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Abstract. In this work, we propose a complete methodology called RESS 
(Real-Time Embedded Software Synthesis) for the automatic design of real-time 
embedded software. Several issues are solved, including software synthesis, 
software verification, code generation, graphic user interface, and system 
emulation. To avoid design errors, a formal approach is adopted because 
glitches in real-time embedded software are intolerable and very expensive or 
even impossible to fix. Time Complex-choice Petri Nets are used to model real-
time embedded software, which are then synthesized using a time extended 
quasi static scheduling algorithm. The final generated C code is prototyped on 
an emulation platform, which consists of an 89C51 microcontroller for 
executing the software, an FPGA chip for programming the hardware for 
different applications, and some input/output devices. Two application 
examples are used to illustrate the feasibility of the RESS methodology. 

1   Introduction 

Real-time embedded systems have made a man’s life more convenient through easier 
controls and flexible configurations on many of our home amenities and office 
equipments. Due to the growing demand for more and more functionalities in real-
time embedded systems, an all-hardware implementation is no longer feasible 
because it is not only costly, but also not easily maintainable or upgradeable. Thus, 
software has gradually taken over a large portion of a real-time embedded system’s 
functionalities. But, along with this flexibility, real-time embedded software has also 
become highly complex. The past approach of starting everything from scratch is no 
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longer viable. We need to use tools that automate several tedious tasks, but though 
there are some tools available for the design of embedded software, yet there is still a 
lack for a general design methodology. In this work, we are proposing a complete 
methodology, covering issues such as software synthesis, software verification, code 
generation, and system emulation. 

An embedded system is one that is installed in a large system with a dedicated 
functionality. Some examples include avionics flight control, vehicle cruise control, 
and network-enabled devices in home appliances. In general, embedded systems have 
a microprocessor for executing software and some hardware in the form of ASICs, 
DSP, and I/O peripherals. The hardware and software work together to accomplish 
some given function for a larger system. Embedded software is often hardware-
dependent, thus it must be co-developed along with the development of the hardware, 
or the interface must be clearly defined. To satisfy all user-given constraints, formal 
approaches are a well-accepted design paradigm for embedded software [1], [2], [3], 
[4], [5]. 

Software synthesis is a process in which a formally modeled system can be 
synthesized by a scheduling algorithm into a set of feasible schedules that satisfy all 
user-given constraints on system functions and memory space. Due to its high 
expressiveness, Petri nets are a widely-used model. We propose and use a high-level 
variant of the model called Time Complex-Choice Petri Nets (TCCPN). TCCPN 
extends the previously used models called Free-Choice Petri Nets [6]. Thus, our 
synthesis algorithm also extends a previously proposed quasi-static scheduling 
algorithm. Details on the model and the proposed Time Extended Quasi-Static 
Scheduling (TEQSS) algorithm along with code generation will be given in Section 
3.2. 

Software verification formally analyzes the behavior of synthesized software to 
check if it satisfies all user-given constraints on function and memory space. In this 
verification process, we use the well-known model checking procedure to 
automatically verify synthesized software schedules. Further, we also need to 
estimate the amount of memory used by a generated software schedule. Details of this 
procedure will be given in Section 3.3. 

Finally, the generated real-time embedded software is placed into an emulation 
platform for prototyping and debugging. The software code is downloaded into a 
single chip microcontroller. The hardware for software code emulation is 
programmed on an FPGA chip. According to the real-time embedded software 
specifications, the settings of the input/output devices are configured. The embedded 
hardware and the I/O devices are then used for monitoring the functions of the real-
time embedded software through a debugger. 

The proposed RESS methodology will be illustrated using two examples: a Vehicle 
Parking Management System (VPMS) [7] and a motor speed control system. Details 
are given in Section 4. 

This article is organized as follows. Section 2 gives a brief overview about 
previous work on embedded software synthesis, verification, and code generation. 
Section 3 describes the software synthesis method and our emulation platform 
architecture. Two real-time embedded system examples are given in Section 4. 
Section 5 concludes the article and gives directions for future research work. 



2   Previous Work 

Several techniques for software synthesis from a concurrent functional specification 
have been proposed [6], [8], [9], [10], [11], [12], [13], [14]. Buck and Lee [9] have 
introduced the Boolean Data Flow (BDF) networks model and proposed an algorithm 
to compute a quasi-static schedule. However, the problem of scheduling BDF with 
bounded memory is undecidable, i.e. any algorithm may fail to find a schedule even if 
the BDF is schedulable. Hence, the algorithm proposed by Buck can find a solution 
only in special cases. Thoen et al. [10] proposed a technique to exploit static 
information in the specification and extract from a constraint graph description of the 
system statically schedulable clusters of threads. The limit of this approach is that it 
does not rely on a formal model and does not address the problem of checking 
whether a given specification is schedulable. Lin [11] proposed an algorithm that 
generates a software program from a concurrent process specification through an 
intermediate Petri-Nets representation. This approach is based on the strong 
assumption that the Petri Net is safe, i.e. buffers can store at most one data unit. This 
on one hand guarantees termination of the algorithm, on the other hand it makes 
impossible to handle multirate specifications, like FFT computations and down-
sampling. Safeness implies that the model is always schedulable and therefore also 
Lin’s method does not address the problem of verifying schedulability of the 
specification. Moreover, safeness excludes the possibility to use Petri Nets where 
source and sink transitions model the interaction with the environment. This makes 
impossible to specify inputs with independent rate. Later, Zhu and Lin [12] proposed 
a compositional synthesis method that reduced the generated code size and thus was 
more efficient.  

Software synthesis method was proposed for a more general Petri-Net framework 
by Sgroi et al. [6]. A quasi-static scheduling algorithm was proposed for Free-Choice 
Petri Nets (FCPN) [6]. A necessary and sufficient condition was given for a FCPN to 
be schedulable. Schedulability was first tested for a FCPN and then a valid schedule 
generated. Decomposing a FCPN into a set of Conflict-Free (CF) components which 
were then individually and statically scheduled. Code was finally generated from the 
valid schedule. 

Balarin et al. [2] proposed a software synthesis produce for reactive embedded 
systems in the Codesign Finite State Machine (CFSM) [15] framework with the 
POLIS hardware-software codesign tool [15]. This work cannot be easily extended to 
other more general frameworks. 

Recently, Su and Hsiung [13] proposed an Extended Quasi-Static Scheduling 
(EQSS) using Complex-Choice Petri Nets (CCPNs) as models to solve the issue of 
complex choice structures. Gau and Hsiung [14], [16] proposed a Time-Memory 
Scheduling (TMS) method for formally synthesizing and automatically generating 
code for real-time embedded software, using the Colored Time Petri Nets model. In 
our current work, we use a time extension of EQSS called TEQSS [17] to synthesize 
real-time embedded software and use the code generation procedure from [13] to 
generate the C code for 8051 microcontroller. 

Several simulation or emulation boards for single chip micro-controller, such as 
Intel 8051 or ATMEL 89c51, have been developed. As we know, the platform for 



real-time embedded software synthesis is still lacking. Therefore, we develop a 
flexible emulation environment for real-time embedded software system. To the best 
of our knowledge, there are some emulation platforms available for embedded system 
design such as [18], [19]. In [18], a reconfigurable architecture platform for 
embedded control applications aimed at improving real time performance was 
proposed. In [19], the authors present the technology assessment of N2C platform of 
CoWare Inc., which proposes a solution to the co-design/co-simulation problem. 

3   Embedded Software Synthesis and Prototyping Methodology 

In the automatic design of real-time embedded software, there are several issues to be 
solved, including how software is to be synthesized and code generated, how 
software is to be verified, and how software code is to be emulated. Each of these 
issues was introduced in Section 1 and will be discussed at length in the rest of this 
Section. 

The overall flow of real-time embedded software synthesis and the emulation of 
the generated software code on our prototype platform is as shown in Fig. 1. Given a 
real-time embedded software specification, we analyze it and then decide the 
requirements of the hardware within which the embedded software is to be executed. 
The hardware is then synthesized by an FPGA/CPLD development tool and 
programmed into the chip of ALTERA or XILINX on our platform. 
On synthesis, if feasible software schedules cannot be generated then we rollback to 
the embedded software specification and ask the user to recheck or modify the 
specification. If feasible software schedules can be generated, then a C code for 8051 
microcontroller will be generated by a code generation procedure. The machine 
executable code will be then generated using a 8051-specific C compiler. The target 
machine code is finally loaded into the 89C51 or 87C51 microcontroller chip on the 
platform. 

3.1   Software Synthesis and Code Generation 

Software synthesis is a scheduling process whereby feasible software schedules are 
generated, which satisfy all user-given functional requirements, timing constraints, 
and memory constraints. Here, we use a previously proposed Time Extended Quasi-
Static Scheduling (TEQSS) method for the synthesis of real-time embedded software. 
TEQSS takes a set of TCCPN as input along with timing and memory constraints 
such as periods, deadlines, and an upper bound on system memory space. TCCPN is 
defined as follows. 
Definition 1. Time Complex-Choice Petri Nets (TCCPN) 
A Time Complex-Choice Petri Net is a 5-tuple (P, T, F, M0,τ), where: 



z P is a finite set of places, 
z T is a finite set of transitions, P ∪ T ≠ ∅, and P ∩ T = ∅, 
z F: (P × T) ∪ (T × P) → N is a weighted flow relation between places and 

transitions, represented by arcs, where N is the set of nonnegative integers. The 
flow relation has the following characteristics. 
� Synchronization at a transition is allowed between a branch arc of a 

choice place and another independent concurrent arc. 
� Synchronization at a transition is not allowed between two or more 

branch arcs of the same choice place. 
� A self-loop from a place back to itself is allowed only if there is an initial 

token in one of the places in the loop. 
z M0: P → N is the initial marking (assignment of tokens to places). and 
z τ: T → N×(N∪∞), i.e. τ(t)=(α, β), where t ∈ T, α is the earliest firing time 

(EFT), and β is latest firing time (LFT). We will use the abbreviations 
)(tατ and )(tβτ to denote EFT and LFT, respectively. � 

Graphically, a TCCPN can be depicted as shown in Fig. 2, where circles represent 
places, vertical bars represent transitions, arrows represent arcs, black dots represent 
tokens, and integers labeled over arcs represent the weights as defined by F. Here, 
F(x, y) > 0 implies there is an arc from x to y with a weight of F(x, y), where x and y 

Fig. 1. Real-Time Embedded Software Synthesis and Prototyping Methodology 
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can be a place or a transition. Conflicts are allowed in a TCCPN, where a conflict 
occurs when there is a token in a place with more than one outgoing arc such that 
only one enabled transition can fire, thus consuming the token and disabling all other 
transitions. The transitions are called conflicting and the place with the token is also 
called a choice place. For example, decelerate and accelerate are conflicting 
transitions in Fig. 2. Intuitions for the characteristics of the flow relation in a TCCPN, 
as given in Definition 1, are as follows. First, unlike FCPN, confusions are also 
allowed in TCCPN, where confusion is a result of synchronization between an arc of 
a choice place and another independently concurrent arc. For example, the accelerate 
transition in Fig. 2 is such a synchronization. Second, synchronization is not allowed 
between two or more arcs of the same choice place because arcs from a choice place 
represent (un)conditional branching, thus synchronizing them would amount to 
executing both branches, which conflicts with the original definition of a choice place 
(only one succeeding enabled transition is executed). Third, at least one place 
occurring in a loop of a TCCPN should have an initial token because our TEQSS 
scheduling method requires a TCCPN to return to its initial marking after a finite 
complete cycle of markings. This is basically not a restriction as can be seen from 
most real-world system models because a loop without an initial token would result in 
either of two unrealistic situations: (1) loop triggered externally resulting in 
accumulation of infinite number of tokens in the loop, or (2) loop is never triggered. 
Through an analysis of the choice structures in a TCCPN, TEQSS generates a set of 
conflict-free components and then schedules each of them, if possible. Once each 
component can be scheduled to satisfy all constraints, the system is declared 
schedulable and code is generated in the C programming language. 

Semantically, the behavior of a TCCPN is given by a sequence of markings, where 
a marking is an assignment of tokens to places. Formally, a marking is a vector M = 
<m1, m2, …, m|P|>, where mi is the non-negative number of tokens in place pi ∈ P. 

Fig. 2. Automatic Cruise Controller TCCPN Model 
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Starting from an initial marking M0, a TCCPN may transit to another marking through 
the firing of an enabled transition and re-assignment of tokens. A transition is said to 
be enabled when all its input places have the required number of tokens, where the 
required number of tokens is the weight as defined by the flow relation F. An enabled 
transition not necessarily fire. But upon firing, the required number of tokens is 
removed from all the input places and the specified number of tokens is placed in the 
output places, where the specified number of tokens is that specified by the flow 
relation F on the connecting arcs. 

Time Extended Quasi-Static Scheduling. The details of our proposed TEQSS 
algorithm are as shown in Table 1. Given a set of TCCPNs S = { Ai | Ai = (Pi, Ti, Fi, 
Mi0, τi), i = 1, 2, …, n} and a maximum bound on memory µ, the algorithm finds and 
processes each set of complex choice transitions (Step (1)), which is simply called 
Complex Choice Set (CCS) and is defined as follows. 
Definition 2. Complex Choice Set (CCS) 
Given a TCCPN Ai = (Pi, Ti, Fi, Mi0, τi), a subset of transitions C ⊆ Ti is called a 
complex choice set if they satisfy the following conditions. 
z There exists a sequence of the transitions in C such that any two adjacent 

transitions are always conflicting transitions from the same choice place. 
z There is no other transition in Ti \ C that conflicts with any transition in C, 

which means C is maximal. � 
From Definition 2, we can see that a free-choice is a special case of CCS. Thus, 

QSS also becomes a part of TEQSS. For each CCS, TEQSS analyzes the mutual 
exclusiveness of the transitions in that CCS and then records their relations into an 
Exclusion Table (Steps (2)-(5)). Two complex-choice transitions are said to be 
mutually exclusive if the firing of any one of the two transitions disables the other 
transition. When the (i, j) element of an exclusion table is True, it means the ith and 
the jth transitions are mutually exclusive, otherwise it is False. Based on the exclusion 
table, a CCS is decomposed into two or more conflict-free (CF) subsets, which are 
sets of transitions that do not have any conflicts, neither free-choice nor complex-
choice. The decomposition is done as follows (Steps 6-14). For each pair of mutually 
exclusive transitions t, t', do as follows. 
z Make a copy H' of the CCS H (Step (11)), 
z Delete t' from H (Step (12)), and 
z Delete t from H' (Step (13)). 
Based on the CF subsets, a TCCPN is decomposed into conflict-free components 
(subnets) (Steps (15)-(16)). The CF components are not distinct decompositions as a 
transition may occur in more than one component. Starting from an initial marking 
for each component, a finite complete cycle is constructed, where a finite complete 
cycle is a sequence of transition firings that returns the net to its initial marking. A CF 
component is said to be schedulable (Step (19)) if a finite complete cycle can be 
found for it and it is deadlock-free. Once all CF components of a TCCPN are 
scheduled, a valid schedule for the TCCPN can be generated as a set of the finite 
complete cycles. The reason why this set is a valid schedule is that since each 
component always returns to its initial marking, no tokens can get collected at any 



place. Satisfaction of memory bound is checked by observing if the memory space 
represented by the maximum number of tokens in any marking does not exceed the 
bound. Here, each token represents some amount of buffer space (i.e., memory) 
required after a computation (transition firing). Hence, the total amount of actual 
memory required is the memory space represented by the maximum number of tokens 
that can get collected at all the places in a marking during its transition from the 
initial marking back to its initial marking. Finally, time is checked using a worst-case 
analysis (Step (22)) and the real-time embedded software code is generated (Step 
(23)), the details of which are given in the following paragraph. 

TEQSS_Schedule(S, µ) 
S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n}; 
µ: integer; // Maximum memory 
{ 
while (C = Get_CCS(S) ≠ NULL) {      (1) 
// Construct Exclusion Table ExTable for CCS C 
Initialize_Table(ExTable);//Initialize table to  

False    (2) 
for each transition t in C      (3) 
for each transition t' in C     (4) 
if (M_Exclusive(t, t'))  ExTable[t, t'] = True; 

         (5) 
// Decompose CCS C into conflict-free subsets 
D = {C}; // D is a power-set of C    (6) 
for each subset H in D           (7) 
for each transition t in H     (8) 
for each transition t' in H     (9) 
if (ExTable[t, t'] = True) {             (10) 
H' = Copy_Set(H);                      (11) 
Delete_Trans(H, t');          (12) 
Delete_Trans(H', t);          (13) 
D = D ∪ H'; }            (14) 

// Decompose a TCCPN into subnets according to D 
for each subset H in D           (15) 
Decompose_TCCPN(S, H);           (16) 

} 
// Schedule all CF components 
for each TCCPN Ai in S                 (17) 
for each conflict-free subnet X of Ai {   (18) 
Xs = Schedule(X, µ);                 (19) 
if (Xs=NULL) return ERROR;           (20) 
else TEQSSi=TEQSSi ∪ Xs; }         (21) 

Check_Time(TEQSS1, …, TEQSSn);       (22) 
Generate_Code(S, µ, TEQSS1, …, TEQSSn);         (23) 

} 

Table 1. Time Extended Quasi-Static Scheduling Algorithm 



Code Generation with Multiple Threads. In contrast to the conventional single-
threaded embedded software, we propose to generate embedded software with 
multiple threads, which can be processed for dispatch by a real-time operating system. 
Our rationalizations are as follows:  

With advances in technology, the computing power of microprocessors in an 
embedded system has increased to a stage where fairly complex software can be 
executed. 

Due to the great variety of user needs such as interactive interfacing, networking, 
and others, embedded software needs some level of concurrency and low context-
switching overhead. 

Multithreaded software architecture preserves the user-perceivable concurrencies 
among tasks, such that future maintenance becomes easier. 

The procedure for code generation with multiple threads (CGMT) is given in Table 
2. Each source transition in a TCCPN represents an input event. Corresponding to 
each source transition, a P-thread is generated (Steps (1), (2)). Thus, the thread is 
activated whenever there is an incoming event represented by that source transition. 
There are two sub-procedures in the code generator, namely Visit_Trans() and 
Visit_Place(), which call each other in a recursive manner, thus visiting all transitions 
and places and generating the corresponding code segments. A TCCPN transition 
represents a piece of user-given code, and is simply generated as call t_k; as in 
Step (3). Code generation begins by visiting the source transition, once for each of its 
successor places (Steps (4), (5)).  

In both the sub-procedures Visit_Trans() (Steps (1)-(3)) and Visit_Place() (Steps 
(6-8)), a semaphore mutex is used for exclusive access to the token_num variable 
associated with a place. This semaphore is required because two or more concurrent 
threads may try to update the variable at the same time by producing or consuming 
tokens, which might result in inconsistencies. Based on the firing semantics of a 
TCCPN, tokens are either consumed from an input place or produced into an output 
place, upon the firing of a transition. When visiting a choice place, a switch() 
construct is generated as in Step (3). 

3.2   Embedded Software Verification 

There are three issues to be handled in software verification, that is: “what to verify”, 
“when to verify”, and “how to verify”? Each of these issues is solved as follows. 

In solution to the “what to verify” issue, TCCPN models are translated into timed 
automata models which are then input to a model checker. Timed automata models 
are easier to verify than TCCPN models because of its state space can be finitely 
represented. Since both TCCPN and timed automata are formal models, there is an 
exact mapping between the two. For example, a marking of a TCCPN is mapped to a 
state location of a timed automaton. Concurrency in TCCPN is mapped to two or 
more concurrent timed automaton. Source transitions in TCCPN are mapped to initial 
states of timed automata. Non-deterministic choice places in TCCPN are mapped to 
states with branching transitions in timed automata. Loops in TCCPN are mapped to 
loops in timed automata. 



In solution to the “when to verify” issue, we propose to verify software after 
scheduling (synthesis) and before code generation. Our rationalization is based on the 
fact that before scheduling or after code generation, the state-space is much larger 
than after scheduling and before code generation. A formal analysis proves this fact. 
Intuitively, before scheduling the state-space is much unconstrained than after 
scheduling, thus we have to explore a larger state-space if we verify before 
scheduling. Further, after code generation the state-space is also larger than that 
before code generation because upon code generation a lot of auxiliary and temporary 
variables are added, which add to the size of the state-space unnecessarily. 

Table 2. Code Generation Algorithm for TEQSS 

Generate_Code(S, µ, TEQSS1, TEQSS2, …, TEQSSn) 
S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n}; 
µ: integer;   // Maximum memory 
TEQSS1, …, TEQSSn: sets of schedules of conflict-
free TCCPNs 
{ 
for each source transition tk ∈ ∪i Ti do {  (1) 
Tk = Create_Thread(tk);     (2) 
output(Tk, "call t_k;");     (3) 
for each successor place p of tk    (4) 
Visit_Trans(TEQSSk, Tk, tk, p);   (5) 

} 
Create_Main();         (6) 

} 
 
Visit_Trans(TEQSSk, Tk, tk, p) { 
output(Tk, "mutexs_lock(&mutex);");   (1) 
output(Tk, "p.token_num += weight[t_k, p];");(2) 
output(Tk, "mutexs_unlock(&mutex);");   (3) 

Visit_Place(TEQSSk, Tk, p);     (4) 
} 
 
Visit_Place(TEQSSk, Tk, p) { 
if(Visited(p) = True) return;    (1) 
if(Is_Choice_Place(p) = True)    (2) 
output(Tk, "switch (p) {"};    (3) 

for each successor transition t' of p   (4) 
if(Enabled(TEQSSk, t'))  {    (5) 
output(Tk, "mutexs_lock(&mutex);");   (6) 
output(Tk,"p.token_num-=weight[p,t'];");  (7) 
output(Tk, "mutexs_unlock(&mutex);");  (8) 
output(Tk, "call t';");      (9) 
for each successor place p' of t'   (10) 
Visit_Trans(TEQSSk, Tk, t', p');   (11) 

output(Tk, "break;");  }    (12) 
output(Tk, ")");       (13) 

} 



In solution to the “how to verify” issue, we adopt a compositional model checking 
approach, where two timed automata are merged in each iteration and reduced using 
some state-space reduction techniques such as read-write reduction, symmetry 
reduction, clock shielding, and internal transition bypassing. The reduction 
techniques have all been implemented in the State Graph Manipulators (SGM) tool, 
which is a high-level model checker for real-time systems modeled as timed automata 
with properties specified in timed computation tree logic (TCTL). After the globally 
reduced state-graph is obtained, it is model checked for satisfaction of some user-
given TCTL property. Details can be found in [20]. 

3.3  Graphic User Interface and Platform Architecture 

As shown in Fig. 3, we designed a graphical user interface for real-time embedded 
software specification input using Petri Net model. The designer draws the required 
behavior of embedded software as Petri Nets using the icons in the GUI. By clicking 
the “schedule” button, the tool generates the schedules. The designer can view the job 
scheduling states in the generation region and the scheduling bar of the GUI. 

A platform supports a hardware-software environment for hardware emulation and 
software execution. In this work, we design a platform with an architecture as shown 
in Fig. 4. The FPGA/CPLD chip is programmed according to the hardware 
requirements of an embedded system. The embedded software is downloaded into the 
microcontroller. If microcontroller memory is not enough, then external memory can 
be used. The input/output devices, such as keyboard, LCD display, LED display, and 
input switch are connected to FPGA/CPLD chip and microcontroller using a bus. The 
procedure adopted for emulating embedded software in a platform is as follows. (1) 
The embedded software code is downloaded into the ROM or Flash memory, (2) The 

Fig. 3. Graphical User Interface for Real-Time Embedded Software Synthesis 



settings of the I/O devices are configured according to the embedded software 
specifications, (3) The emulation platform is booted, input conditions are changed, 
and the output functions are checked for satisfaction of the functional requirements of 
the embedded software. 

4  Embedded System Examples 

In this section, we use two embedded system examples to illustrate our proposed 
embedded software synthesis and prototyping methodology. The first example is 
display subsystem of Vehicle Parking Management System (VPMS) example, which 
includes three subsystems: entry management system, exit management system, and 
display system. The display system consists of a control system (counter and display 
interface) and a 7-segment display device. The counter value (count) indicates the 
number of available parking vacancies. Further details on the VPMS specification can 
be found in [7]. 

The display system in VPMS was modeled as a TCCPN as shown in Fig. 5 and the 
TCCPN transitions are given in Table 3. The embedded software code generated for 
the display system is shown in Fig. 6, which was emulated using our RESS platform. 
We use two input switches to simulate the Car in and Car out signals, respectively, 
and then use a 7-segment display to show the number of available parking vacancies. 

Another example is a motor speed control system, whose TCCPN model is as 
shown in Fig. 7. The main function of this system is to adjust the speed of a motor 
based on its current speed. There are two timers T0, T1 and two interrupts INT0, 
INT1 that drive the system. On software synthesis, that is, TEQSS, there are two 
feasible schedules for this system as given in Table 4, where an asterisk on a partial 
schedule indicates a loop of at least one iteration. The generated code is shown in Fig. 
8, which was emulated on our RESS platform. We use two input switches to connect 
the trigger of INT0 and INT1, respectively. Motor speed is displayed by an LCD 
display device. 

                       Fig. 4. Hardware-Software Prototype Platform Architecture 
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5  Conclusion and Future Work 

A complete methodology called RESS was proposed for emulating hardware and 
synthesizing and executing embedded software, which includes a time-extended 
quasi-static scheduling algorithm, a code generation procedure, and an emulation 
platform. The methodology will not only reduce development time for embedded 
software, but also aid in debugging and testing its functional correctness. This version 
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Fig. 5. Petri Net Model of Display System 

Table 3. TCCPN Transitions 
in Display System 

Place Description 
P1 Counter value 

updated 
P2 Signal polling 

complete 
P3 Digit selected 

Transition Description 
t1 Initial counter 
t2 Poll signal 
t3 Select digit 
t4 Decrement 

counter 
t5 Increment 

counter 
t6 Check count 
t7 No operation 
t8 Display digit 

Fig. 6. Software Code for VPMS Display System 

Display C-code 
{(t1 t2 t4) (t1 t2 t5) (t1 t2 t6) (t1 t2 t7) (t1 t3 
t8)} 
t1; 
while (true) { 
if (p1) { 
 t2; 
 switch (p2) { 
  Case Car in:  t4; 
  Case Car out: t5; 
  Case Time stamp button pushed: t6; 
  Case Default: t7; 
 }/* End of switch */ 
 }/* End of if */ 
 else {t3; t8;} 
}/* End of while */ 



of our real-time embedded software synthesis tool has a new graphical user interface 
to increase its user-friendliness. How to transfer the software code for applying to 
ARM-based systems will be our future work. 

Fig. 7. Motor Speed Control System TCCPN Model 
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Table 4. Feasible Schedules for Motor System 
TCCPN #T #P #S Schedules 

MSCS 7 4 2 <t0, <t1>*, t2, t3, t5, t6>, 
 <t0, <t1>*, t2, t3, t4, t6> 

#T: #transitions, #P: #places, #S: #schedules 
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