
RESS: Real-Time Embedded Software Synthesis and
Prototyping Methodology*

Trong-Yen Lee1, Pao-Ann Hsiung2, I-Mu Wu3, and Feng-Shi Su2

1Department of Electronic Engineering,
National Taipei University of Technology, Taipei, Taiwan, R.O.C.

tylee@ntut.edu.tw
http://www.ntut.edu.tw/~tylee

2Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan, R.O.C.

pashiung@cs.ccu.edu.tw
3Department of Electrical Engineering,

Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan,
R.O.C.

u9473@ms48.hinet.net

Abstract. In this work, we propose a complete methodology called RESS
(Real-Time Embedded Software Synthesis) for the automatic design of real-time
embedded software. Several issues are solved, including software synthesis,
software verification, code generation, graphic user interface, and system
emulation. To avoid design errors, a formal approach is adopted because
glitches in real-time embedded software are intolerable and very expensive or
even impossible to fix. Time Complex-choice Petri Nets are used to model real-
time embedded software, which are then synthesized using a time extended
quasi static scheduling algorithm. The final generated C code is prototyped on
an emulation platform, which consists of an 89C51 microcontroller for
executing the software, an FPGA chip for programming the hardware for
different applications, and some input/output devices. Two application
examples are used to illustrate the feasibility of the RESS methodology.

1 Introduction

Real-time embedded systems have made a man’s life more convenient through easier
controls and flexible configurations on many of our home amenities and office
equipments. Due to the growing demand for more and more functionalities in real-
time embedded systems, an all-hardware implementation is no longer feasible
because it is not only costly, but also not easily maintainable or upgradeable. Thus,
software has gradually taken over a large portion of a real-time embedded system’s
functionalities. But, along with this flexibility, real-time embedded software has also
become highly complex. The past approach of starting everything from scratch is no

* This work was partially supported by research project grant NSC-90-2218-E-014-009 from

National Science Council, Taiwan, ROC.

longer viable. We need to use tools that automate several tedious tasks, but though
there are some tools available for the design of embedded software, yet there is still a
lack for a general design methodology. In this work, we are proposing a complete
methodology, covering issues such as software synthesis, software verification, code
generation, and system emulation.

An embedded system is one that is installed in a large system with a dedicated
functionality. Some examples include avionics flight control, vehicle cruise control,
and network-enabled devices in home appliances. In general, embedded systems have
a microprocessor for executing software and some hardware in the form of ASICs,
DSP, and I/O peripherals. The hardware and software work together to accomplish
some given function for a larger system. Embedded software is often hardware-
dependent, thus it must be co-developed along with the development of the hardware,
or the interface must be clearly defined. To satisfy all user-given constraints, formal
approaches are a well-accepted design paradigm for embedded software [1], [2], [3],
[4], [5].

Software synthesis is a process in which a formally modeled system can be
synthesized by a scheduling algorithm into a set of feasible schedules that satisfy all
user-given constraints on system functions and memory space. Due to its high
expressiveness, Petri nets are a widely-used model. We propose and use a high-level
variant of the model called Time Complex-Choice Petri Nets (TCCPN). TCCPN
extends the previously used models called Free-Choice Petri Nets [6]. Thus, our
synthesis algorithm also extends a previously proposed quasi-static scheduling
algorithm. Details on the model and the proposed Time Extended Quasi-Static
Scheduling (TEQSS) algorithm along with code generation will be given in Section
3.2.

Software verification formally analyzes the behavior of synthesized software to
check if it satisfies all user-given constraints on function and memory space. In this
verification process, we use the well-known model checking procedure to
automatically verify synthesized software schedules. Further, we also need to
estimate the amount of memory used by a generated software schedule. Details of this
procedure will be given in Section 3.3.

Finally, the generated real-time embedded software is placed into an emulation
platform for prototyping and debugging. The software code is downloaded into a
single chip microcontroller. The hardware for software code emulation is
programmed on an FPGA chip. According to the real-time embedded software
specifications, the settings of the input/output devices are configured. The embedded
hardware and the I/O devices are then used for monitoring the functions of the real-
time embedded software through a debugger.

The proposed RESS methodology will be illustrated using two examples: a Vehicle
Parking Management System (VPMS) [7] and a motor speed control system. Details
are given in Section 4.

This article is organized as follows. Section 2 gives a brief overview about
previous work on embedded software synthesis, verification, and code generation.
Section 3 describes the software synthesis method and our emulation platform
architecture. Two real-time embedded system examples are given in Section 4.
Section 5 concludes the article and gives directions for future research work.

2 Previous Work

Several techniques for software synthesis from a concurrent functional specification
have been proposed [6], [8], [9], [10], [11], [12], [13], [14]. Buck and Lee [9] have
introduced the Boolean Data Flow (BDF) networks model and proposed an algorithm
to compute a quasi-static schedule. However, the problem of scheduling BDF with
bounded memory is undecidable, i.e. any algorithm may fail to find a schedule even if
the BDF is schedulable. Hence, the algorithm proposed by Buck can find a solution
only in special cases. Thoen et al. [10] proposed a technique to exploit static
information in the specification and extract from a constraint graph description of the
system statically schedulable clusters of threads. The limit of this approach is that it
does not rely on a formal model and does not address the problem of checking
whether a given specification is schedulable. Lin [11] proposed an algorithm that
generates a software program from a concurrent process specification through an
intermediate Petri-Nets representation. This approach is based on the strong
assumption that the Petri Net is safe, i.e. buffers can store at most one data unit. This
on one hand guarantees termination of the algorithm, on the other hand it makes
impossible to handle multirate specifications, like FFT computations and down-
sampling. Safeness implies that the model is always schedulable and therefore also
Lin’s method does not address the problem of verifying schedulability of the
specification. Moreover, safeness excludes the possibility to use Petri Nets where
source and sink transitions model the interaction with the environment. This makes
impossible to specify inputs with independent rate. Later, Zhu and Lin [12] proposed
a compositional synthesis method that reduced the generated code size and thus was
more efficient.

Software synthesis method was proposed for a more general Petri-Net framework
by Sgroi et al. [6]. A quasi-static scheduling algorithm was proposed for Free-Choice
Petri Nets (FCPN) [6]. A necessary and sufficient condition was given for a FCPN to
be schedulable. Schedulability was first tested for a FCPN and then a valid schedule
generated. Decomposing a FCPN into a set of Conflict-Free (CF) components which
were then individually and statically scheduled. Code was finally generated from the
valid schedule.

Balarin et al. [2] proposed a software synthesis produce for reactive embedded
systems in the Codesign Finite State Machine (CFSM) [15] framework with the
POLIS hardware-software codesign tool [15]. This work cannot be easily extended to
other more general frameworks.

Recently, Su and Hsiung [13] proposed an Extended Quasi-Static Scheduling
(EQSS) using Complex-Choice Petri Nets (CCPNs) as models to solve the issue of
complex choice structures. Gau and Hsiung [14], [16] proposed a Time-Memory
Scheduling (TMS) method for formally synthesizing and automatically generating
code for real-time embedded software, using the Colored Time Petri Nets model. In
our current work, we use a time extension of EQSS called TEQSS [17] to synthesize
real-time embedded software and use the code generation procedure from [13] to
generate the C code for 8051 microcontroller.

Several simulation or emulation boards for single chip micro-controller, such as
Intel 8051 or ATMEL 89c51, have been developed. As we know, the platform for

real-time embedded software synthesis is still lacking. Therefore, we develop a
flexible emulation environment for real-time embedded software system. To the best
of our knowledge, there are some emulation platforms available for embedded system
design such as [18], [19]. In [18], a reconfigurable architecture platform for
embedded control applications aimed at improving real time performance was
proposed. In [19], the authors present the technology assessment of N2C platform of
CoWare Inc., which proposes a solution to the co-design/co-simulation problem.

3 Embedded Software Synthesis and Prototyping Methodology

In the automatic design of real-time embedded software, there are several issues to be
solved, including how software is to be synthesized and code generated, how
software is to be verified, and how software code is to be emulated. Each of these
issues was introduced in Section 1 and will be discussed at length in the rest of this
Section.

The overall flow of real-time embedded software synthesis and the emulation of
the generated software code on our prototype platform is as shown in Fig. 1. Given a
real-time embedded software specification, we analyze it and then decide the
requirements of the hardware within which the embedded software is to be executed.
The hardware is then synthesized by an FPGA/CPLD development tool and
programmed into the chip of ALTERA or XILINX on our platform.
On synthesis, if feasible software schedules cannot be generated then we rollback to
the embedded software specification and ask the user to recheck or modify the
specification. If feasible software schedules can be generated, then a C code for 8051
microcontroller will be generated by a code generation procedure. The machine
executable code will be then generated using a 8051-specific C compiler. The target
machine code is finally loaded into the 89C51 or 87C51 microcontroller chip on the
platform.

3.1 Software Synthesis and Code Generation

Software synthesis is a scheduling process whereby feasible software schedules are
generated, which satisfy all user-given functional requirements, timing constraints,
and memory constraints. Here, we use a previously proposed Time Extended Quasi-
Static Scheduling (TEQSS) method for the synthesis of real-time embedded software.
TEQSS takes a set of TCCPN as input along with timing and memory constraints
such as periods, deadlines, and an upper bound on system memory space. TCCPN is
defined as follows.
Definition 1. Time Complex-Choice Petri Nets (TCCPN)
A Time Complex-Choice Petri Net is a 5-tuple (P, T, F, M0,τ), where:

z P is a finite set of places,
z T is a finite set of transitions, P ∪ T ≠ ∅, and P ∩ T = ∅,
z F: (P × T) ∪ (T × P) → N is a weighted flow relation between places and

transitions, represented by arcs, where N is the set of nonnegative integers. The
flow relation has the following characteristics.
� Synchronization at a transition is allowed between a branch arc of a

choice place and another independent concurrent arc.
� Synchronization at a transition is not allowed between two or more

branch arcs of the same choice place.
� A self-loop from a place back to itself is allowed only if there is an initial

token in one of the places in the loop.
z M0: P → N is the initial marking (assignment of tokens to places). and
z τ: T → N×(N∪∞), i.e. τ(t)=(α, β), where t ∈ T, α is the earliest firing time

(EFT), and β is latest firing time (LFT). We will use the abbreviations
)(tατ and)(tβτ to denote EFT and LFT, respectively. �

Graphically, a TCCPN can be depicted as shown in Fig. 2, where circles represent
places, vertical bars represent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights as defined by F. Here,
F(x, y) > 0 implies there is an arc from x to y with a weight of F(x, y), where x and y

Fig. 1. Real-Time Embedded Software Synthesis and Prototyping Methodology

 Embedded
Software

Specification

Embedded Software Analysis

Hardware
Specification

Software
Specification

Graphic M odel
Petri Net M odel

Compiler and
Simulation

Scheduling

Schedulable ?
Functional
Correct ?

No

Yes Yes

No

Embedded Software Emulation Platform

Software Code
Generation

Hardware Code
Loading

can be a place or a transition. Conflicts are allowed in a TCCPN, where a conflict
occurs when there is a token in a place with more than one outgoing arc such that
only one enabled transition can fire, thus consuming the token and disabling all other
transitions. The transitions are called conflicting and the place with the token is also
called a choice place. For example, decelerate and accelerate are conflicting
transitions in Fig. 2. Intuitions for the characteristics of the flow relation in a TCCPN,
as given in Definition 1, are as follows. First, unlike FCPN, confusions are also
allowed in TCCPN, where confusion is a result of synchronization between an arc of
a choice place and another independently concurrent arc. For example, the accelerate
transition in Fig. 2 is such a synchronization. Second, synchronization is not allowed
between two or more arcs of the same choice place because arcs from a choice place
represent (un)conditional branching, thus synchronizing them would amount to
executing both branches, which conflicts with the original definition of a choice place
(only one succeeding enabled transition is executed). Third, at least one place
occurring in a loop of a TCCPN should have an initial token because our TEQSS
scheduling method requires a TCCPN to return to its initial marking after a finite
complete cycle of markings. This is basically not a restriction as can be seen from
most real-world system models because a loop without an initial token would result in
either of two unrealistic situations: (1) loop triggered externally resulting in
accumulation of infinite number of tokens in the loop, or (2) loop is never triggered.
Through an analysis of the choice structures in a TCCPN, TEQSS generates a set of
conflict-free components and then schedules each of them, if possible. Once each
component can be scheduled to satisfy all constraints, the system is declared
schedulable and code is generated in the C programming language.

Semantically, the behavior of a TCCPN is given by a sequence of markings, where
a marking is an assignment of tokens to places. Formally, a marking is a vector M =
<m1, m2, …, m|P|>, where mi is the non-negative number of tokens in place pi ∈ P.

Fig. 2. Automatic Cruise Controller TCCPN Model

speed
limit

sensor

preceding
vehicle
distance
sensor

current speed
< speed limit

distance >
threshold

yes

no

no

yes

decelerate

accelerate

[1,1]

[2,4]

[1,3]

[2,4]

[3,5]

decelerate
[1,3]

Starting from an initial marking M0, a TCCPN may transit to another marking through
the firing of an enabled transition and re-assignment of tokens. A transition is said to
be enabled when all its input places have the required number of tokens, where the
required number of tokens is the weight as defined by the flow relation F. An enabled
transition not necessarily fire. But upon firing, the required number of tokens is
removed from all the input places and the specified number of tokens is placed in the
output places, where the specified number of tokens is that specified by the flow
relation F on the connecting arcs.

Time Extended Quasi-Static Scheduling. The details of our proposed TEQSS
algorithm are as shown in Table 1. Given a set of TCCPNs S = { Ai | Ai = (Pi, Ti, Fi,
Mi0, τi), i = 1, 2, …, n} and a maximum bound on memory µ, the algorithm finds and
processes each set of complex choice transitions (Step (1)), which is simply called
Complex Choice Set (CCS) and is defined as follows.
Definition 2. Complex Choice Set (CCS)
Given a TCCPN Ai = (Pi, Ti, Fi, Mi0, τi), a subset of transitions C ⊆ Ti is called a
complex choice set if they satisfy the following conditions.
z There exists a sequence of the transitions in C such that any two adjacent

transitions are always conflicting transitions from the same choice place.
z There is no other transition in Ti \ C that conflicts with any transition in C,

which means C is maximal. �
From Definition 2, we can see that a free-choice is a special case of CCS. Thus,

QSS also becomes a part of TEQSS. For each CCS, TEQSS analyzes the mutual
exclusiveness of the transitions in that CCS and then records their relations into an
Exclusion Table (Steps (2)-(5)). Two complex-choice transitions are said to be
mutually exclusive if the firing of any one of the two transitions disables the other
transition. When the (i, j) element of an exclusion table is True, it means the ith and
the jth transitions are mutually exclusive, otherwise it is False. Based on the exclusion
table, a CCS is decomposed into two or more conflict-free (CF) subsets, which are
sets of transitions that do not have any conflicts, neither free-choice nor complex-
choice. The decomposition is done as follows (Steps 6-14). For each pair of mutually
exclusive transitions t, t', do as follows.
z Make a copy H' of the CCS H (Step (11)),
z Delete t' from H (Step (12)), and
z Delete t from H' (Step (13)).
Based on the CF subsets, a TCCPN is decomposed into conflict-free components
(subnets) (Steps (15)-(16)). The CF components are not distinct decompositions as a
transition may occur in more than one component. Starting from an initial marking
for each component, a finite complete cycle is constructed, where a finite complete
cycle is a sequence of transition firings that returns the net to its initial marking. A CF
component is said to be schedulable (Step (19)) if a finite complete cycle can be
found for it and it is deadlock-free. Once all CF components of a TCCPN are
scheduled, a valid schedule for the TCCPN can be generated as a set of the finite
complete cycles. The reason why this set is a valid schedule is that since each
component always returns to its initial marking, no tokens can get collected at any

place. Satisfaction of memory bound is checked by observing if the memory space
represented by the maximum number of tokens in any marking does not exceed the
bound. Here, each token represents some amount of buffer space (i.e., memory)
required after a computation (transition firing). Hence, the total amount of actual
memory required is the memory space represented by the maximum number of tokens
that can get collected at all the places in a marking during its transition from the
initial marking back to its initial marking. Finally, time is checked using a worst-case
analysis (Step (22)) and the real-time embedded software code is generated (Step
(23)), the details of which are given in the following paragraph.

TEQSS_Schedule(S, µ)
S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n};
µ: integer; // Maximum memory
{
while (C = Get_CCS(S) ≠ NULL) { (1)
// Construct Exclusion Table ExTable for CCS C
Initialize_Table(ExTable);//Initialize table to

False (2)
for each transition t in C (3)
for each transition t' in C (4)
if (M_Exclusive(t, t')) ExTable[t, t'] = True;

 (5)
// Decompose CCS C into conflict-free subsets
D = {C}; // D is a power-set of C (6)
for each subset H in D (7)
for each transition t in H (8)
for each transition t' in H (9)
if (ExTable[t, t'] = True) { (10)
H' = Copy_Set(H); (11)
Delete_Trans(H, t'); (12)
Delete_Trans(H', t); (13)
D = D ∪ H'; } (14)

// Decompose a TCCPN into subnets according to D
for each subset H in D (15)
Decompose_TCCPN(S, H); (16)

}
// Schedule all CF components
for each TCCPN Ai in S (17)
for each conflict-free subnet X of Ai { (18)
Xs = Schedule(X, µ); (19)
if (Xs=NULL) return ERROR; (20)
else TEQSSi=TEQSSi ∪ Xs; } (21)

Check_Time(TEQSS1, …, TEQSSn); (22)
Generate_Code(S, µ, TEQSS1, …, TEQSSn); (23)

}

Table 1. Time Extended Quasi-Static Scheduling Algorithm

Code Generation with Multiple Threads. In contrast to the conventional single-
threaded embedded software, we propose to generate embedded software with
multiple threads, which can be processed for dispatch by a real-time operating system.
Our rationalizations are as follows:

With advances in technology, the computing power of microprocessors in an
embedded system has increased to a stage where fairly complex software can be
executed.

Due to the great variety of user needs such as interactive interfacing, networking,
and others, embedded software needs some level of concurrency and low context-
switching overhead.

Multithreaded software architecture preserves the user-perceivable concurrencies
among tasks, such that future maintenance becomes easier.

The procedure for code generation with multiple threads (CGMT) is given in Table
2. Each source transition in a TCCPN represents an input event. Corresponding to
each source transition, a P-thread is generated (Steps (1), (2)). Thus, the thread is
activated whenever there is an incoming event represented by that source transition.
There are two sub-procedures in the code generator, namely Visit_Trans() and
Visit_Place(), which call each other in a recursive manner, thus visiting all transitions
and places and generating the corresponding code segments. A TCCPN transition
represents a piece of user-given code, and is simply generated as call t_k; as in
Step (3). Code generation begins by visiting the source transition, once for each of its
successor places (Steps (4), (5)).

In both the sub-procedures Visit_Trans() (Steps (1)-(3)) and Visit_Place() (Steps
(6-8)), a semaphore mutex is used for exclusive access to the token_num variable
associated with a place. This semaphore is required because two or more concurrent
threads may try to update the variable at the same time by producing or consuming
tokens, which might result in inconsistencies. Based on the firing semantics of a
TCCPN, tokens are either consumed from an input place or produced into an output
place, upon the firing of a transition. When visiting a choice place, a switch()
construct is generated as in Step (3).

3.2 Embedded Software Verification

There are three issues to be handled in software verification, that is: “what to verify”,
“when to verify”, and “how to verify”? Each of these issues is solved as follows.

In solution to the “what to verify” issue, TCCPN models are translated into timed
automata models which are then input to a model checker. Timed automata models
are easier to verify than TCCPN models because of its state space can be finitely
represented. Since both TCCPN and timed automata are formal models, there is an
exact mapping between the two. For example, a marking of a TCCPN is mapped to a
state location of a timed automaton. Concurrency in TCCPN is mapped to two or
more concurrent timed automaton. Source transitions in TCCPN are mapped to initial
states of timed automata. Non-deterministic choice places in TCCPN are mapped to
states with branching transitions in timed automata. Loops in TCCPN are mapped to
loops in timed automata.

In solution to the “when to verify” issue, we propose to verify software after
scheduling (synthesis) and before code generation. Our rationalization is based on the
fact that before scheduling or after code generation, the state-space is much larger
than after scheduling and before code generation. A formal analysis proves this fact.
Intuitively, before scheduling the state-space is much unconstrained than after
scheduling, thus we have to explore a larger state-space if we verify before
scheduling. Further, after code generation the state-space is also larger than that
before code generation because upon code generation a lot of auxiliary and temporary
variables are added, which add to the size of the state-space unnecessarily.

Table 2. Code Generation Algorithm for TEQSS

Generate_Code(S, µ, TEQSS1, TEQSS2, …, TEQSSn)
S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n};
µ: integer; // Maximum memory
TEQSS1, …, TEQSSn: sets of schedules of conflict-
free TCCPNs
{
for each source transition tk ∈ ∪i Ti do { (1)
Tk = Create_Thread(tk); (2)
output(Tk, "call t_k;"); (3)
for each successor place p of tk (4)
Visit_Trans(TEQSSk, Tk, tk, p); (5)

}
Create_Main(); (6)

}

Visit_Trans(TEQSSk, Tk, tk, p) {
output(Tk, "mutexs_lock(&mutex);"); (1)
output(Tk, "p.token_num += weight[t_k, p];");(2)
output(Tk, "mutexs_unlock(&mutex);"); (3)

Visit_Place(TEQSSk, Tk, p); (4)
}

Visit_Place(TEQSSk, Tk, p) {
if(Visited(p) = True) return; (1)
if(Is_Choice_Place(p) = True) (2)
output(Tk, "switch (p) {"}; (3)

for each successor transition t' of p (4)
if(Enabled(TEQSSk, t')) { (5)
output(Tk, "mutexs_lock(&mutex);"); (6)
output(Tk,"p.token_num-=weight[p,t'];"); (7)
output(Tk, "mutexs_unlock(&mutex);"); (8)
output(Tk, "call t';"); (9)
for each successor place p' of t' (10)
Visit_Trans(TEQSSk, Tk, t', p'); (11)

output(Tk, "break;"); } (12)
output(Tk, ")"); (13)

}

In solution to the “how to verify” issue, we adopt a compositional model checking
approach, where two timed automata are merged in each iteration and reduced using
some state-space reduction techniques such as read-write reduction, symmetry
reduction, clock shielding, and internal transition bypassing. The reduction
techniques have all been implemented in the State Graph Manipulators (SGM) tool,
which is a high-level model checker for real-time systems modeled as timed automata
with properties specified in timed computation tree logic (TCTL). After the globally
reduced state-graph is obtained, it is model checked for satisfaction of some user-
given TCTL property. Details can be found in [20].

3.3 Graphic User Interface and Platform Architecture

As shown in Fig. 3, we designed a graphical user interface for real-time embedded
software specification input using Petri Net model. The designer draws the required
behavior of embedded software as Petri Nets using the icons in the GUI. By clicking
the “schedule” button, the tool generates the schedules. The designer can view the job
scheduling states in the generation region and the scheduling bar of the GUI.

A platform supports a hardware-software environment for hardware emulation and
software execution. In this work, we design a platform with an architecture as shown
in Fig. 4. The FPGA/CPLD chip is programmed according to the hardware
requirements of an embedded system. The embedded software is downloaded into the
microcontroller. If microcontroller memory is not enough, then external memory can
be used. The input/output devices, such as keyboard, LCD display, LED display, and
input switch are connected to FPGA/CPLD chip and microcontroller using a bus. The
procedure adopted for emulating embedded software in a platform is as follows. (1)
The embedded software code is downloaded into the ROM or Flash memory, (2) The

Fig. 3. Graphical User Interface for Real-Time Embedded Software Synthesis

settings of the I/O devices are configured according to the embedded software
specifications, (3) The emulation platform is booted, input conditions are changed,
and the output functions are checked for satisfaction of the functional requirements of
the embedded software.

4 Embedded System Examples

In this section, we use two embedded system examples to illustrate our proposed
embedded software synthesis and prototyping methodology. The first example is
display subsystem of Vehicle Parking Management System (VPMS) example, which
includes three subsystems: entry management system, exit management system, and
display system. The display system consists of a control system (counter and display
interface) and a 7-segment display device. The counter value (count) indicates the
number of available parking vacancies. Further details on the VPMS specification can
be found in [7].

The display system in VPMS was modeled as a TCCPN as shown in Fig. 5 and the
TCCPN transitions are given in Table 3. The embedded software code generated for
the display system is shown in Fig. 6, which was emulated using our RESS platform.
We use two input switches to simulate the Car in and Car out signals, respectively,
and then use a 7-segment display to show the number of available parking vacancies.

Another example is a motor speed control system, whose TCCPN model is as
shown in Fig. 7. The main function of this system is to adjust the speed of a motor
based on its current speed. There are two timers T0, T1 and two interrupts INT0,
INT1 that drive the system. On software synthesis, that is, TEQSS, there are two
feasible schedules for this system as given in Table 4, where an asterisk on a partial
schedule indicates a loop of at least one iteration. The generated code is shown in Fig.
8, which was emulated on our RESS platform. We use two input switches to connect
the trigger of INT0 and INT1, respectively. Motor speed is displayed by an LCD
display device.

 Fig. 4. Hardware-Software Prototype Platform Architecture

Bus

Keyboard
LCD

Display
LED and

7-Segment
Display

Input
 Switch

FPGA/CPLD
Chip

Single Chip
Microcontroller

Memory

5 Conclusion and Future Work

A complete methodology called RESS was proposed for emulating hardware and
synthesizing and executing embedded software, which includes a time-extended
quasi-static scheduling algorithm, a code generation procedure, and an emulation
platform. The methodology will not only reduce development time for embedded
software, but also aid in debugging and testing its functional correctness. This version

P 2

P 1

P 3

t1

t2

t5

t4

t3

t6

t7

t8

[1, 2]

[1, 3]

[1, 2]

[1, 2]

[1, 2]

[1, 3]

[1, 1]

[1, 3]

Fig. 5. Petri Net Model of Display System

Table 3. TCCPN Transitions
in Display System

Place Description
P1 Counter value

updated
P2 Signal polling

complete
P3 Digit selected

Transition Description
t1 Initial counter
t2 Poll signal
t3 Select digit
t4 Decrement

counter
t5 Increment

counter
t6 Check count
t7 No operation
t8 Display digit

Fig. 6. Software Code for VPMS Display System

Display C-code
{(t1 t2 t4) (t1 t2 t5) (t1 t2 t6) (t1 t2 t7) (t1 t3
t8)}
t1;
while (true) {
if (p1) {
 t2;
 switch (p2) {
 Case Car in: t4;
 Case Car out: t5;
 Case Time stamp button pushed: t6;
 Case Default: t7;
 }/* End of switch */
 }/* End of if */
 else {t3; t8;}
}/* End of while */

of our real-time embedded software synthesis tool has a new graphical user interface
to increase its user-friendliness. How to transfer the software code for applying to
ARM-based systems will be our future work.

Fig. 7. Motor Speed Control System TCCPN Model

Clear new rdgflg
and end

Increase drive

t1

t2

Decrease drive

t3

Set up T0, T1
Set up INT0, INT1

New rdflg ==True no

yes

yes

no Too slow

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 2]

t5

t6

t4

t0

Table 4. Feasible Schedules for Motor System
TCCPN #T #P #S Schedules

MSCS 7 4 2 <t0, <t1>*, t2, t3, t5, t6>,
 <t0, <t1>*, t2, t3, t4, t6>

#T: #transitions, #P: #places, #S: #schedules

P0

P1

P2

P3

[1, 2]

[1, 3]

References

1. K. Altisen, G. Gobler, A.Pneuli, J. Sifakis, S. Tripakis, and S. Yovine, “A framework for
scheduler synthesis,” In Proceedings of the Real-Time System Symposium (RTSS’99), IEEE
Computer Society Press, 1999.

2. F. Balarin and M. Chiodo. “Software synthesis for complex reactive embedded systems,”
In Proceedings of International Conference on Computer Design (ICCD’99), IEEE CS
Press, October 1999, 634 – 639.

3. L. A. Cortes, P. Eles, and Z. Peng, “Formal co-verification of embedded systems using
model checking,” In Proceedings of EUROMICRO, 2000, 106 – 113.

4. P.-A. Hsiung, “Formal synthesis and code generation of embedded real-time software,” In
International Symposium on Hard-ware/Software Codesign (CODES'01, Copenhagen,
Denmark), ACM Press, New York, USA, April 2001, 208 – 213.

5. P.-A. Hsiung, W.-B. See, T.-Y. Lee, J.-M Fu, and S.-J. Chen, “Formal verification of
embedded real-time software in component-based application frameworks,” In Proceedings
of the 8th Asia-Pacific Software Engineering Conference (APSEC 2001, Macau, China),
IEEE CS Press, December 2001, 71 – 78.

6. M. Sgroi and L. Lavagno, “Synthesis of embedded software using free-choice Petri nets,”
IEEE/ACM 36th Design Automation Conference (DAC’99), June 1999, 805 – 810.

7. T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen, “A case study in codesign of distributed
systems — vehicle parking management system,” In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA'99, Las Vegas, USA), CSREA Press, June 1999, 2982–2987.

8. P.-A. Hsiung, “Formal Synthesis and Control of Soft Embedded Real-Time Systems," In
Proceedings 21st IFIP WG 6.1 International Conference on Formal Techniques for

void *thread_run0(void *arg) {
 t0(); pthread_mutex_lock(&mutex);
operation(t0,p0,'+')
 switch(p0) { case 1 : do{ if(check_enable(t1)) {
 mutex_operation(p0,t1,'-');
 t1();mutex_operation(p0,t1,'+'); } }
 while(pla0);
 pthread_mutex_unlock(&mutex); break;
 case 2 : if(check_enable(t2))
 { operation(p0,t2,'-'); t2();
 pthread_mutex_unlock(&mutex);
 pthread_mutex_lock(&mutex);
operation(t2,p1,'+')
 switch(p1) { case 3 : if(check_enable(t3)) {
 operation(p1,t3,'-'); t3();
 pthread_mutex_unlock(&mutex);
 pthread_mutex_lock(&mutex);
 operation(t3,p2,'+') … }}}}

Fig. 8. Code for Motor Speed Control

Networked and Distributed Systems (FORTE'01, Cheju Island, Korea), Kluwer Academic
Publishers, August 2001, 35 – 50.

9. J. Buck, Scheduling dynamic dataflow graphs with bounded memory using the token flow
model, Ph. D, dissertation, UC Berkeley, 1993.

10. F. Thoen et al, “Real-time multi-tasking in software synthesis for information processing
systems,” In Proceeding of the International System Synthesis Symposium, 1995, 48 – 53.

11. B. Lin, “Software synthesis of process-based concurrent programs,” IEEE/ACM 35th
Design Automation Conference (DAC’98), June 1998, 502 – 505.

12. X. Zhu and B. Lin, “Compositional software synthesis of communicating processes,” IEEE
International Conference on Computer Design, October 1999, 646 – 651.

13. F.-S. Su and P.-A. Hsiung, “Extended quasi-static scheduling for formal synthesis and code
generation of embedded software,” In Proceedings of the 10th IEEE/ACM International
Symposium on Hardware/Software Codesign, (CODES'2002, Colorado, USA), IEEE CS
Press, May 2002, 211 – 216.

14. C.-H. Gau and P. -A. Hsiung, “Time-memory scheduling and code generation of real-time
embedded software,” In Proceedings of the 8th International Conference on Real-Time
Computing Systems and Applications (RTCSA'2002, Tokyo, Japan), March 2002, 19 – 27.

15. F. Balarin et al., Hardware-software Co-design of Embedded Systems: the POLIS Approach,
Kluwer Academic Publishers, 1997.

16. P.-A. Hsiung and C.-H. Gau, “Formal Synthesis of Real-Time Embedded Software by
Time-Memory Scheduling of Colored Time Petri Nets,” In Proceedings of the Workshop on
Theory and Practice of Timed Systems (TPTS'2002, Grenoble, France), Electronic Notes in
Theoretical Computer Science (ENTCS), April 2002.

17. P.-A. Hsiung, T.-Y. Lee, and F.-S. Su, “Formal Synthesis and Code Generation of Real-
Time Embedded Software using Time-Extended Quasi-Static Scheduling,” In Proceedings
of the 9th Asia-Pacific Software Engineering Conference (APSEC'2002, Queensland,
Australia), IEEE CS Press, December 2002.

18. M. Baleani, F. Gennari, J. Yunjian, Y. Patel, R. K. Brayton, A. Sangiovanni-Vincentelli,
“HW/SW partitioning and code generation of embedded control applications on a
reconfigurable architecture platform,” In Proceedings of the Tenth International
Symposium on Hardware/Software Codesign (CODES’2002, Colorado, USA), IEEE CS
Press, May 2002, 151 – 156.

19. S. Tsasakou, N. S. Voros, M. Koziotis, D. Verkest, A. Prayati, and A. Birbas, “Hardware-
software co-design of embedded systems using CoWare’s N2C methodology for
application development,” In Proceedings of the 6th IEEE International Conference on
Electronics, Circuits and Systems (ICECS’1999, Pafos, Cyprus), IEEE CS Press,
September 1999, Vol. 1, 59 – 62.

20. F. Wang and P.-A. Hsiung, “Efficient and User-Friendly Verification,” IEEE Transactions
on Computers, Vol. 51, No. 1, pp. 61-83, January 2002.

