Scheduler, Allocator, and Generator. Two different views of SESAG were presented: 
a Components-Patterns view and a Class view. Application domain objects are 
specified using the Specifier. Real-time constraints are either specified separately or 
coupled with the application domain objects. In the latter case, Extractor is used for 
extracting constraints. Extractor is also used to extract tasks from the given domain 
objects. Scheduler schedules the tasks using some scheduling algorithm and Allocator 
allocates resources among the tasks that are running concurrently. Finally, Generator 
is used to generate the application code based on the decisions made in the other 
components. Through applications on avionics and cruiser controls, SESAG has been 
shown to decrease design efforts to less than 5% of that required without using 
SESAG. The evaluation was made based on a relative design effort metric. 

OORTSF emphasizes on high-level design reuse. Several design patterns and 
schedulers have been implemented into OORTSF. A five-step process is defined for 
developing real-time applications using OORTSF. First, domain task objects are 
identified and defined. Second, real-time requirements for each domain task object are 
generated. Third, schedulability check is performed on the set of tasks. Fourth, 
OORTSF is used to generate the target system code. Fifth, the generated target system 
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is validated and verified. Currently, it has also been extended into a framework for 
developing distributed real-time applications. Three components called AppNode, 
AppControl, and RemotePipeDirector have been defined for a distributed application 
environment. Its integration with CORBA [68] and with Java RMI [69] has also been 
discussed. OORTSF has been used to design an airborne vehicle flight path control 
real-time application. 

4.3.3 Real-Time Operating Systems 

Last but not least in real-time software development is Real-Time Operating 
Systems (RTOS), which are stripped down and optimized versions of timesharing 
operating systems. Some features of RTOS include: fast context switch, small size, 
quick response to external interrupts, minimal interrupt-disable intervals, no virtual 
memory, code and data locking in memory, and fast accumulation of data through 
special sequential files [33]. RTOS kernels maintain a real-time clock, provide 
priority-scheduling mechanisms, provide for special alarms and timeouts, and permit 
tasks to pause/resume execution. In general RTOS kernels are multi-tasking and 
inter-task communication and synchronization are achieved via standard primitives 
such as mailboxes, events, signals, and semaphores. Many real-time UNIX OS [70] 
and a standard for RTOS, called RT POSIX [71], have been developed. There are also 
over 70 commercial proprietary RTOS including: QNX, LynxOS, OS-9, VxWorks, 
and VRTXsa. Real-Time Mach [18] is a RTOS developed in academia. 

4.4 Hardware-Software Co-design 

An embedded system often contains both hardware in the form of one or more 
ASICs or ASIPs and software executable on one or more microprocessors. Several 
works have been done on synthesizing a hardware-software system [72], but there are 
relatively fewer results targeted at hardware-software real-time systems. In the 
following, a recently proposed methodology, called Distributed Embedded System 
Codesign (DESC) methodology [73] is briefly presented. 

DESC methodology uses three types of semantically equivalent models, namely, 
Object Modeling Technique (OMT) [74] models for system description and input, 
Linear Hybrid Automata (LHA) [75] models for system evaluation during partitioning 
and for formal verification, and SES/workbench simulation [76] models for 
performance evaluation after partitioning. A hierarchical partitioning algorithm [77] 
is proposed specifically for distributed systems. Software is synthesized by task 
scheduling and hardware is synthesized by object-oriented design techniques [78], 
[79], [80]. Design alternatives for synthesized hardware-software systems are then 



 24

checked for design feasibility through rapid prototyping using hardware-software 
emulators. Timing coverification of real-time constraints is performed using LHA 
models [81], [82]. DESC methodology has been applied to a case study on a Vehicle 
Parking Management System (VPMS) [73], which shows the benefits of OO codesign, 
and the benefits of considering physical restrictions. 

5. Real-Time System Verification 

Since the correctness of real-time systems depends on whether the specified 
real-time constraints are satisfied or not, the validation or verification of such systems 
are all the more crucial. Validation of real-time systems can be done in the following 
ways: simulation, testing, emulation, rapid prototyping, and worst-case execution time 
analysis. Validation is not a complete or full technique, in the sense that after 
validation, a system designer still cannot guarantee 100% system correctness. Often 
statistical or probabilistic figures are cited after a real-time system is validated. For 
example, one can say after validation, that a real-time system is 99.99% correct with a 
95% confidence range, or that it is correct for 99.5% of execution time. 

In contrast, formal verification or analysis is complete, that is, a real-time system is 
verified to be 100% correct, with respect to some kind of temporal specification. In 
the recent few years, model-checking [83] has gained wide recognition due to its 
algorithmic approach at verifying real-time systems. In the following, model-checking 
is presented based on the timed automata (TA) system model and timed computation 
tree logic (TCTL) specification, as defined in Definition 6 and Definition 11, 
respectively. 

Definition 11: Timed Computation Tree Logic (TCTL) 
A timed computation tree logic formula has the following syntax. 

φ ::= η | ∃□φ′ | ∃φ′U~cφ′′ | ¬φ′ | φ′∨φ′′ (5) 

Here, η is a mode predicate (Definition 5), φ′, φ′′ are TCTL formulae, ~ ∈ {<, ≤, =, ≥, 
>}, and c ∈ N. ∃□φ′ means there exists a computation, from the current state, along 
which φ′ is always true. ∃φ′U~cφ′′ means there exists a computation, from the current 
state, along which φ′ is true until φ′′ becomes true, within the time constraint of ~c. 
Traditional shorthands like ∃◇, ∀□, ∀◇, ∀U, ∧, and → can all be defined [84]. 

Model checking is an automatic procedure to verify is a given system satisfies a 
given temporal property. A dense real-time system can be described using a set of 
timed automata and a property specified in TCTL. In the following, a brief 
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introduction to the intrinsic of model checking is given. 

Fig. 4 Symbolic Model Checking Procedure 

A symbolic model checking procedure is given in Fig. 4, where two data-structures 
are maintained: a queue of regions (Unvisited) and a set of reachable regions (Reach). 
The former keeps a record of which regions are yet to be explored, while the latter 
keeps a record of all the regions reached. The procedure starts from an initial region, 
Rinit, which is a Cartesian product of the initial modes of all the TA in the input set of 
TA, B. Initially, the initial region is queued in Unvisited and recorded in Reach. A 
region, R′, is dequeued from Unvisited and corresponding to each out-going transition, 
e, of R′ a successor region, R″, is constructed by the function Successor_Region(R′, e) 
(see Fig. 5). If R″ is consistent and is not already in Reach, then it is recorded in 
Reach and queued in Unvisited for further exploration of its successors. The 
procedure loops until all regions in the queue have been explored. Finally, the regions 
in Reach are labeled according to the labeling algorithm Label_Reach(Reach, φ) (see 
Fig. 6), where φ is a TCTL formula, such that all regions in Reach satisfy φ. The 
procedure finally outputs the label that has been assigned to the initial region, Rinit. 

As detailed in Fig. 5 (Successor_Region()), the successor region is constructed as 
follows. Given a region R and an out-going transition e, the successor region R′ is 
constructed by first advancing (Advance()) all clock values till it satisfies the 
triggering condition (e.Trigger) of e, while at the same time still satisfying the clock 
condition R, R.ClockCond. This first step gives an intermediate symbolic condition 
R′.ClockCond for the successor region R′. Second, the clock resets in e.Assign are 
applied to R′.ClockCond by Assign(). Third, the clock conditions of all sub-regions of 

Symbolic_Mcheck(B, φ) 
Set of TA B; 
TCTL formula φ; 
{ 

Let Reach = Unvisited = {Rinit}; 
While (Unvisited ≠ NULL) { 

R′ = Dequeue(Unvisited); 
For all out-going transition e of R′ { 

R′′ = Successor_Region(R′, e); 
If R′′ is consistent and R′′∉Reach { 
Reach = Reach ∪ {R″}; 
Queue(R″, Unvisited); }}} 

Label_Region(Reach, φ); 
Return L(Rinit); 

} 
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R′ have also to be satisfied by R′.ClockCond. Finally, the discrete variable values are 
assigned to R.DvarCond to obtain the new symbolic condition R′.DvarCond. In this 
way, both the clock and discrete variable symbolic conditions of the successor region 
R′ are thus computed. 

Fig. 5 Successor Region Function 

The labeling algorithm, Label_Region(), is presented in Fig. 6. This algorithm 
assigns a label, L(R, φ), to each region, R, in the set of regions RSet. The label 
indicates if the region R satisfies φ. This labeling is computed as follows. For a mode 
predicate (see Definition 5), the label is true if the region satisfies the mode predicate 
and it is false otherwise. For a TCTL path formula, φ, the label is computed 
recursively according to the semantics of the formula. 

Fig. 6 Label Region Function 

Successor_Region(R, e) 
region R; 
transition e; 
{ 

R′ = New_Region(); 
R′.ClockCond = Advance(R.ClockCond) ∧ e.Trigger ∧ R.ClockCond; 
R′.ClockCond = Assign(R′.ClockCond, e.Assign); 
R′.ClockCond = R′.ClockCond ∧ (Λi R′.SubRegioni.ClockCond); 
R′.DvarCond = Assign(R.DvarCond, e.Assign); 
Return R′.; 

} 

Label_Region(RSet, φ) 
set of region RSet; 
TCTL formula φ; 
{ 

For each R ∈ RSet, calculate recursively the label of R, L(R), as follows. 
case φ = x ∼ c: L(R, φ):= true, if x ~ c is true in R; false otherwise; 
case φ = x – y ∼ c: L(R, φ):= true, if x – y ~ c is true in R; false otherwise; 
case φ = d ∼ c: L(R, φ):= true, if d ~ c is true in R; false otherwise; 
case φ = η1 ∧ η2: L(R, φ):= true, if both η1, η2 are true in R; false otherwise; 
case φ = η1: L(R, φ):= true, if η1 is false in R; false otherwise; 
case φ = ∃◇φ′ U~c φ″: L(R, φ):= true, if there is a successor R′ of R such that 

L(R′, φ″) is true, there is a path, π, from R to R′ such that for all regions 
R″ along π, L(R″, φ′) is true, and timeπ(R, R′) ~ c is true; false otherwise;

Similarly, for the other cases:  
φ = ∃□φ′U~cφ″, φ = ∀◇φ′U~cφ″, and φ = ∀□φ′U~cφ″. 

} 
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Model checking based tools can be mostly found in academia. Verification tools 
that can be used to specify and verify real-time systems include UPPAAL [85], 
Kronos [86], SGM [87], [88], NuSMV [89], RED [90], XTL [91], and several others. 
Besides the above-presented symbolic model checking procedure, there are also 
process algebra based [92] and logic-based [93] verification for real-time systems. As 
for hardware-software coverification, there are also some recently proposed works on 
it [81], [82], [94]. 

6. Conclusion and Future Work 

At the turn of a new century, computer technology is no long confined in the 
laboratories of academia and research institutes. In the last few years, the world has 
experienced a burgeoning widespread increase of embedded systems in intelligent 
appliances and high-assurance systems, which are mostly real-time. Software and 
hardware standards in modeling and programming languages are all being extended to 
cover the realm of real-time domain. Some examples include real-time UML, 
real-time Java, and real-time CORBA. Real-time constraints have permeated from 
highly advanced systems, such as nuclear reactors and spacecrafts, to everyday-life 
systems such as telecommunications, transportation systems, and home appliances. 
Real-time constraints have even entered the wireless technology such as the Bluetooth 
technology, which allows users to make effortless, wireless and instant connections 
between various communication devices, such as mobile phones and desktop and 
notebook computers. Since it uses radio transmission, transfer of both voice and data 
is in real-time. This article comes at a time where real-time constraints are here to stay, 
both in academy and in industry, for a very long period into the future of computer 
science history. Real-time constraints have been specified, modeled, designed, and 
verified in this article. This introductory material did not intend to be exhaustive and 
the technology is still developing! A major future work is the integration of the 
Internet with real-time constraints. Real-time Internet is still a dream, though 
real-time networking has already matured to some stage today with the use of 
Video-On-Demand systems and other real-time multimedia applications and systems. 
Another major breakthrough that most information technologists are awaiting for is 
gigabit real-time wireless. This is currently a dream, too. Nevertheless, progressive 
works are being carried out with an ambitious goal. Although the verification of 
real-time systems has seen some breakthroughs through the automatic 
model-checking procedure, some more efficient methods, either improved 
model-checking or other formal methods, are required to really attack the large 
exponential state-spaces of complex real-time systems. 
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