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Abstract 

 POSM, a new object-oriented synthesis 
methodology for multiprocessor systems, 
parallelizes the recently proposed Performance 
Synthesis Methodology (PSM). POSM increases 
the efficiency of PSM and provides a mechanism 
for specifying the inter-dependence of system 
parts. POSM introduces a new object-oriented 
relationship for enhanced modeling of 
components and a new operator for administering 
design precedence among system parts. The 
concepts of POSM were implemented in the 
recently proposed ICOS methodology. POSM has 
been validated using a high-level Petri net model 
called MOBnets. 
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1. Introduction 

Object-oriented technology had been successfully 
applied to the system-level synthesis of 
multiprocessor systems [6], [8], [2]. The efficiency 
of the methodologies can be considerably 
enhanced if the synthesis of components can be 
parallelized. Parallel computer-aided design had 
been used only in logic and high-level syntheses 
[1]. We now present a method for parallelizing 
object-oriented system-level synthesis. 
 Object-oriented synthesis use a Class 
Hierarchy (CH) consisting of classes representing 
system parts, as shown in Fig. 1. Each leaf class 
may be instantiated into a physical component. 
The synthesis process follows a top-down design 

scheme by traversing CH starting from the root 
class (representing a desired computer system) 
downwards until the leaf classes (representing 
physical components). Object-oriented 
relationships guide the synthesis of each 
component, which is accomplished by executing 
object-oriented operators. 
 Parallel design just like other parallel 
mechanisms have problems related to 
concurrency. While ensuring that parallel design 
gives an enhanced efficiency we must also ensure 
that newly created problems are tackled. In this 
paper we will not go into the details of problems 
created as a result of parallelism. Some problems 
related to parallel synthesis such as deadlock 
avoidance and emptiness detection were solved 
recently by the authors in [4]. 
 The article is organized as follows. Section 2 
describes related work. Section 3 describes POSM 
in detail. Section 4 gives a design example. 
Section 5 concludes with future work. 

2. Related Work 

Performance Synthesis Methodology (PSM) [6] 
introduced two object-oriented relationships, 
aggregation and generalization, and two 
operators, iterator and generator, to guide and 
accomplish the syntheses of component classes. 
Aggregation is the “whole/part” relationship and 
generalization is the relationship between a class 
and its one or more refined versions. The iterator 
iterates through each child node of an aggregate 
class, deciding whether to use it or not, based on 
the satisfaction of its specifications. The generator 
generates a number of acceptable specialized 
subclasses for a generalized class. 



 The order of component syntheses was 
sequential and fixed in PSM. Here, it is shown 
how it can be enhanced by parallelizing the tasks 
of component synthesis. Components may depend 
on each other as far as specifications are 
concerned. For example, the designs of a CPU 
class and of a RAM class may be quite different if 
the order, in which the two objects are synthesized, 
is changed. This inter-dependence of components 
may be physically perceived as hardware links 
between them. Parallel synthesis allows more than 
one component to undergo synthesis at the same 
time, hence this kind of dependence must be 
modeled into the synthesis process itself, 
otherwise the synthesized design parts when 
integrated, may not be a feasible system. 

3. Parallel Object-Oriented 
Synthesis Methodology 

As shown in Fig. 2, besides aggregation and 
generalization, one more object-oriented 
relationship is introduced to model dependence, it 
is called the association relationship. Whenever 
the design of adjacently connected components of 
a multiprocessor system are inter-related such that 
the synthesis of one affects the other, the two 
components are said to have an association 
relationship. Association is further classified into 
absolute and relative. Absolute association occurs 

between two classes when the design of a class 
depends on a post-design characteristic of the 
other class. Two classes having absolute 
association cannot be synthesized simultaneously, 
thus the order of synthesis is a total-order. Partial 
order of synthesis is observed between two classes 
having a relative association. Relative association 
is used to model the case in which the design of a 
class depends on a pre-design characteristic of 
another class. Two relatively associated classes 
can be simultaneously synthesized, once the 
dependent class has acquired the information it 
needs from its relatively associated class. This 
acquiring of information is accomplished by a 
third object-oriented operator known as updator. 
The dependent class uses updator to query its 
relatively associated class for the required 
specification. 
 For example, processor class and memory 
class are said to be absolutely associated because 
the memory access time (m) can be expressed in 
terms of the processor cycle time (p): m = k × p, 
where k is some constant and it is assumed that m 
is a specification and p a post-design 
characteristic. Further, Cluster Control Unit (CCU) 
and System Interconnect (SI) are relatively 
associated because the CCU data transfer rate 
(dCCU) and the SI data transfer rate (dSI) are related 
as follows: dSI = c × dCCU, where c is a constant and 
it is assumed that both dSI and dCCU are 
specifications. 

The overall design flow of POSM is described 
in Fig. 3, where parallel design is obvious from the 
concurrent syntheses of components. There are 
three phases in POSM, namely, specification 
analysis, parallel design, and system integration.  
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A design hierarchy (DH) is used to record the 
design status and a design queue (DQ) is used to 
control the order of component design. Synthesis 
rollback becomes necessary in the third phase of 
system integration if there exist unsatisfiable 
component specifications. The main concept of 
POSM is presented here and the implementation 
details are described in [5]. 

In the specification analysis phase, a user 
inputs a desired system description using a 
specification language provided by ICOS. The 
specification language was presented in [5]. It is 
then checked if the specification does not contain 
any constraint contradictions or errors such as the 
cost bound is too low for a given system 
throughput or the minimum throughput is too high 
for a given cost. Architectural specifications may 
also contain errors such as specifying both a 
message-passing architecture with unshared 
memory and a distributed shared memory 
organization.  

In the parallel design phase, starting from the 
root node, classes are appended to DQ as soon as it 

is ready. DQ sequentializes the beginning of each 
component synthesis but there is no blocking of 
synthesis, that is, the next component in the queue 
can begin synthesis without waiting for the 
previous one to finish. By a component being 
ready, it means that all association relationships 
have been attended to through the updator 
operator. 

Allowing each component class to 
self-synthesize as soon as all its specifications are 
available, either inherited from its parent class in 
the Class Hierarchy or updated using the updator 
operator from associated classes, parallelizes 
object-oriented synthesis. Though several 
components may be undergoing synthesis at the 
same time yet the design precedence and the 
inter-dependence among them can be consistently 
maintained through the association relationships 
and the use of updator [5]. 
 A system is complete when all components 
have been designed. This can be difficult to detect 
in a parallel environment, a detection mechanism 
was proposed in [4]. Basically, a component once 
having completed self-synthesis sends a 
synthesis-complete message back to its parent. 
Thus, when the root receives a synthesis complete 
message, POSM can be sure that the design is 
complete. 
 In the system integration phase, if a design 
cannot be complete then a deadlock has occurred. 
Synthesis rollback was the mechanism proposed in 
[4] and implemented in [5]. On applying synthesis 
rollback we can deduce if a design can be 
completed or not. If a design is complete, 
performance is estimated through simulation. 
Simulation is mainly accomplished through the 
SES/Workbench simulation tool along with our 
own system interconnection simulators. 
Implementation details of POSM can be found in 
ICOS [5]. 

4. Design Example 

As shown in Fig. 4, synthesis begins by 
considering the design of the root aggregate class, 
Computer System (CS). The next step is the 
synthesis of the subsystems. Processing 
Subsystem (PS) and Global Control Unit (GCU) 
are not associated, but Memory Subsystem (MS) 
and System Interconnection (SI) are relatively 
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Fig. 3 Overall Design Flow of POSM 



associated. Hence, PS and GCU begin synthesis, 
while MS and SI use the updator operator to 
update their specifications (data transfer rate of SI 
or memory access delay of MS). Suppose the data 
transfer rate of SI is inherited from CS, thus MS 
can have its memory access delay updated from SI. 
Now, both the subsystems can begin synthesis. 

Parallel synthesis proceeds and reaches a 
stage where RAM in Processor Cluster has to wait 
for the synthesis of processor to be complete 
before it can begin synthesis since RAM requires 
the processor cycle time specification for 
determining its memory access delay. Sequential 
synthesis would require a total of 28 synthesis 
steps whereas parallel synthesis required only 6 
steps. It is observed from experiments that the total 
synthesis time differed by a factor of at least 4, 
thus significantly increasing the overall speed of 
synthesis. 
  

5. Conclusion 

POSM parallelizes PSM by introducing a new 
object-oriented relationship (absolute and relative 
association) and a new operator (updator). Both, 
the synthesis efficiency of PSM is increased and a 

new mechanism is provided for modeling the 
inter-dependence of system parts. POSM was 
briefly described and the main concept introduced. 
POSM has been validated using a high-level Petri 
net model called Multi-token Object-oriented 
Bi-directional net (MOBnet) [7] [4], which due to 
space limitations is not introduced here. 

Future work will include designing more 
systems using POSM and verifying its capabilities 
and benefits. Another direction would be trying to 
applying the same principles to hardware-software 
codesign methodologies such as CMAPS 
(Codesign Methodology for Application-Oriented 
Parallel Systems) [3]. 
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Fig. 4 Parallel Synthesis Example 


