Parallel Object-Oriented Synthesis Environment Based On
Message-Passing

Pao-Ann Hsiung
Institute of Information Science
Academia Sinica, Taipei, Taiwan.

Abstract

A system-level computer design environment is proposed by integrating parallel design tech-
niques and object-oriented technology. The system parts are modeled using object-oriented tech-
nology, such that not only are the static features of the components encapsulated, but also are the
dynamic design states. A system is designed by empowering each object class with design auton-
omy, thus leading to a distributedly-controlled environment where objects actively seek to synthesize
themselves in parallel using messages. System synthesis is accomplished and related problems are
solved by eight different kinds of messages passed among the objects. Problems inherent to parallel
design, such as emptiness and deadlock are also solved.

1: Introduction

Traditionally, systems were synthesized in a sequential manner, that is, only one design was
synthesized at a time. This often resulted in a large overall design time and delayed detection of
infeasible specifications. To remedy such a situation, system parts must be synthesized simulta-
neously and design alternatives produced in parallel. The application of parallel techniques often
increases the efficiency of an executing process. But, at the same time some overhead of parallel
data manipulations are incurred. Furthermore, parallel techniques also introduce inconsistencies
among participating actors. These two issues are inherent to parallelism. Both of these issues can
be easily handled when we use object-oriented techniques for static modeling as well as dynamic
manipulation. In this paper, a novel way of increasing the efficiency of computer system design
automation using parallel techniques, with a negligible overhead and a consistent design result, is
proposed. It basically is an integration of object-oriented and parallel design techniques.

Parallel design technique is mainly the concurrent design of more than one system parts. An
active approach is proposed. Objects actively seek to design themselves once they have all the
required specifications. Architectural dependencies among parts, such as the data transfer speed,
the channel bandwidth, etc are all modeled as relationships in a Class Hierarchy [5]. Consistency
among the parts is maintained by transmitting the specifications using messages.

There have been several methodologies and tools developed to either fully or partially automate
the design process at various levels of hardware system design such as the MICON system [4],
the Megallan system [3] including the System Architect’s Workbench [13], WOLFIE, and LASSIE
[14], Performance Synthesis Methodology (PSM) [6] and Intelligent Concurrent Object-oriented
Synthesis (ICOS) methodology [5], to mention a few. The problem of synthesis efficiency had
been tackled by introducing heuristics into the design methodology. Rather than searching the

0-8186-9096-8/98 $10.00 © 1998 IEEE 251

252

design-space exhaustively, several techniques have been proposed in the. past to partially explore
the region that most likely contains the optimal design solution. The techniques include fuzzy logic
[9], learning [12], object-oriented design [10], object-oriented language [2], specification reuse [1],
and formal approaches [7].

With the increasing wide-spread use of object-oriented technology in software modeling and
development, there has been a technology transfer from software to hardware [8]. Application of
OO to hardware synthesis has matured from a simple modeling as in PSM [6] to a complex design
methodology such as ICOS [5]. OO has also been applied in the formal analysis of systems [11]
and synthesis [8]. Though OO has been applied, but the actual method of application is not very
clear from the previous work. With the increased use of parallel computers, it is naturally desirable
to parallelize the synthesis process in order to design more complex and larger systems. In contrast
to the previous work, the current work does not lose optimality in the solutions for efficiency in the
design process. Object-oriented modeling and design techniques coupled with the parallel design
process illustrate an efficient design environment as evidenced by practical implementation [5] and
formal analysis [7]. Solutions to the emptiness and deadlock problems are also proposed.

Due to page-limit, we mainly delve on the solutions to the two problems inherent to parallelism.
The paper is organized as follows. Section 2 shows how some parallel design related problems such
as emptiness and deadlock are solved. Section 3 gives an application example. Section 4 concludes
the paper with some future work.

2: Object-oriented parallel design related problems

The objects in the Class Hierarchy are classified into three types of nodes: Aggregate node (A-
node), Generalized node (G-node), and Physical node (P-node) [6]. Totally, eight types of messages
are used for different types of communication among the objects. Classified into three groups, there
are synthesis-related, update-related, and rollback-related messages. There are three synthesis-
related messages: synthesize, synthesis-complete,and synthesis-incomplete;
two update-related messages: update and update- complete;and three rollback-related mes-
sages: rollback, rollback-complete,and rollback-incomplete. All messages are
implemented as method invocations.

2.1: Design completion check

A system designer stipulates his or her requirements by giving system-level specifications includ-
ing performance-related constraints such as the minimum throughput, the maximum cost, the uti-
lization factor, and architecture-related constraints such as the system interconnection, the amount
of main memory, the memory organization, et al. In terms of the current technology, the given speci-
fications may either by feasible or infeasible. Sometimes, infeasibility due to obvious contradictions
and errors is detected easily by a pre-design specification analysis. But at times, infeasibility may
go undetected until the design process has well advanced into some intermediate stage. Hence, it
is desirable to detect infeasible specifications at the earliest-possible stage of the design process.
We call this the emptiness problem. A practical solution called the design-completion check for the
emptiness problem is presented.

Since the synthesis process is a distributed-control parallel-design process, a mechanism is
needed to ensure that a particular design is either feasible and complete or infeasible and in-
complete. This design completion check process is accomplished using two types of messages
or method invocation calls, namely, synthesis-completeand synthesis-incomplete.

253

As the synthesize message is gradually propagated in a top-down direction and broadcast in
a breadth-first-search hierarchy traversal, a synthesize message eventually reaches a P-node at
the hierarchy leaf. The three types of nodes behave in the following ways.

(a) Whenever a P-node receives a synthesize message, it starts to instantiate itself. If this
instantiation is feasible and complete, the P-node sends a synthesis - complete message up-
wards to its parent node in the Class Hierarchy; otherwise, the P-node performs a synthesis rollback
action as described in the next subsection.

(b) Whenever a G-node receives at least one synthesis-complete message from one of its
child objects and synthesis-incomplete messages from the other child objects, the G-node
sends a synthesis-complete message to its parent object. If no synthesis-complete
message is received from its child nodes, then the G-node performs a synthesis rollback action.

(c) Whenever an A-node receives a synthesis-complete message from each of its child ob-
jects that has been sent a synthesize message, the A-node sends a synthesis-complete
message to its parent object. If the A-node receives a synthesis-incomplete message from
any one or more of its child objects, it first performs a synthesis rollback action.

In all the above cases, if the rollback fails, a synthesis-incomplete message is sent up-
wards to its parent class by the node object. The above design completion check process will finally
result in either a synthesis-completeora synthesis-incomplete message being re-
ceived at the root node that represents the whole computer system. In the former case, the design is
feasible under the current constraints and specifications, while in the latter case, it is infeasible.

2.2: Synthesis rollback

Since it is a top-down parallel design environment, specifications are propagated from the top
of the class hierarchy towards the leaf physical classes. In the course of this propagation, it may
happen that some component cannot be synthesized under the derived specifications as propagated
by its parent class. This is called the deadlock problem since the parent requires its child to satisfy
certain specifications while the child cannot do so. A rollback mechanism is proposed to solve this
problem. Two types of messages: rollbackand rollback-complete, are used.

Whenever an object, either an A-node or a G-node, receives a rol1back message along with
the object characteristics that have triggered the rollback and the range of values acceptable for each
of the object characteristics, the object then behaves as follows.

Case a) If by resynthesizing itself, the object can relax the concerned specifications and characteris-
tics to satisfy all the constraints of the parent object, the associated object(s), and the child object(s),
then it will resynthesize itself and relax the specifications and characteristics. After synthesis, the
object will send a confirmation in the form of a rol1lback - complete message to the sender of
the rollback message.

Case b) If the object cannot relax the specifications and characteristics, then it will propagate the
rollback message along with the related information to its parent object and/or the associated ob-
jects. The roliback process could be quite expensive as it might propagate throughout the whole
design and result in resynthesizing the whole system from the start. In order to avoid this, the values
of the object characteristics are specified as ranges or enumerations whenever possible.

On receiving a rollback - complete message, if the object itself had been the receiver of a
rollback message, it will pass on the rollback - complete message to the rollback message
sender. In this way, all rollbacks are confirmed and finally the original message sender will receive
a confirmation. If a rollback fails, a synthesis - incomplete message is sent.

254
3: Application

The proposed design technique has been implemented as a working design framework in which
the recently proposed Intelligent Concurrent Object-oriented Synthesis (ICOS) methodology [5]
for system-level synthesis of parallel systems was developed. Besides practical implementation, it
has also been theoretically modeled, validated, and analyzed by the authors using high-level Petri
nets called Multi-token Object-oriented Bi-directional net (MOBnet) [7]. ICOS and MOBnet were
respectively concerned with the synthesis methodology and the model analysis. The general design
environment incorporating parallel and OO techniques was not presented before, An example is
given here to understand the processes of the design completion check and synthesis rollback.

(
bbdodd
G -

Figure 1. Application Example

The target multiprocessor system is an SIMD machine withaMultistage Interconnection
Network (MIN) as the system interconnection. The system specifications include a data transfer
rate of at least 8 MB/s for each block of MIN, a total throughput of at least 64 MB/s, and a maxi-
mum total cost of $7,000. These specifications are input to ICOS. We will mainly concentrate on
how situations with unsynthesizable specifications are handled. As shown in Fig. 1, (a) and (b)
illustrate the synthesis process, (c) and (d) illustrate design completion check, (d) and (e) illustrate
the specification update process, (f)—(j) illustrate synthesis rollback. Since parts (a)—(e) of Fig. 1

255

are straight-forward and self-explanatory, we only explain in detail the parts (f)—(j).

The specifications derived from Processing Cluster (PC)for System Interconnect
Interface(SI-Intf)include a maximum cost of $200, which could only result in an interface
that has a maximum data transfer rate (dtr) of only 8.0 MB/s. This is in contradiction to the dir
specification updated from System Interconnect (SI)in Fig. 1 (¢) (which is 8.5 MB/s).
Thus, SI-Intf is unsynthesizable in such a situation. It makes requests for synthesis rollback to
both PC and ST (Fig. 1 (f)). PC cannot increase the cost of SI-Intf due to other cost constraints
(Fig. 1 (g)). Meanwhile, ST propagates the rollback message to MIN (Fig. 1 (g)). MIN decreases the
dtr specification to 8 MB/s as required (Fig. 1 (h)). Finally, rollback completes informing SI-Intf
of the change in the dir specification value (Fig. 1 (i)). Thus, ST-Intf can now synthesize itself
under the derived cost of $200 and updated drr of 8 MB/s (Fig. 1 (j)).

4: Conclusion and future work

An elegant integration of object-oriented and parallel design techniques has resulted in an ef-
ficient design environment and at the same time has solved the emptiness and deadlock problems
of parallelism. Being a general design environment, one of its advantages is that it can be eas-
ily incorporated into any system design automation methodology such as PSM [6] and ICOS [5].
Experimental results of using the proposed design technique in ICOS has shown how the overall
design time can be sped up by a factor of two to three as compared to PSM. Besides the practi-
cal efficiency, it was also shown how two parallel design related problems, namely, emptiness and
deadlock are solved. It was also formally validated and analyzed in a related work [7].

References

[1] V. De Antonellis and B. Pernice. Reusing specifications through refinement levels. Data and Knowledge Engineer-
ing, 15(2):109-133, April 1995. :
M. J. Chung and S. Kim. An object-oriented VHDL design environment. In Proc. 27th ACM/IEEE Design Au-
tomation Conference, pages 431-436, 1990.
[3] A.J. Gadient and D. E. Thomas. A dynamic approach to controlling high-level synthesis CAD tools. /EEE Trans.
on VLSI Systems, 1(3):328-341, September 1993.
[4] A.P. Gupta, W. P. Birmingham, and D. P. Siewiorek. Automating the design of computer systems. /EEE Trans. on
CAD, 12(4):473-487, April 1993.
[5] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and S.-J. Chen. ICOS: An intelligent concurrent object-oriented synthesis
methodology for multiprocessor systems. 7o appear in ACM Trans. on Design Automation of Electronic Systems,
3(2), April 1998.
[6] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and S.-C. Wang. PSM: An object-oriented synthesis approach to multiprocessor
system design. /EEE Trans. on VLSI Systems, 4(1):83-97, Mar. 1996,
[7] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen. MOBnet: An extended Petri net model for the concurrent object-oriented
system-level synthesis of multiprocessor systems. /E/CE Trans. on Info and Syst, E80-D(2):232-242, Feb. 1997.
[8] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen. Object-oriented technology transfer to multiprocessor system-level syn-
thesis. In Proc. 24th Int’l Conference on Technology of Object-Oriented Languages and Systems, Sept. 1997.
[91 E.Q.Kang, R.-B. Lin, and E. Shragowitz. Fuzzy logic approach to VLSI placement. /EEE Trans. on VLSI Systems,
2(4):489-501, December 1994.
[10] S. Kumar, J. H. Aylor, B. W. Johnson, and Wm. A. Wulf. Object-oriented techniques in hardware design. /EEE
Computer, 27(6):64-70, June 1994,
[11] Y. K. Lee and S. J. Park. OPNets: An object-oriented high-level Petri net model for real-time system modeling.
Journal Systems Sofiware, 20:69-86, 1993,
[12] T. M. Mitchell, S. Mahadevan, and L. I. Steinberg. LEAP: A learning apprentice for VLSI design. In Proc. 9th
LICAI, pages 573580, 1985.
[13] D.E. Thomas, EM. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor, and R.L. Blackburn. The system architect’s
workbench. In Proc. 25th ACM/IEEE Design Automation Conference, pages 337-343, June 1988.
[14] M.T. Trick and S.W. Director. Lassie: Structure to layout for behavioral synthesis tools. In Proc. 26th ACM/IEEE
Design Automation Conference, pages 104-109, June 1989.

2

