

Parallel Object-Oriented Synthesis Methodology

Pao-Ann Hsiung
Institute of Information Science, Academia Sinica, Taipei 115, Taiwan, ROC.

Abstract

 POSM, a new object-oriented synthesis
methodology for multiprocessor systems,
parallelizes the recently proposed Performance
Synthesis Methodology (PSM). POSM increases
the efficiency of PSM and provides a mechanism
for specifying the inter-dependence of system
parts. POSM introduces a new object-oriented
relationship for enhanced modeling of
components and a new operator for administering
design precedence among system parts. The
concepts of POSM were implemented in the
recently proposed ICOS methodology. POSM has
been validated using a high-level Petri net model
called MOBnets.

Keywords: multiprocessor systems,
object-oriented design, parallel synthesis

1. Introduction

Object-oriented technology had been successfully
applied to the system-level synthesis of
multiprocessor systems [6], [8], [2]. The efficiency
of the methodologies can be considerably
enhanced if the synthesis of components can be
parallelized. Parallel computer-aided design had
been used only in logic and high-level syntheses
[1]. We now present a method for parallelizing
object-oriented system-level synthesis.
 Object-oriented synthesis use a Class
Hierarchy (CH) consisting of classes representing
system parts, as shown in Fig. 1. Each leaf class
may be instantiated into a physical component.
The synthesis process follows a top-down design

scheme by traversing CH starting from the root
class (representing a desired computer system)
downwards until the leaf classes (representing
physical components). Object-oriented
relationships guide the synthesis of each
component, which is accomplished by executing
object-oriented operators.
 Parallel design just like other parallel
mechanisms have problems related to
concurrency. While ensuring that parallel design
gives an enhanced efficiency we must also ensure
that newly created problems are tackled. In this
paper we will not go into the details of problems
created as a result of parallelism. Some problems
related to parallel synthesis such as deadlock
avoidance and emptiness detection were solved
recently by the authors in [4].
 The article is organized as follows. Section 2
describes related work. Section 3 describes POSM
in detail. Section 4 gives a design example.
Section 5 concludes with future work.

2. Related Work

Performance Synthesis Methodology (PSM) [6]
introduced two object-oriented relationships,
aggregation and generalization, and two
operators, iterator and generator, to guide and
accomplish the syntheses of component classes.
Aggregation is the “whole/part” relationship and
generalization is the relationship between a class
and its one or more refined versions. The iterator
iterates through each child node of an aggregate
class, deciding whether to use it or not, based on
the satisfaction of its specifications. The generator
generates a number of acceptable specialized
subclasses for a generalized class.

 The order of component syntheses was
sequential and fixed in PSM. Here, it is shown
how it can be enhanced by parallelizing the tasks
of component synthesis. Components may depend
on each other as far as specifications are
concerned. For example, the designs of a CPU
class and of a RAM class may be quite different if
the order, in which the two objects are synthesized,
is changed. This inter-dependence of components
may be physically perceived as hardware links
between them. Parallel synthesis allows more than
one component to undergo synthesis at the same
time, hence this kind of dependence must be
modeled into the synthesis process itself,
otherwise the synthesized design parts when
integrated, may not be a feasible system.

3. Parallel Object-Oriented
Synthesis Methodology

As shown in Fig. 2, besides aggregation and
generalization, one more object-oriented
relationship is introduced to model dependence, it
is called the association relationship. Whenever
the design of adjacently connected components of
a multiprocessor system are inter-related such that
the synthesis of one affects the other, the two
components are said to have an association
relationship. Association is further classified into
absolute and relative. Absolute association occurs

between two classes when the design of a class
depends on a post-design characteristic of the
other class. Two classes having absolute
association cannot be synthesized simultaneously,
thus the order of synthesis is a total-order. Partial
order of synthesis is observed between two classes
having a relative association. Relative association
is used to model the case in which the design of a
class depends on a pre-design characteristic of
another class. Two relatively associated classes
can be simultaneously synthesized, once the
dependent class has acquired the information it
needs from its relatively associated class. This
acquiring of information is accomplished by a
third object-oriented operator known as updator.
The dependent class uses updator to query its
relatively associated class for the required
specification.
 For example, processor class and memory
class are said to be absolutely associated because
the memory access time (m) can be expressed in
terms of the processor cycle time (p): m = k × p,
where k is some constant and it is assumed that m
is a specification and p a post-design
characteristic. Further, Cluster Control Unit (CCU)
and System Interconnect (SI) are relatively
associated because the CCU data transfer rate
(dCCU) and the SI data transfer rate (dSI) are related
as follows: dSI = c × dCCU, where c is a constant and
it is assumed that both dSI and dCCU are
specifications.

The overall design flow of POSM is described
in Fig. 3, where parallel design is obvious from the
concurrent syntheses of components. There are
three phases in POSM, namely, specification
analysis, parallel design, and system integration.

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Main
Memory

Cache
Memory

Primary

Secondary

Globallly
Shared

Distributed
Shared

Globally
Distributed

Distributed
Unshared

Shared
Bus MIN Cube Processor

Cluster

CCU LI SI InterfacePE

Scheduler I/O Intf. Buffer

Shared Bus MIN RISC CISCCube

Processor Local Memory

Cache RAM

I/O
Processor

I/O
Interface

CCU
Interface

A-node

G-node

P-node

Memory
Controller

Priority Time

Fig. 1 Class Hierarchy

Object-Oriented
Structure

associated classes

A-node

G-node

assembly
class

component
classes

superclass

subclasses

Object-Oriented
Relationship

aggregation
synthesis

generalization
specialization

association

Model
Transitions

Object-Oriented
Operator

iterator

generator

updator D-transition

G-transition

A-transition

Fig. 2 Object-Oriented Relationships and
Operators

A design hierarchy (DH) is used to record the
design status and a design queue (DQ) is used to
control the order of component design. Synthesis
rollback becomes necessary in the third phase of
system integration if there exist unsatisfiable
component specifications. The main concept of
POSM is presented here and the implementation
details are described in [5].

In the specification analysis phase, a user
inputs a desired system description using a
specification language provided by ICOS. The
specification language was presented in [5]. It is
then checked if the specification does not contain
any constraint contradictions or errors such as the
cost bound is too low for a given system
throughput or the minimum throughput is too high
for a given cost. Architectural specifications may
also contain errors such as specifying both a
message-passing architecture with unshared
memory and a distributed shared memory
organization.

In the parallel design phase, starting from the
root node, classes are appended to DQ as soon as it

is ready. DQ sequentializes the beginning of each
component synthesis but there is no blocking of
synthesis, that is, the next component in the queue
can begin synthesis without waiting for the
previous one to finish. By a component being
ready, it means that all association relationships
have been attended to through the updator
operator.

Allowing each component class to
self-synthesize as soon as all its specifications are
available, either inherited from its parent class in
the Class Hierarchy or updated using the updator
operator from associated classes, parallelizes
object-oriented synthesis. Though several
components may be undergoing synthesis at the
same time yet the design precedence and the
inter-dependence among them can be consistently
maintained through the association relationships
and the use of updator [5].
 A system is complete when all components
have been designed. This can be difficult to detect
in a parallel environment, a detection mechanism
was proposed in [4]. Basically, a component once
having completed self-synthesis sends a
synthesis-complete message back to its parent.
Thus, when the root receives a synthesis complete
message, POSM can be sure that the design is
complete.
 In the system integration phase, if a design
cannot be complete then a deadlock has occurred.
Synthesis rollback was the mechanism proposed in
[4] and implemented in [5]. On applying synthesis
rollback we can deduce if a design can be
completed or not. If a design is complete,
performance is estimated through simulation.
Simulation is mainly accomplished through the
SES/Workbench simulation tool along with our
own system interconnection simulators.
Implementation details of POSM can be found in
ICOS [5].

4. Design Example

As shown in Fig. 4, synthesis begins by
considering the design of the root aggregate class,
Computer System (CS). The next step is the
synthesis of the subsystems. Processing
Subsystem (PS) and Global Control Unit (GCU)
are not associated, but Memory Subsystem (MS)
and System Interconnection (SI) are relatively

(3)

POSM

Architecture specs
Performance specs
Synthesis specs

Specification Input

Specification Analysis

Class Hierarchy

Specification
Error?

Yes

Initialization:
AddDH(root), AppendDQ(root)

PopDQ

Component
Design ...

DQempty?

No

No

No

No

Yes

rollback
possible?

design
complete?

Yes

Yes

Synthesis
Rollback

Simulation and
Performance
Evaluation

Output Best
Architecture

Error: Synthesis
Impossible

Component
Design

Component
Design

Component
Design

(2)

(1)

(1) Specification Analysis Phase (2) Parallel Design Phase (3) System Integration Phase

Stop

Fig. 3 Overall Design Flow of POSM

associated. Hence, PS and GCU begin synthesis,
while MS and SI use the updator operator to
update their specifications (data transfer rate of SI
or memory access delay of MS). Suppose the data
transfer rate of SI is inherited from CS, thus MS
can have its memory access delay updated from SI.
Now, both the subsystems can begin synthesis.

Parallel synthesis proceeds and reaches a
stage where RAM in Processor Cluster has to wait
for the synthesis of processor to be complete
before it can begin synthesis since RAM requires
the processor cycle time specification for
determining its memory access delay. Sequential
synthesis would require a total of 28 synthesis
steps whereas parallel synthesis required only 6
steps. It is observed from experiments that the total
synthesis time differed by a factor of at least 4,
thus significantly increasing the overall speed of
synthesis.

5. Conclusion

POSM parallelizes PSM by introducing a new
object-oriented relationship (absolute and relative
association) and a new operator (updator). Both,
the synthesis efficiency of PSM is increased and a

new mechanism is provided for modeling the
inter-dependence of system parts. POSM was
briefly described and the main concept introduced.
POSM has been validated using a high-level Petri
net model called Multi-token Object-oriented
Bi-directional net (MOBnet) [7] [4], which due to
space limitations is not introduced here.

Future work will include designing more
systems using POSM and verifying its capabilities
and benefits. Another direction would be trying to
applying the same principles to hardware-software
codesign methodologies such as CMAPS
(Codesign Methodology for Application-Oriented
Parallel Systems) [3].

References

[1] R. Dutta, J. Roy, and R. Vemuri, “Distributed
design-space exploration for high-level synthesis
systems,” Proc. 19th ACM/IEEE Design Automation
Conference, 1992, pp. 644-650.

[2] A. P. Gupta, W. P. Birmingham, and D. P. Siewiorek,
“Automating the design of computer systems,” IEEE
Transactions on CAD, Vol. 12, No. 4, pp. 473-487,
April, 1993.

[3] P.-A. Hsiung, “CMAPS: A Cosynthesis Methodology
for Application-Oriented Parallel Systems,” To appear
in ACM Transactions on Design Automation of
Electronic Systems, Vol. 5, No. 2, April 2000.

[4] P.-A. Hsiung, “Parallel Design Automation of
Computer Systems,” Proc. International Conference
on Parallel and Distributed Processing Techniques and
Applications (PDPTA'98), Vol. 1, pp. 183-190, CSREA
Press, Las Vegas, Nevada, USA, July 1998.

[5] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and S.-J. Chen,
“ICOS: An Intelligent Concurrent Object-Oriented
Synthesis Methodology for Multiprocessor Systems,”
ACM Transactions on Design Automation of Electronic
Systems, Vol. 3, No. 2, pp. 109-135, April 1998.

[6] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and S.-C. Wang,
“PSM: An object-oriented synthesis approach to
multiprocessor system design,” IEEE Transactions on
VLSI Systems, Vol. 4, No. 1, pp. 83-97, March 1996.

[7] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen, “MOBnet: An
Extended Petri Net Model for the Distributed
Object-oriented System-level Synthesis of
Multiprocessor Systems,” IEICE Transactions on
Information and Systems, Vol. E80-D, No. 2, pp.
232-242, February 1997.

[8] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf,
“Object-oriented techniques in hardware design,”
Computer, Vol. 27, No. 6, pp. 64-70, June 1994.

Computer
System

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Cache Main
Memory

Primary
Secondary

Distributed
Unshared

MIN Hypercube Processor
Cluster

Processor I/O
Intf

Cluster
Control
Unit Intf

MM

GCUPSSSIMSS

PC SC

DU

CS

CCU LI SI Intf.PE

Scheduler I/O Intf. Buffer

Hypercube

Processor LM

Cache RAM

Fig. 4 Parallel Synthesis Example

