Verifiable Embedded Real-Time Application Framework

Pao-Ann Hsiung, Feng-Shi Su, Chuen-Hau Gao, Shu-Yu Cheng, and Yu-Ming Chang
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 621, Taiwan, R.O.C. E-mail: hpa@computer.org

Abstract

A new application framework called Verifiable
Embedded Real-Time Application Framework (VERTAF)
is proposed for embedded real-time application
development, with the aim of reducing design errors and
increasing design productivity. VERTAF is an integration
of three technologies: object-oriented, software
component, and formal verification. It consists of five
software components: Implanter, Modeler, Scheduler,
Verifier, and Generator. Experiences of using VERTAF
show a significant increase in design productivity through
design reuse, and a significant decrease in design time
and effort through design verification.

1. Introduction

Current technology in designing embedded real-time
software is still immature. Software engineers tend to use
a very rudimentary trial-and-error design technique,
developing everything from scratch, applying only
unit-testing, and producing sub-optimal software. In this
work, an integration of three technologies is proposed:
object-oriented technology, software component
technology, and formal verification technology. This
technology integration results in the efficient design of
verifiable embedded real-time software such that design
productivity is increased, design time and error are
reduced, and heuristically optimal designs produced.

Besides object-oriented (OO) and software component
technology, our proposed application framework called
Verifiable Embedded Real-Time Application Framework
(VERTAF) also incorporates formal verification
technology into the application design process. We use
model checking, which is defined as follows. Given a
real-time system description S and a temporal property
specification ¢, model checking answers if S satisfies ¢ A
real-time system is modeled by a set of Timed Automata
(TA) [1]. A temporal property is specified using Timed
Computation Tree Logic [2].

Using VERTAF, a developer can devote more time and
effort to the actual application tasks, instead of real-time
system peculiarities. Even program verification can be
accomplished automatically by VERTAF since it has
integrated formal verification into its design process.
VERTAF is modularized into five software components

0-7695-1134-1/01 $10.00 © 2001 IEEE

109

that can be used at different stages of application
development, namely Implanter, Modeler, Scheduler,
Verifier, and Generator.

Although object-oriented technology has been applied
to the design of real-time systems in several proposed
work, there have been very few works on the
development of OOAF for real-time application design.
Two recently proposed frameworks are Object-Oriented
Real-Time System Framework (OORTSF) [3] and SESAG
[4] [5]. OORTSF and SESAG are simple frameworks that
have been applied to avionics software development.
Some design patterns were proposed related to real-time
application design. Code can be automatically generated.
But, there are still some scheduling and real-time
synchronization issues left not handled such as
asynchronous event handling and protocol hooking.

2. VERTAF Components

Figure 1 illustrates a component-view of VERTAF in
the industry standard Unified Modeling Language.

Q
l
ljcheduled Veritier Generator
5 b
L 1 [[]

Schedule
Code

|

Timed Object

¥

Earliest
Rae | Dadline
omc Finst

Figure 1. Component View of VERTAF

VERTAF consists of five basic software components:
Implanter, Modeler, Scheduler, Verifier, and Generator.
The given sequential order is the sequence in which they
are used. In general, a user may use the five components
of VERTAF as follows. Given a software application to
be designed, an engineer identifies and specifies the
objects that are specific to the application using the
Implanter component, in which a uniform object model
called Autonomous Timed Object (ATO) is provided. The
application objects are then transformed by Modeler
component into uniform process models, each of which
represent a real-time task. Scheduler checks the

schedulability of the tasks and schedules them using a
scheduling algorithm. Verifier proves the feasibility of the
scheduled set of tasks by showing if they satisfy all given
real-time and embedding constraints. Generator generates
code based on decisions made by other components.

3. Experimental Results

An industrial application example developed using
VERTAF is presented in this section: a cruiser example
consisting of 12 tasks used to control the vehicle speed
under different circumstances. As shown in Figure 2,
AICC (Autonomous Intelligent Cruise Controller) system
application [10] was developed and installed in a Saab
automobile by Hansson et al. The AICC system can
receive information from road signs and adapt the speed
of the vehicle to automatically follow speed limits.

Throwle speed brake Cruise Control

Switches

Short Range
Communication

Main Instrument
Controller
(HW/SW)

System Control
Unit (HW)

Controller Area Network (CAN)-bus

Figure 2. AICC Example: System Architecture

As shown in Figure 3, there are five domain objects
specified by the designer of AICC for implementing a
Basement system. Basement is a vehicle's internal
real-time architecture developed in the Vehicle Internal
Architecture (VIA) project [10], within the Swedish Road
Transport Informatics Programme. Each object may
correspond to one or more tasks. Process Table and
Call-Graph generated by the Modeler component are as
shown in Table 1 and Figure 3, respectively. There are
totally 12 tasks performed in 5 objects. Two different
resources were identified in VERTAF, namely, SRC and
Display. This application took 5 days for a real-time
system designer using VERTAF. The same application
took the same designer 20 days to complete development.
This significant decrease in design time was because
VERTAF automatically extracted tasks and constraints
from object specifications.

T=200ms T=100ms T=50ms
q L Speed
o Preceding Vehicle ‘Z‘s“’:"‘le ¥ Coordination & {44 | Actuator
Lig'm o 1 Estimator o Final Control (EST)
nto
i { EST
(SRC) l (Distance Sensor) i) Final Control
L Green
s wave
d
Speed S:’::m Controt | Hfli—=——— - p—
Limit Info [Switches lp| Info
BC) ™ . i
(SRO) -l 8O Speed Limit J s Main e
Control Couroller) Control Conirollery
SRC ICCR Supervisor T=100ms

Figure 3. AICC Example: Call-Graph

Table 1. AICC Example: Task Table

Index| Task Description Object P(el;lst;d g:‘:‘ceu(::);; Deadline
1 |Traffic Light Info_ [SRC 200 10 400
2 {Speed Limit Info SRC 200 10 400
3 | Vehicle Estimator _ |ICCReg 100 8 100
4 |Speed Sensor ICCReg 100 5 100
5 |Distance Control ICCReg 100 15 100
6 | Green Wave Control [ICCReg 100 15 100
7 |Speed Limit Control |ICCReg 100 15 100
8 [Coordination Coritrol 50 20 50
9 [Cruise Switches Sugervisor 100 15 100
10 JICC Main Control _]Sugervisor 100 20 100,
11 |Cruise Info Sugervisor 100 20 100
12 [Speed Actuator EST 50 5 50

SRC: Short Range Communication,
ICCReg: ICC Regulator, EST: Electronic Servo Throttle

4. Conclusion

An object-oriented application framework, -called
VERTAF, was proposed for embedded real-time systems
application development. It was a result of the integration
of three different technologies: object-oriented technology,
software component technology, and formal verification
technology. The integration resulted in verifiable objects
and components, and thus eliminated design errors at an
early stage. Different levels of re-use, including
object-level and component-level, increased design
productivity and decreased overall design effort and time.

References

{11 R. Alur and D. Dill, “Automata for modeling real-time systems,”
Theoretical Computer Science, Vol. 126, No. 2, pp. 183-236, April
1994.

[2] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” in Proceedings IEEE Logics
in Computer Science, 1992.

[3] W.-B. See and S.-J. Chen, “Object-oriented real-time system
framework,” in Domain-Specific Application Frameworks (M. E.
Fayad and R. E. Johnson, ecs.), pp. 327-338, John Wiley, 2000.

[4] P.-A. Hsiung, “RTFrame: An object-oriented application framework
for real-time applications,” in Proceedings of 27th International
Conference on Technology of Object-Oriented Languages and
Systems, pp. 138-147, IEEL CS, Sept 1998.

[5] P-A. Hsiung, “Object-oriented application framework design for
real-time systems,” in Proceedings of the 4th International
Symposium on Real-Time and Media Systems (RAMS'98), pp.
221-227, Taipei, Taiwan, September 1998.

[6) D. B. Stewart, R. A. Yolpe, and P. K. Khosla, “Design of
dynamically reconfigurable real-time software using port-based
objects,” IEEE Transactions on Software Engineering, Vol. 23, No.
12, December 1997.

[7] K.-H. Kim, “APIs for real-time distributed object programming,”
1EEE Computer, Vol. 33, No. 6, pp. 72-80, June 2000.

[8] P-A. Hsiung and F. Wang, “User-friendly verification,” in
Proceedings of FORTE/PSTV '99, October 1999.

[91 P-A. Hsiung, “Emtedded software verification in
hardware-software codesign,” Journal of Systems Architecture —
the Euromicro Journal, Vol. 46, No. 15, pp. 1435-1450, Elsevier
Science, the Netherlands, December 2000.

[10]H. A. Hansson, H. W. Lawson, M. Stromberg, and S. Larsson,
“BASEMENT: A distributed real-time architecture for vehicle
applications,” Real-Time Systems, Vol. 11, No. 3, pp. 223-244,
1996.

