IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996 83

PSM: An Object-Oriented Synthesis Approach
to Multiprocessor System Design

Pao-Ann Hsiung, Sao-Jie Chen, Member, IEEE, Tsung-Chien Hu,
and Shih-Chiang Wang

Abstract— Although multiprocessor systems are becoming a
trend today, yet few synthesis tools currently available can actu-
ally automate the design of multiprocessor systems. Performance
synthesis methodology (PSM) is an object-oriented system-level
synthesis approach to multiprocessor system design. Since PSM
was designed specifically for the synthesis of multiprocessor
systems, it is not only much more efficient when synthesiz-
ing parallel systems, but also produces better parallel systems
than currently available uniprocessor system-level synthesis tools.
Colored Petrinets used in modeling system components and
object modeling technique used in the design process have both
contributed to the shortening of system development time and to
the reduction of design cost. First, user specification consisting of
functional models and performance constraints is translated into
architecture models. Then, the system is configured by selecting
the method of control, the memory organization, the type of pro-
cessor, and the type of system interconnection. Finally, a heuristic
design space exploration algorithm is used to generate several
near-optimal design alternatives. The best architecture is chosen
by evaluating the design alternatives using a flexible performance
estimation formula that mainly considers system level design
features, such as system throughput, utilization, reliability, scala-
bility, fault-tolerance, and cost. Several systems were successfully
synthesized using this top-down object-oriented PSM, thus show-
ing its feasibility as a design automation tool for parallel systems.

Index Terms— Colored Petrinets, functional model, heuris-
tic design-space exploration, multiprocessor synthesis, object-
oriented hardware design, parallel architecture model, perfor-
mance synthesis methodology, system-level synthesis.

I. INTRODUCTION

OWADAYS, as computer-aided design tools become
more and more intelligent, they can accumulate expe-
rience and techniques of design experts and enable computers
to do automatically what only the human designers have been
able to do in the past. An example is the use of silicon
compilation to automate the design of VLSI chips [1], [2].
Continuous researches have been conducted in this field and
considerable progress has been made to change the level
of synthesis from a very low (detailed) level in the past
to the high-level and system-level syntheses today [3]-[8].
However, practically very little research has been devoted
to the synthesis of parallel computer systems. Although the
theory behind system-level synthesis is not mature enough,
nonetheless an efficient and flexible methodology for the
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system-level design of parallel computer systems is presented
here. This methodology brings together the notions of 1)
parallel computer system modeling, such as object-oriented
modeling and Petri-net modeling, 2) performance modeling
which considers not only throughput, utilization, and cost
but also scalability, reliability, and fault-tolerance, and 3)
system-level synthesis of parallel computer systems. This new
design methodology, called performance synthesis methodol-
ogy (PSM), assists computer systerh hardware engineers in
developing their designs more easily, thus increasing their
productivity, as well as, shortening the time-to-market of a
complete system. Section II discusses the motivation of this
paper and related previous work. Problem specification and
system inputs are described in Section III. Different phases
of PSM are explained in Section IV. Section V illustrates
the application of the methodology by going through the
synthesis of several example systems. The conclusion and
some suggested future work are presented in Section VL.

II. MOTIVATION AND PREVIOUS WORK

A. Multiprocessor System Design

Multiprocessor (MP) system design differs from traditional
uniprocessor system design in terms of its complexity and
difficulty. For example, some features exclusive to MP systems
are the memory subsystem organization, the memory access
conflict resolution, the number of parallel processors, and
the type of system interconnection between memory and
processors. Presently available synthesis systems, such as the
MICON Synthesizer Version 1 (M1) [7]-[9] and the Magellan
System [10] which incorporates the System Architect’s Work-
bench [11], WOLFIE [12], and LASSIE [13], do not explicitly
take the MP features into consideration during system synthe-
sis; hence, the adoption of such systems for the design of MP
systems, might not result in good parallel designs. Although
there exist synthesis methodologies which do consider some of
the features of MP systems, all of these methodologies have
a restricted scope of application, e.g., Mabbs and Forward
[14] analyzed the performance of MR-1, a clustered shared-
memory MP, using a queuing model and a lost request model;
Chiang and Sohi [15] evaluated design choices for Shared-Bus
MP’s in a throughput-oriented environment using customized
mean-value analysis. There are also tools whose targets of
synthesis are MP systems, but the application domain has been
restricted to some special classes of MPs, for example, Rao
and Kurdahi discussed hierarchical design-space exploration
for digital-signal processing systems [16].

1063-8210/96$05.00 © 1996 IEEE
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Fig. 1. Performance synthesis methodology (PSM) inputs.

PSM is a synthesis methodology which not only considers
many important features of an MP system, but supports a
wide range of applications since the target machine under
synthesis can be either a general purpose MP system or
an application-specific system. An example of a successful
system-level synthesis tool is the MICON system [9], but it
does not explicitly consider the MP architecture, whereas PSM
spends a greater effort on MP configuration at the system level
“before the actual detailed synthesis. This makes PSM produce
better parallel systems.

B. Object-Oriented Synthesis

Technology transfer between software and hardware design
has led to the use of object-oriented techniques in hardware
design [17]. Indeed, it is in the field of hardware design
that the power of object-oriented techniques in modeling and
design can really be exhibited. Often, two or more of the
same hardware component or subsystem are used in a single
system; thus, the concept of reuse in object-oriented techniques
comes into play. The static and dynamic features of a hardware
component make it fit exactly into the concept of an object
with its data and its member functions. Kumar ez al. [17] used a
data decomposition approach to identify reusable components.
The incorporation of object-oriented techniques into computer-
aided synthesis has been discussed mainly in the literature [17],
[18] and implemented in a few hardware description language
oriented design tools [19].

PSM incorporates object-oriented techniques into the
system-level synthesis of MP systems. Not only is the
component library built using an object-oriented classification
method, but the actual synthesis process is also object-
oriented as it uses object-oriented relations, such as the
aggregation and the generalization relationships, and object-
oriented operations, such as the iterator and the generator to
synthesize MP systems.

C. Performance Evaluation

The queuing model [14], lost-request model [14], object-
oriented Petri-net model [18], [20], customized mean-value

analysis model [15], Markovian model [21], and stochastic
Petri-net model [22] are all examples of performanc‘e models
that have been used for evaluating multiprocessor systems.
Since PSM is an object-oriented methodology, the object-
oriented Colored Petri-Nets (CPN) model was adopted as
our performance modeling tool. For the actual execution and
simulation, the SES/Workbench!, an object-oriented simula-
tion tool, was used. Using instruction-mixes as the simulation
workload, system performance results such as throughput and
utilization are obtained by performing simulations on the
various design alternatives. ‘

III. PROBLEM SPECIFICATION AND INPUT DESCRIPTIONS

A. Problem Specification

The performance synthesis problem requires that an
architecture-level system be automatically synthesized -such
that all user-specified functional requirements and constraints
on performance and cost are satisfied and the whole synthesis
process is completed in a reasonable amount of time. The final
architecture-level system output is the result' of a heuristic
search for the optimal design, with optimality being defined in
terms of the best performance which is itself a combination of
various system-level performance factors, such as throughput,
utilization, cost, reliability, scalability, and fault-tolerance. To
sotve this problem, a Performance Synthesis Methodology
(PSM) is proposed in this paper.

B. System Input

As shown in Fig. 1, four kinds of input information are
needed in PSM: 1) functional model, 2) performance con-
straints, 3) object base, and 4) model base.

1) Functional Model: A functional model is used to de-
scribe the overall dynamic and functional view of a system
under design. The example of functional model shown in
Fig. 2 is actually a combination of the dynamic model and the
functional model discussed in Rumbaugh’s object modeling
technique (OMT) [23]. The purpose of this combination is
to eliminate the unnecessary duplication of information that
might occur in Rumbaugh’s Dynamic and Functional Models.

2) Performance Constraints: PSM basically considers five
aspects of system level performance, namely, cost, power,
reliability, scalability, and fault-tolerance. They are defined
as follows:

a) Cost: This is simply the sum of all system component

costs.

b) Power: It is a ratio of the system (component) through-
put to the system (component) utilization. A higher
throughput under the same percentage of utilization
gives-a greater power, while a lower utilization gener-
ating the same throughput implies more latent capacity
for that particular system and hence, a greater value of
power.

¢) Reliability: The reliability of a system (or component) is
the conditional probability that the system (component)

I SES/Workbench is a registered trademark of Scientific and Engineering
Software, Inc.
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Fig. 2. Functional model of a cluster array processor.

operates correctly throughout the interval [t,,t], given
that it was operating correctly at time 2.

d) Scalability: Scalability is defined as a weighted sum
of the percentage of possible increase in the existing
hardware subsystems.

e) Fault-Tolerance: Fault-Tolerance is defined as a
weighted sum of the maximum fraction of each
subsystem that is allowed to be faulty before the system
fails.

With the above system-level performance factors taken into

consideration, a Performance Space (PS) is defined as follows.

3) Performance Space: Performance space is an n-

dimensional real space in which each dimension represents
one performance factor and n is the number of performance
factors considered in the performance estimation formula
(PEF). Thus, the coordinates of a point in this space give the
performance values for some possible design alternatives.

A general form of the Performance Estimation Formula is

given as follows:

€y’
PEF:‘ﬂxg) )
9(y;")
where x; and y; are perfbrmance factors for 2 = 1 to n, ey,
and e, are the respective exponents signifying the importance
of a specific performance factor, and f and ¢ are user-defined
functions that aid in integrating all the performance factors.
For illustration, a three-dimensional performance space is
shown in Fig. 3 with its PEF defined as a 3-factor formula:

2

PEF; = (cost)” + (power + reliability @

which is actually the square of the distance of a design point to
the origin. Minimizing this geometric distance gives an optimal
system in terms of cost, power, and reliability.

PEF could also be defined as follows:

ep €R es €F
Per x R C>:CS x F 3)
where C = cost, P = power, R = reliability, S = scalability,
and F' = fault-tolerance.

PEF; consisting of only three performance factors is used
mainly for illustration purpose and the 5-factor PEF, formula
is actually used in the implementation of PSM.

4) Object Base: Here the term “object” represents a basic
component of computer systems. The Object Base is pri-
marily composed of objects, object classification, and object
instances. The classification information of an object is part of

PEF, =

cost
1

power bound
(1/min power)

Fig. 3. A 3-D performance space.

the static information about the structure of a system, which
includes:

a) a unique object class name,

b) the attributes of this object class, including estimated

cost and performance,

¢) the operations that can be manipulated on this object

class, and

d) its relationship to other object classes.

A classification diagram, as shown in Fig. 4, is represented
by one or more object class nodes, by links that represent rela-
tionships among classes, and by association symbols depicting
the type of relationships. For example in Fig. 5, the class
Memory Subsystem is composed of an optional Memory
Controller and one or more Memory Modules. This
type of assembly-component relationship is called an aggre-
gation relationship. Since the assembly class is of a higher
level than the component classes, the aggregation relationship
between them can be used to distinguish between two different
levels of classes. The aggregation relationship, occurring
in the object classification, provides necessary information
on decomposing a particular component into a lower level.
Traversing the classification hierarchy and following such
relationship, we can easily synthesize a component by finding
the subcomponents having an aggregation relationship with
this component.

There is another kind of relationship, called generalization,
which represents the relationship between a superclass and
its one or more refined versions of subclasses. For exam-
ple, the class Memory Module in Fig. 5 is the superclass
of its subclasses Random Access Memory and Read-
Only Memory. Generalization relationship is mainly useful
for system configuration and design space exploration. This
type of relationship provides the information that pertains to
the different choices a designer has when implementing a
component, (s)he can thus make a quick selection by going
through each specialization subclass.

5) Model Base: The model base consists of all the models
required for synthesis, namely, the system-level architecture
models and the object models.

The degree of the sharing of system resources, e.g., Sys-
tem memory, system interconnection, etc., is much higher
in parallel computer systems than in uniprocessor systems.
Memory access conflicts in shared-memory parallel com-
puter systems tend to degrade their overall performance, e.g.,
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throughput, response-time, power, etc., hence, PSM adopts
a classification of parallel computer architectures based on
different memory-access latencies, which basically consists of
four kinds of system architectures: UMA (Uniform Memory
Access), NUMA (Non-Uniform Memory Access), COMA
(Cache-Only Memory Access), and NORMA. (NO-Remote

Object Classes
B

ohe-to-one
relationship
o [ |
>
SES models
CPN modeis

Fig. 6. Relationship between a CPN model and an-SES model.

TOKN

Fig. 7. Combination of CPN building blocks.

Memory Access) [24]. All information pertaining to these
system architectures is stored as archifecture models in the
model base. For example, the type of system interconnections
(shared bus, multistage interconnection network, crossbar,
efc.), the memory placements (global or local or both), and the
memory arrangements (centralized or distributed) appropriate
for each system architecture are stored in each corresponding
architecture model.

As shown in Fig. 6, each component object in the architec-
ture model has two corresponding object models: a colored
Petri-net (CPN) model and a SES/Workbench model [25],
[26]. Colored Petri-net model is suitable both for useérs to
model objects, as well as, for model analysis [27]-[29], while
SES/Workbench is a convenient tool for model implementation
and simulation. Both models have uniform input and output
interface specifications so that two or more submodels can be
combined into a larger model in a very intuitive way. Fig. 7
shows how the combination of building-blocks A, B, and C
can be used to form a larger system. Figs. 8 and 9 show the
CPN and SES/Workbench models of a CPU, respectively. All
the information pertaining to these CPN and SES/Workbench
models are stored as object models in the model base.

IV. PERFORMANCE SYNTHESIS METHODOLOGY

The PSM methodology consists of three major design
phases: map to architecture models phase, generate system
configuration phase, and synthesize architecture phase, as
shown in Fig. 10. The following subsections discuss these
three phases and the top-down topology used in PSM.
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A. Map to Architecture Models Phase

A given Functional Model input has first to be mapped
onto one of the four basic architecture models from the Model
Base, i.e., UMA, NUMA, COMA, and NORMA as shown in
Fig. 11. This mapping should follow the Functional Model
specification described by the user. Since UMA, COMA,
and NUMA are shared-memory architecture models whereas
NORMA does not allow memory sharing, the Functional
Model is first checked to determine whether it is memory
sharing. If there is no memory sharing at all, then the NORMA
model is adopted. It can also be observed that UMA and
COMA are special cases of NUMA, hence, the UMA and
COMA models should be considered before the more general
NUMA model. When memory sharing is required, a uniform

3
T8 g
H

Performance
Constraints

Tl

Model Loop

Fig. 10. Performance synthesis methodology (PSM).

start

NORMA

UMA

COMA

end

Fig. 11. Detailed flowchart of the “map of architecture models” phase.

sharing suggests the use of the UMA model, whereas a non-
uniform memory access latency requires a further check to see
whether the memory subsystem consists of cache. For a cache
memory subsystem, the COMA model is used; otherwise,
the general NUMA model is considered. The above mapping
will generate many different feasible models, each of which
can be subsequently selected for further system configuration
generation and architecture synthesis.

B. Generate System Configurations Phase

As shown in Fig. 12, once a particular architecture model
is selected, the aggregation and generalization relationships of
its components stored in the Object Base are used to derive a
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Algorithm Design_Space_Exploration( )
begin
SUQ «+ Generate_Useful_Objects( );
SUM «—{};

begin

SUM «— SUM Um;
end
end.

for each set of useful object classes suc € SUO do

m « Generate_Useful Modules(suo);

/* set of useful object classes */
/* set of useful modules */

Algorithm 1

global design of the system. According to the classification
information stored in the Object Base, a system can be
configured in terms of the types of control to be implemented
in the system (e.g., SIMD or MIMD type of control), the
possible memory module arrangements (e.g., fully global,
or partially global and partially local, or only local), the
suitable processor types (e.g., fine-grained or coarse-grained
processors), and the possible system interconnections (e.g.,
shared global bus, multistage interconnection network (MIN),
or directly connected networks like hypercube).

The above process of generating system configurations
is also constrained by the architecture model selected, for
instance, the information provided by the model base and
those pertaining to the selected architecture model are used
as an initial guide for system configuration. For example,
the Shared Bus would not be considered as the system in-
terconnection if the architecture model under consideration
was NORMA because there is no memory sharing involved in
NORMA,; alternatively, there would not be any other memory
besides cache if the model selected was COMA. Besides these
considerations, the performance information of each object
component, such as throughput, cost, etc. which is stored in
the Object Base, could be another guideline for generating
system configurations.

C. Synthesize Architecture Phase

The above discussed “generate system configuration” phase
was a global design of the system and the “synthesize ar-
chitecture” phase, described in this subsection, is basically a
detailed design of the system. This latter phase, as shown in
Fig. 13, involves a loop over all the possible combinations of
system configurations. After a queue is initialized, a heuristic
design-space exploration (DSE) algorithm (see Fig. 14 and
Algorithm 1) is used to explore a part of the design-space
that is considered to be the most-optimal-possible region under
the heuristic, to select a small number of feasible alternative
designs, and to pick out the best among them. The use of
heuristic saves considerable design time and cost by restricting
the search to a part of the design-space ‘and at the same time
it ensures near-optimal results.

When a designer describes a computer system using the
Functional Model, three types of nodes are specified: processes
(functions), actors (active objects), and data stores (passive

start \

[ Control Selection l

L Memory Seléction | ’

I Processor Selecﬁm

l Interconnection Selectionl

é end

Fig. 12. Detailed flowchart of the “generate system ‘configurations” phase.

objects). With this knowledge in mind, some abbreviations
are introduced as follows. .

FNC: the set of functions defined by processes in -the

functional model.

OBJ: the set of object classes defined by actors and data

stores in the functional model.

SOF(fnc): the set of object classes selected froni the Object

Base that can be used to support a function fnc € FNC.

SCO: the set of critical object classes in OBJ, where a

critical object class is the object class supporting a function

fnc € FNC that cannot be supported by any other object
class in OBJ.

SNCQO: the set of non-critical object classes in OBJ.

1) Generate Useful Objects: The first subphase of DSE
known as “generate useful objects” is shown in Fig. 14 and
Algorithm 2. The “set of useful object classes” (SUO) is
formed as a result of this subphase. SUO is a set whose
elements are collections of object classes. Repetition of object
classes in an element of SUO is not permitted. Each element
of SUO, suo, is also a set; this set is a collection of object
classes from the object base, containing the components of an *
alternative design and having the following properties:

a) Feasibility: For each function fnc € F'NC, there exists
an object class obj € suo_such that fnc is supported by
obj, i.e., obj € SOF(fnc) ’

b) Optzmalzry Two object classes, supporting similar func-
tions specified in FNC but having different performance

’
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values, should not belong to the same suo. The class is formed, where object classes with equal functions are
with the poorer performance should be deleted from compared and those having poorer performance are deleted.
suo. ' Then, OBJ which is initialized to contain all object classes

¢) Acceptability: For an acceptable design, the total cost that implement the actors and data stores in the functional
of each suo must be lower than the user-specified Cost model, is partitioned into a critical set SCO and a noncritical
Constraint, its estimated power must be greater than set SNCO. Finally, elements of an SUO are formed by the
or equal to the Power Constraint, and all the other union of the SCO and some elements of SNCO, each of which
performance constraints, if any, must also be satisfied.  should support all the functions required in FNC.

Using Algorithm 2, an SUO is generated as follows: First, For example, an SUO may look like this: SUO =

for each function fuc in the Functional Model, an SOF(fnc) {{A,B,C},{4,B,D,E}}.

Algorithm Generate_Useful Objects( )
begin
/* Step 1: Initialize FNC and OBJ */
FNC « the set of functions defined by processes in the Functional Model;
OBJ — the set of object classes defined by actors and data stores in the Functional Model;
/* Step 2: check all object classes in OBJ to pick out improper ones */
for each function fnc € FNC do
begin
SOF(fnc) < the set of object classes defined in the Object Base that can be used to support the function
fnc;
for each obj € SOF(fnc) do
if (current level cannot be composed of obj) then SOF(fnc) «— SOF(fnc)— {obj};
for each pair (objy, obj,) € {(z,9)|z,y € SOF(fuc),z # y} do
begin
fncy « the set of functions supported by object class obj;
fney «— the set of functions supported by object class objs;
if ((fnc, N FNC) = (fnc, N FNC)) then
if (Performance(obj,) > Performance(obj,))

then SOF(fnc) « SOF(fnc) — {obj,} /* obj, is better */
else SOF(fnc) — SOF(fnc) — {obj }; /* obj, is better */
end
OBJ «— OBJ U SOF(fnc);
end

/* Step 3: Initialize SUO, SCO and SNCO */
SUO « {}; /*setof useful object classes */
SCO  «+ the set of critical object classes in OBJ;
SNCO « the set of non-critical object classes in OBJ;
PWR « the power set of SNCO;
/* Step 4: combine SCO and each subset of SNCO */
for each pwr € PWR do
begin
TMP «— SCO U puwr;
if ((¥ fnc € FNC, 3 object class obj € TMP such that fnc can be 1mplemented by obj)
and (Performance( TMP) > Performance_Bound)) then SUO — SUO U {TMP};
end
/* Step 5: return the SUO */
return(SUO);
end.

Performance (module)

begin
ret module-power x module-reliability x module-scalability x module-fault-tolerance
urn 5
module-cost e
Algorithm 2 N

end j
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This means that the system is composed of object classes A,
B, and C, or of object classes A, B, D, and E. Both combinations
match the user specifications, i.e., they support all functions
described by the user in the functional model. Object classes A
through E may be any computer components, such as CPU’s
or memory modules. Note that replication of classes is not
allowed here. This is different from the concept of useful
modules described in the following subsection.

2) Generate Useful Modules: Each element suo € SUO
contains enough object classes to implement all the function
specifications of a given system. However, designs using
components from SUO can only be developed into serial
ones (from a hardware point of view), because classes in
suo are single ones without repetition. To explore the possible
multiplicity of design components, we must permit duplication

when using these classes. Therefore, in the second subphase
of DSE, we use a Generate_Useful Modules algorithm
(see Fig. 14 and Algorithm 3), to derive the “set of useful
modules” (SUM) from SUO. Since repetition of object classes
is allowed in SUM, its elements are no more “sets” in the
restrictive sense. ‘
Algorithm 3 is based on the following idea: recalling that
the five performance factors we defined were cost, power,
reliability, scalability, and fault-tolerance, one can observe an
interesting phenomenon in hardware synthesis: the closer the
cost of design is to the cost bound, the bettér is the performance
results in terms of power and reliability (and other performance .
measures, if any). Furthermore, an exhaustive search through
the entire design-space is time-consuming and cost-wasting.
Thus, why not explore only a small part of the design-space

Algorithm Generate_Useful Modules (suo)
begin
n « dimension(suo);

return (m);
end.

[®] Problem Statement:

following constraints:

1. the values of 21,23, -+, z, are integers.

/* the number of elements in set of useful object suo */
m « the set of solutions to the problem [N stated below; :

To find 2 - n points closest to the intersection point P of a hyperplane S and a normal line I where

and the normal line L of S passes through the origin point O,

C1 Ca
Each of the above 2 - n points stands for an alternative module design and thus must agree with the

2.c121 + coza + -+ - + ¢, < Cost Bound
where c,: the cost of object class obj, per unit, and
z,: the multiplicity of object class obj,, for a = 1 to n.

min(t,z,)

S: 121 + o2 + -+ - + ez, = Cost Bound

LR _%_ %

Cn

3.

where

=3 a.

u U u,
§—1$1+E2$2+"'+_n

uq: the utilization of object class obj, per unit for a = 1 to n,
n

> Power Bound

B

ty: the }chroughput of object class obj, per unit for a = 1 to n;and
the function min(¢,2,) returns the minimal value among #1241, t3zo, - -
4. II(1 — (1 — R,(t))®) > Reliability Bound
where R,: the reliability of object class obj,, for a = 1 to n.

R 9

dg
5. Z fa X o > Fault-Tolerance Bound

a=1 @
where d; = number of maximum allowable faulty object class obj,
fa = importance factor for the object class obj,
n

6. Z fa8q > Scalability Bound

=1
where s, = scalability of object class 0bj,,and
fo = importance factor for object class obj,,.

Algorithm 3
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Configuration Loop

Fig. 13. Detailed flowchart of the “synthesize architecture” phase.
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Fig. 14. Detailed flowchart of the “design space exploration” in Fig. 13.

that is close to the cost bound? This strategy should give us
several feasible and acceptable designs with good performance
and near-optimality.

The above idea is formalized in the statement [M] of Algo-
rithm 3. Design points close to the intersection point of the
Cost Bound plane and its normal passing through the origin
are considered to be near-optimal design candidates. Consider
again the example given in the first subphase:

SUO = {{A,B,C}, {A,B,D,E}}.

Xe

This plane is the Cost Bound

Xa

Xa

Fig. 16. Intersection point.

For the first element of SUQ, suoy =
formulate an equation:

{A,B,C}, we can

CaZa + CoTy + ccte < Cost Bound )

where

¢n: the cost of object class obj,, (constant),
x,,: the multiplicity of object class obj,, (variable), and
Cost Bound is a constant value given by the user.

Graphical representation of (4) is a three-dimensional coor-
dinate space as shown in Fig. 15 where a = Cost Bound/c,,
b = Cost Bound/cp, and ¢ = Cost Bound/c..

As far as cost is concerned, all points interior to the
pyramid Oabc with positive integer coordinates are feasible
solutions, with each point representing an alternative design.
For example, if the point (1, 2, 2) is inside the pyramid Oabc,
this point will represent a design composed of one object class
A, two object classes B’s, and two object classes C’s. The
pyramid Oabc is in fact the entire design space.

As mentioned before, an exhaustive search for the opti-
mal design through the entire design-space is a very time-
consuming and tedious effort. Therefore, the search is re-
stricted to a portion of the design-space by looking at only
those integer points close to the intersection point P(x,y, 2)
of the cost bound plane S and the normal line L of S which
passes through the origin O, as shown in Fig. 16.

Let the normal vector of plane S be (ca, ¢, c.) and since
P(z,y,z) is a point on the normal line, we then get:

(Cashrc) =k« (2,4, 2) &)

where k is a constant,

Cq Cp Ce
.2 Dt 2= t B
=, % + ¢y A + ¢, A Cost Bound (6)
a+etel
=k= Cost Bound ™
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Fig. 17. Relationship between design and performance space.

N )= Cq - (Cost Bound) ¢ - (Cost Bound)
Y 2) = cd+cd+c2 7 2+t
¢e - (Cost Bound)
ez +cf+c? ’

®

Thus, the coordinates of point P can be calculated using
(8). Some of the points with integer coordinates close to P
are what we are looking for.

3) Performance Estimation: Recall that each alternative de-
sign has a representing point in the three-dimensional perfor-
mance space of Fig. 3. Combining this with the concepts of
Figs. 15 and 16, we have Fig. 17 and the following conclu-
sions:

a) the design points close to the cost bound plane S in a
design space are equivalent to the points close to the
cost bound plane Sy in a performance space (e.g., Py
and Py);

b) the design points close to the origin O in a design space
are equivalent to the points close to zero-cost plane So
in a performance space (e.g., Py and P5).

Each element of SUM generated in Algorithm 3 represents
an alternative design. For each design alternative sum €
SUM, an executable model is built using the SES/Workbench
simulation models in the model base. As shown in Fig. 18,
each design is simulated to generate two kinds of performance
data: system utilization and system throughput whose ratio
gives the system power. The calculation of other perfor-
mance factors, such as system reliability, scalability, and
fault-tolerance, has also been shown in Algorithm 3.

4) Design Point Selection: After performance estimation,
five pieces of performance data were obtained for each alter-
native design: cost, power, reliability, scalability, and fault-
tolerance. Using this data, it is possible to plot each design
as a point in a five-dimensional performance space using
the performance evaluation formula (3) as defined in Section
III-B2), and pick the point closest to the origin as the best
design.

D. Top-Down Topology

As mentioned before, PSM starts with higher level de-
scriptions and ends with lower level architecture schematics.
This high-level-to-low-level synthesis topology is termed “top-
down” topology. The three design phases of PSM, described
in the previous three subsections, systematically syhthesize
a multiprocessor system from a user-given functional model

SES/MWorkbench
system model

system utilization
measurements

system throughput
measurements

Fig. 18. Performance estimation by simulation.

specification. The map to architecture models phase maps a
Junctional model into an architecture model which is then con-
solidated by generating system configurations in the generate
system configuration phase. The global design obtained in the
second phase is further manifested, in the three subphases of
the synthesize architecture phase, into an actual multiprocessor
architecture. The full design scheme is top-down and this is
observed particularly in the last phase of PSM where the
desired system is iteratively synthesized using a heuristic
design space exploration algorithm. In what follows, we will
discuss this topology concept by giving an example, the
hierarchy of which is limited to three levels for ease of
discussion. , /

Assume a simple computer system is to be synthesized. It
is the aggregation type of relationship that first comes into
play during this top-down synthesis. Since all aggregation
relationships between objects classes have been stored in the
Object Base, one can immediately obtain the lower level sub-
components by just following the aggregation relationships in
the object classification. This operation is performed by the
operator known as “iterator” [30]. Similarly, corresponding
to the generalization relationship, there is the “generator”
operator, that is used during design-space exploration, to select
one class from several alternative and refined subclasses of a
particular object class. During the synthesis process, a queue
is used to hold all information that pertain to the building-
blocks waiting to be synthesized into more basic components.
As shown in Fig. 19, in Step 1, there is a level-1 block
representing the computer system itself, and the queue is .
initialized to empty. By referring to the object classification
in the Object Base and applying the iterator operator, the
computer system is synthesized into four components: the
CPU, the bus, the I/O subsystem, and the memory subsystem.
These level-2 components are appended to the queue waiting
for further synthesis. In Step 3, the CPU is popped from the
queue, and synthesized to consist of the ALU, the internal
bus, the registers, and the timing controller. At the same time,
the queue is updated to include these new components. The
bus need not be further synthesized because it is already a
basic component. Next the /O and memory subsystems are
synthesized in Steps 4 and 5, respectively. After Step 5, all
building-blocks contained in the queue are basic components,
therefore the synthesis process stops. The three diagrams as
shown in Steps 3, 4, and 5 of Fig. 19 form a complete
architectural design in the lowest level (level-3).
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V. APPLICATION EXAMPLES

In this section, some PSM applications are described by
going through the synthesis process of several large example 1 computer 1 empty
systems. Three different examples are given. The first system
synthesized is the cluster array processor (CAP) system which
is a multiprocessor digital signal processing system. This ex-
ample gives an overview of the multiple levels in the synthesis
procedure. The second sorting example mainly illustrates the
design choices made during the design-space exploration phase
and the simulation of different design alternatives. The third
example summarizes the four multiprocessor systems that PSM
has successfully synthesized.

CPU

3 { bus, VO, memory, ALU,
registers, iming, intsmal bus }

A. Cluster Array Processor

Cluster array processor (CAP) is a typical and simple
multiprocessor system with a hierarchical cluster architecture.
It has been used as an example for performance modeling
and fault modeling [31]. Hence, we choose CAP as our first
illustration.

1) User Specification: Assume that a user or a system de-
signer has specified his/her requirements by drawing Func- )
tional Model diagrams as shown in Fig. 20. - o ; memory

: memorycontroller] ALU, registers, timing,
2) Performance Constraints: Total Cost Bound = $200. 5 .- 3 fmmlnb?umv'; cor:trk?llu,
3) Map to Architecture Models: Since there is no memory mocdes m:e :n:";:ya;mu)

sharing in the given functional model [Fig. 20(a)], a NORMA L1l
model is adopted.

4) Generate System Configurations: Based on the NORMA
model, either an SIMD or an MIMD control method could be
adopted.

5) Synthesize Architecture: The hierarchy is limited to three sumg = {connection, 1/O subsystem,
levels in order to simplify the discussion. Let the cost of
a Cluster be $80. This implies that at most two Clusters
can be used. The few processors and the low cost bound
also imply that the use of at most two shared buses for subsystem, cluster, cluster},
system interconnection is enough. At level-1 of the synthesis sumy = {connection, 1/O subsystem,
process, on applying the Design Space Exploration algorithm
(Algorithm 1) to the above system, we have the following
results as shown at the bottom of the page.

Fig.'19. Top-down decomposition.

cluster},
sumg = {connection, connection, I/O

cluster, cluster, controller},

sums = {connection, I/0 subsystem,

The resulting SUM generated from SUO by Algorithm 3 is cluster, controller},
given below: sumg = {connection, connection, I/O
SUM = {sumy = {connection, I/O subsystem, subsystem, cluster, cluster,
clustercluster, cluster}, controller},
FNC = {interfacing, exchange data, dispatch, perform task}
OBJ - = {I/O subsystem, connection, cluster}
SOF (interfacing) = {I/O subsystem, cluster}
SOF (exchange data) = {connection}
SOF (dispatch) = {I/O subsystem, cluster, controller, PE, CPU}
SOF (perform task) = {cluster, PE, CPU}
= OBJ = {I/O subsystem, connection, cluster, controller, PE, CPU}
SCO = {connection, I/O subsystem, cluster}
SNCO = {controller, PE, CPU}
= SUO = {suo; = {connection, I/O subsystem, cluster},

suog = {connection, I/O subsystem, cluster, controller}}
where => represents different execution sub-phases of Algorithm 2.
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Fig. 20. Functional models describing the components being synthesized.

sumy = {connection, connection, 1/0
subsystem, cluster,

controller}}.

TABLE I
PERFORMANCE EVALUATION RESULTS

sum, 0.1 0.3 0.25| 0384 033 3.14 249

sumg 105 0.1 0.57 0.17 08 0.17 0.44 3.2398 247
sumg | 190 0.1 0.4 024 093 0.5 0.17 33022 259
sum, | 110 0.1 0.58 0.17| 0388 0.17 0.33 3.2349 193

Then SES/Workbench simulation models of all the above
design alternatives are executed and their performance results
are recorded in Table I. Each design alternative is evaluated
using the following two' different performance metrics:

distance; =1/C2 + P~2 + R-2 { F-2 4 §-2,
PXxXRxS8SxF
C

distance, =

where P = performance, R = reliability, S = scalability, F =
fault-tolerance, and C' = cost.

The first distance is in fact a geometric distance which, when
minimized, will give the point closest to the origin and hence
the best design. The second distance is a direct product of
the various performance factors, and maximizing this distance
will give the best design point.

It is concluded from Table I, that sums is the best choice.
The component queue status is now {cluster, cluster, I/O
subsystem, connection, controller} [Fig. 21(a)], Moving on to
level-2, the next component to be synthesized is the cluster.
Algorithm 1 is executed again with the Functional Model of
a cluster as input [Fig. 20(b)]. The synthesized architecture of
this cluster is shown in Fig. 21(b).

The above procedure is repeated for the I/O subsystem
and the system connection in level-2 and for the cluster 1/0,
and the processing element (PE) in level-3. The respettive
Functional Models are shown in Fig. 20 (c), (d), (e), and
(®), and their synthesized architectures in Fig. 21 (c), (d),
(e), and (f). At this point, the synthesis process stops as the
hierarchy is limited to three levels, thus all the components left
in the component queue are considered to be basic physical
components. The above synthesis procedure is repeated for
each system configuration. A final evaluation of all synthesized
architectures gives the best overall architecture.

B. Sorting Example

In this example, we assume that the user has specified a
sorting problem in the Functional Model input. .

1) Problem: Use shared-memory to sort 8 x 10° records.
Each record has two randomly generated keys: a primary and
a secondary key.

2) Performance Constraints: CPU benchmark: SPECint92
at least 80 and SPECfp92 at least 90, Total memory = 128
MB and Total cost bound = $100 000.

3) Map to Architecture Models: Since memory sharing is
required and there is no nonuniformity in memory access, an
UMA model is adopted. . '
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Fig. 21. Synthesized architecture schemes.

4) Generate System Configurations: - Since sorting can be
decomposed into a collection of similar tasks, i.e., subse-
quence sorting, the SIMD method of control is chosen. System
interconnection can be either shared-bus or MIN.

TABLE I
PROCESSOR FAMILIES AND RELATED INFORMATION (SOURCE:
IEEE SpecTRUM DEC. 1993 AND IEEE COMPUTER JUNE 1994)

+ Control circuitry and other costs = $700.

Company Intel Corp. |Sun Micro.
[Features/CPU | Pentium

[Modet 561 735 |

[Type CISC

Clock (MHz) | 66| 90
SPECint92 | 67.4] 90.1
IspECR2 | 636] 727

0.65 um

Techuology 0.8um
BiCMOS CMOS
US $/1000 898 NA| 557] NA
TABLE III
SYSTEM CONFIGURATIONS FOR EXAMPLE 2
CPU types Number of CPUs with Total system cost
& Ynterconection | Ghared Bus | 2 Shared Bus | MIN 1 Shared |2 Shared Bus
Networks Bus or MIN
Super SPARC 93 91 91 98,407 96,409
PA-7100 93 91 91 98,500 96,500
IMIPS R4400SC 84 83 83 97,900 96,300
PowerPC-601 165 160 160 97,405 94,620
Alpha-21064 181 176 176 96,905 94,380

5) Synthesize Architecture: 'We make some assumptions as
follows:

e 1 shared-bus costs $150 (capacity = 10);

» 8 x 8 MIN costs $240;

* 1 bank of 4 MB RAM costs $150;

* control circuitry and other costs = $700.

Currently there are six processor families in our object
base and model base. Using the information given in Table
II, it can be observed that five different processor models
meet the SPEC benchmark requirements, the design-space is
then explored at each level in a similar way as given in the
previous CAP example. Table III shows the obtained feasible
configurations.

By plotting the simulation results of the above five design
alternatives in Fig. 22, we observe that design 5 is the best
choice as far as throughput and utilization are concerned.
The performance metric distance,, mentioned in the previous
example, was used and the plotting of this distance measure for
the above five alternatives is shown in Fig. 23. Finally, it can
be concluded that a multiprocessor system with 176 ‘Alpha-
21064 CPUs, a 128 MB global memory, and a multistage
interconnection network is the best design choice for the
sorting example.

C. Other Examples

Table IV shows four representative multiprocessor system
designs created by PSM. Due to space consideration, we do
not present the Functional Models and the detailed synthesis
processes. However, from Table IV, it can be observed that a
wide range of systems were synthesized using PSM, which
include a massively parallel system (Design #1), a system
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Fig. 22. Throughput/utilization of the design alternatives in Example 2.
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Fig. 23. Distance metric of each design alternative with different intercon-
nection methods.

TABLE IV )
REPRESENTATIVE DESIGNS CREATED BY PSM
Partial Design Specification is Regults
Design| Functional Model Cost Power | Method [No. of [Synthe| Physical | Rum-|Estimat
No. Summary Bound ($) | (=T/U)| of |proces [sis Objects | thme | ed
(sec™) | Control [sors  [Levels (sec) | GFlops
1 |A fine-grained, highly | 11,500,000 100 | SIMD [10240| 5 32 605 [ 10.5
parallel job. .
2 |Engmneering 1,100,000 70 SIMD | 1,024 4 26 519 54
computation requiring
large memory space.
3 |Scientific computation| 1,750,000 { 200 |MIMD | 1,024 | 4 29 5801 128
requiring high
processing speed

4 |A message-passing
environment.

600,000 80 |MIMD ([ 512 3 20 472 2

requiring large memory space (Design #2), a system requiring
high speed (Design #3), and a message-passing system (Design
#4). The run-time given here includes only the DSE and
simulation times.

Design #1 is comparable to the fine-grain massively parallel
connection machine CM-2 as far as the type of parallel archi-
tecture (massively parallel), the method of control (SIMD), the
number of processors, the interconnection method (hypercube
interconnection), and the estimated peak performance (10
Gflops) are concerned. This also shows the feasibility of PSM
as a synthesis methodology for synthesizing massively parallel
systems.

VI. CONCLUSION
The following statements can be concluded about our per—
formance synthesis methodology.

1) It provides a new synthesis methodology to automate
the design of multiprocessor systems at the system level.

Since PSM was designed specifically for the synthesis of
MP systems, it can synthesize parallel computer systems
more efficiently and produce better results than the
currently available uniprocessor synthesis tools.

2) The incorporation of object-oriented techniques into
hardware design makes the synthesis methodology more
efficient and easier to maintain. Therefore, the system
development time can be shortened and the design cost
reduced. Since time and cost are two very important
factors in the market, if PSM is successfully applied
in the commercial field, it will certainly be helpful in
assisting a company to win a bigger market share.

3) Each phase and subphase of PSM can be controlled
by the designer. This feature makes the methodology
flexible and easily adaptable to different design envi-
ronments. It also provides designeré with a chance to
discover any architecture defect in the early phases of
the design process.

4) PSM provides a flexible cost-to-performance tradeoff
by generating several design alternatives. This allows a
designer to choose the architecture that best satisfies the
required constraints tradeoff. For example, a designer
may pick out a design that does not have the best
performance but has a very low price in order to save
money, or alternatively may choose a costly design to
meet the demands of high performance applications.

5) Changes in technology can be easily incorporated into
PSM by merely modifying or adding technology-specific
information into the Object Base and the Model Base of
PSM. Therefore, existing designs can be resynthesized
and new MP systems can be synthesized using the new
technology.

Some of our future research directions are:

1) Virtual Machine or Simulator Generator: Due to the
complexity of today’s parallel computer system, sim-
ulation before fabrication is indispensable in the design
process. PSM can also be used to generate virtual
machine descriptions which are executable simulators
and to check whether the design satisfies user-given
specifications at different design levels.

2) Hardware-Software Codesign: Though PSM is mamly
a hardware synthesis methodology, yet the basic notion
of object modeling using object-oriented technique can
also be used to model software components. One of our
future research directions is making PSM suitable for
hardware-software cosynthesis of MP systems.
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