
POSE: A Parallel Object-Oriented
Synthesis Environment

PAO-ANN HSIUNG
National Chung Cheng University

Design automation tools and methodologies always encounter a problem of how systems may
be designed efficiently, including issues such as static modeling and dynamic manipulation of
system parts. With the rapid progress of design technology, the continuously increasing
number of different choices per system part and the growing complexity of today’s systems,
the efficiency of the design environment is not only a major concern now, but will also be a
demanding problem in the near future. In contrast to heuristic methods, a novel environment
called POSE is proposed that increases efficiency during design without losing optimality in
the final design results. System parts are modeled using the popular object-oriented modeling
technique and are dynamically manipulated using the parallel design technique. A complete
integration of object-oriented and parallel techniques is one of the major features of POSE.
Common problems related to parallel design such as emptiness and deadlock are also elegantly
solved within POSE. Experimental results and formal analysis based on POSE all show its
practical and theoretical usefulness. POSE can be used at any level of synthesis as long as
off-the-shelf building-blocks manipulation is required. POSE can be applied especially to
system-level synthesis, whose targets can be parallel computer architectures, systems-on-chip,
or embedded systems. We will show how POSE has been applied to ICOS, a recently proposed
synthesis methodology. Furthermore, POSE can be easily integrated with other heuristic
design methodologies to allow increased design efficiency.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engi-
neering—Computer-aided design (CAD); B.m [Hardware]: Miscellaneous—Design manage-
ment

General Terms: Design

Additional Key Words and Phrases: Design-completion check, hardware synthesis, object-
oriented technology, parallel design, synthesis rollback

1. INTRODUCTION
Current technology advances have produced an enormous amount of hard-
ware system components including different types of ASICs, I/O devices,

Author’s address: Department of Computer Science and Information Engineering, National
Chung Cheng University, 160, San-Hsing, Min-Hsiung, Chiayi-621, Taiwan, ROC; email:
hpa@computer.org.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1084-4309/01/0100–0067 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001, Pages 67–92.

communication and control interfaces, memory modules, processing ele-
ments, etc. This has led to an increased design effort when a system is to be
synthesized (i.e., designed automatically) from such a large choice of
system parts. It is a well-known fact that the size of the system design-
space is generally exponential in the number of system parts or components
used for design [Hsiung et al. 1998]. Many heuristic methods have been
developed to explore the design space, partially in order to arrive at a
heuristically optimal solution in an acceptable period of design time.
Machine learning and fuzzy logic are some of the techniques proposed to
reduce design time, but they all aim at deriving a heuristic solution. In the
current work, we aim at attacking the problem by directly reducing the
overall design time at no expense of losing optimality in the design
alternatives produced. Our approach is two-fold: one is parallelizing the
design procedures and the other is modeling both the static system parts
and the dynamic manipulations of parts during synthesis using object-
oriented technologies.

System-level synthesis is the process of automatic transformation from a
set of system specifications including architectural, performance, and de-
sign-related requirements into a high-level architecture consisting of a
description of the various components such as processors, memory, inter-
connections, and the number of each component used. Different target
systems require different system-level design primitives and constraints.
For example, on the one hand, SOC (Systems-On-Chip) designs are often
designed using several IPs (Intellectual Property) and their specifications
include power consumption, chip-area usage, etc. On the other hand,
parallel architecture designs are often designed using PMU (Processor-
Memory Units) and system interconnections, and their specifications in-
clude minimum throughput, maximum cost, etc. Some examples of system-
level synthesis tools include the MICON system [Birmingham et al. 1989;
Gupta et al. 1993] and the Megallan system [Gadient and Thomas 1993].
Recently proposed methodologies for system-level synthesis include PSM
[Hsiung et al. 1996] and ICOS [Hsiung et al. 1998].

Traditionally, systems were synthesized in a sequential manner, that is,
only one design was synthesized at a time. This often resulted in a very
large overall design time and delayed detection of infeasible specifications.
However, to remedy such a situation, if system parts could be synthesized
simultaneously and design alternatives produced in parallel, then the
overall design time could be reduced significantly, thus allowing early
detection of nonsynthesizable specifications. When system parts are syn-
thesized in parallel, the dynamic concurrent manipulation of design parts
and partially synthesized design alternatives may cause some temporal
and spatial overhead. This is because a record of the current status of all
design parts under synthesis has to be maintained, design consistencies
among the design parts have to be ensured, and one or more design parts
may have to be resynthesized (also called synthesis rollback as described
later) when some unsynthesizable specifications are encountered. In such a
parallel design environment, the management overhead could be reduced

68 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

significantly when the synthesis control is distributed, rather than central-
ized. Under distributed synthesis control, parts under design will have to
be able to send and receive messages. Further overhead reduction could be
achieved when the entire parallel design environment is object-oriented,
thus allowing part encapsulation as required for distributed control. Ob-
ject-oriented (OO) technology is used not only for the static modeling of
system parts, but also in the dynamic parts manipulations during synthe-
sis, thus allowing a compact integration of OO with parallel design. Some
common problems encountered in a parallel design environment such as
emptiness and deadlock can also be elegantly solved using OO techniques.

Parallel Object-Oriented Synthesis Environment (POSE) is a general
design environment that integrates the above-mentioned parallel and ob-
ject-oriented design techniques for high-level design space exploration.
Though POSE can be applied to any system-level synthesis methodology
and to any target machines such as SOC, parallel architecture, or embed-
ded systems, we will mainly illustrate the concepts in POSE through a
recently proposed parallel architecture synthesis methodology called Intel-
ligent Concurrent Object-Oriented Synthesis (ICOS) methodology [Hsiung
et al. 1998].

The paper is organized as follows. Section 2 describes some previous and
related work on synthesis, heuristic design, and OO techniques. Section 3
describes the system model and the synthesis model in POSE. Section 4
shows how some parallel design related problems such as emptiness and
deadlock are solved in POSE. Section 5 describes the application of POSE.
Section 6 concludes with some future work.

2. PREVIOUS RELATED WORK

As far as hardware system synthesis is concerned, there have been several
methodologies and tools developed to either fully or partially automate the
design process at various levels of design such as the MICON system
[Gupta et al. 1993; Birmingham et al. 1989], the Megallan system [Gadient
and Thomas 1993] including the System Architect’s Workbench [Thomas et
al. 1988], WOLFIE, and LASSIE [Trick and Director 1989], Performance
Synthesis Methodology (PSM) [Hsiung et al. 1996] and Intelligent Concur-
rent Object-oriented Synthesis (ICOS) methodology [Hsiung et al. 1998], to
mention a few.

The problem of synthesis efficiency has been tackled by introducing
heuristics into the design methodology. Rather than searching the entire
design-space exhaustively, several techniques have been proposed in the
past to partially explore the region that most likely contains the optimal
design solution. The techniques include fuzzy logic [Rezaz and Gau 1990;
Lin and Shragowitz 1992; Kang et al. 1994], learning [Mitchell et al. 1985],
object-oriented design [Kumar et al. 1994], object-oriented language
[Chung and Kim 1990], specification reuse [Antonellis and Pernice 1995],
distributed exploration [Dutta et al. 1992], and formal approaches [Hsiung
et al. 1997a; Lee and Park 1993]. Although the proposed techniques help
increase synthesis efficiency, they do not guarantee optimal solutions.

POSE • 69

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

With the increasing wide-spread use of object-oriented technology in
software modeling and development, there has been a technology transfer
from software to hardware [Brooks et al. 1984; Gross 1985; Hsiung et al.
1997b]. Application of OO to hardware synthesis has matured from a
simple modeling [Kumar et al. 1994] as in PSM [Hsiung et al. 1996] to a
complex design methodology such as ICOS [Hsiung et al. 1998]. OO has
also been applied in the formal analysis of systems [Lee and Park 1993]
and synthesis [Hsiung et al. 1997b]. Though OO has been applied, but the
actual method of application is not very clear from the previous work.
Formerly, distributed design techniques have been used to reduce the
design space exploration time [Dutta et al. 1992]. With the increased use of
parallel computers, it is naturally desirable to parallelize the synthesis
process in order to design more complex and larger systems. In contrast to
the previous work, the current work does not lose optimality in the
solutions for efficiency in the design process. Object-oriented modeling and
design techniques coupled with the parallel design process illustrate an
efficient design environment as evidenced by practical implementation
[Hsiung et al. 1998] and formal analysis [Hsiung et al. 1997a]. Solutions to
the emptiness and deadlock problems found in a parallel design environ-
ment are also proposed.

3. PARALLEL OBJECT-ORIENTED SYNTHESIS ENVIRONMENT

The proposed design environment called Parallel Object-Oriented Synthesis
Environment (POSE) mainly consists of two models: a static system model
and a dynamic synthesis model. While the system model is based fully on
object-oriented techniques, the synthesis model demonstrates an elegant
combination of two kinds of design techniques, namely, parallel and
object-oriented. POSE integrates the two models in such a way that, though
they complement each other in functionalities and domain knowledge, they
are still modularized, that is, one model can be modified or enhanced
without any change to the other. POSE can be used to design any system at
any level of synthesis as long as off-the-shelf building blocks or library of
system parts [Tobias 1981] are utilized for synthesizing a system. As
detailed in the next section, wide applicability and generality of purpose
are some of the features of POSE.

3.1 System Model

Since POSE is a general design environment, the concepts within POSE
can be applied to different target systems. For example, some typical target
systems are Parallel Computer Architectures (PCA), System-On-Chip
(SOC), and Embedded Reactive Systems (ERS). Different target systems
require different design primitives and constraints.

Design primitives are basic components or building-blocks of a target
system. PCA synthesis requires architectural components such as process-
ing elements, RAM modules, cache modules, control units, processor-
memory interconnections such as bus, mesh, etc., and communication

70 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

protocols or interfaces. SOC synthesis requires compatible IPs, intercon-
nection modules, power supplying units, and communication interfaces.
ERS synthesis requires hard cores, soft cores, firm cores, interfaces, I/O
mechanisms, ASICs, and processors. Though, as described above, different
target systems require different primitives, yet the concepts in statically
modeling these primitives, dynamically manipulating them for synthesis,
and maintaining a library of the primitives could be generalized. POSE
provides such a generalization in the form an object-oriented class hierar-
chy as described later in this section.

Design constraints are the specifications that a synthesized system must
satisfy. Corresponding to different target systems, we also have different
design constraints. PCA designs must satisfy constraints such as maximum
cost, minimum throughput, system utilization bounds, reliability, scalabil-
ity, and fault-tolerance. SOC designs must satisfy constraints such as
chip-area usage, maximum power consumption, and maximum overall cost.
ERS designs must satisfy constraints such as real-time conditions, environ-
ment stimuli response, hardware-software trade-off, and maximum cost.
Though, as described, different target systems must satisfy different con-
straints, yet these constraints can always be modeled into the design
libraries and methodologies. POSE models design constraints into the
objects in a class hierarchy as their data characteristics.

Physically, a hardware system can be perceived as a collection of parts
(objects) interconnected by links (relationships). Logically, hardware sys-
tem parts can be classified into a hierarchy based on structure or function.
Hence, both physically and logically, a hardware system readily fits into
the object-oriented model. The rest of this section will go into the details of
how a hardware system can be actually modeled using OO techniques.

3.1.1 Object-Oriented Structure. As far as notations and terminologies
are concerned, we basically follow Rumbaugh’s Object Modeling Technique
(OMT) [Rumbaugh et al. 1991] which makes a clear distinction among the
object model, the dynamic model, and the functional model. By modeling
each component, either abstract or physical, as a class with relationships to
other classes, a Class Hierarchy (CH) can be constructed, which is similar
to Parnas’ hierarchical structure of design families [Parnas 1985] and
Rumbaugh’s Object Model in OMT. CH can be constructed either by a
top-down system decomposition or a bottom-up system integration. In the
top-down method, a desired system is gradually decomposed into sub-
systems, then into smaller parts, and finally into physically available
components or primitives. In the bottom-up method, physical components
are first classified into intercompatible and noncompatible ones, then a
clustering process (usually the same as object-oriented grouping) results in
higher level components such as a processor subsystem consisting of one or
more processors, local memory, and an interconnection.

We distinguish the classes representing components into three kinds of
nodes, namely Aggregate node (A-node), Generalized node (G-node), and
Physical node (P-node). This distinction is made based on the relationship a

POSE • 71

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

class has with its child classes, if any. An aggregate node is an assembly
class representing the whole in a “whole-part” relationship. An aggregate
node is said to be composed of its child component nodes. A generalized
node is a superclass which is the parent in an “is-a” relationship and
represents the abstraction of more specialized subclasses. A physical node
is a leaf node in the Class Hierarchy and represents some available
physical component that can be used directly for design. This classification
of classes into three kinds of nodes allows easy selection of appropriate
design actions at each node which will be discussed in Section 3.2.

A generic class has attributes including data members and function
members. We classify the data members of a class into specifications,
predesign characteristics, and postdesign characteristics, where a specifica-
tion is a requirement, it may be a relation between several characteristics,
a predesign characteristic is one whose value is known before design and a
postdesign characteristic is one whose value is known only after design.

3.1.2 Object-Oriented Relationships. Three kinds of relationships serve
as guidelines for design automation, namely aggregation, generalization,
and dependence. Aggregation denotes the “whole/part” relationship in
which a component class is a “part-of” a class representing the whole
assembly. Generalization denotes the relationship between a class and its
one or more refined versions. The class being refined is called the super-
class and its refined versions are called subclasses. Often the design
characteristics of two adjacently-connected components in an MP system
are interrelated such that the synthesis of one affects the other. This
relationship is modeled in ICOS as the dependence relationship. Depen-
dence is further classified into absolute and relative. Absolute dependence
is a dependence between the specification of one component and the
postdesign characteristic of another component such that the former com-
ponent must wait for the latter to be completely synthesized before it can
begin synthesis. Relative dependence is a dependence between the specifi-
cations of two components. A component may have one or more of its
specifications expressed in terms of the specifications of another compo-
nent. Such specifications are called dependent specifications. For the syn-
thesis of a component to be possible, all its dependent specifications must
be updated by querying the component it is relatively dependent on. For
example, if a component’s cost is specified as a partial cost of another
component, then the former must query the latter for the latter’s cost in
order to update its own cost. An absolute dependence between the compo-
nents restricts the order in which the components are to be synthesized,
whereas a relative dependence places no such restriction. For example, a
Memory class is said to be absolutely dependent on a CPUclass because the
memory access time (m) can be expressed in terms of the processor cycle
time (p) as follows:

m 5 k 3 p (1)

72 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

where k is a constant and it is assumed that m is a specification and p a
postdesign characteristic. Further, a Cluster Control Unit (CCU) and a
System Interconnect (SI) are relatively dependent because the CCUdata
transfer rate ~dCCU! and the SI data transfer rate ~dSI! are related as
follows:

dSI 5 c 3 dCCU (2)

where c is a constant and both dSI and dCCU are required specifications.
Each type of relationship allows us to perform different synthesis actions,

thus the synthesis process is guided by the relationships. When an aggre-
gation relationship is encountered, the class which is an aggregation of
other classes can be synthesized by composing one or more instances of its
child classes. When a generalization relationship is reached, the superclass
representing a generalization of subclasses can be implemented by select-
ing one or more of its child classes. This is the design-space exploration step
in system-level synthesis. On encountering a dependence relationship and
before any synthesis actions are taken, a class must first update all of its
dependent specifications by querying for specification values (such as cost,
throughput, etc.) from classes that have relative dependence relationships
with it. Thus, the dependence relationship has the highest priority among
all relationships that a class may have with other classes. When it is an
absolute dependence, that is, a class A is absolutely dependent on a class
B, then class A must wait for the design completion of class B before class
A can begin synthesis. When it is a relative dependence, that is, class A is
relatively dependent on a class B, then class A need not wait for class B,
but it must have all of its specifications assigned values by querying class
B before class A can begin synthesis. It is this kind of relationship that
allows an object-oriented synthesis system to design more than one compo-
nent at the same time, i.e., parallel synthesis.

3.1.3 Object-Oriented Operators. As mentioned in the previous sections,
different types of classes and relationships allow different synthesis ac-
tions, we use object-oriented operators to represent these actions. The
target of these operations are the classes in the Class Hierarchy. There are
three operators, namely iterator, generator, and updator corresponding to
the three relationships aggregation, generalization, and dependence, re-
spectively. Figure 1 shows the correspondence between object-oriented
structure, relationships, operators, and synthesis actions.

“Iterator” is the actual synthesis operator, it is used at an A-node for
synthesizing this aggregate class of components. Based on the specifica-
tions satisfaction of an A-node, the iterator iterates through its child classes
selecting some of them to be interconnected into the aggregate. For exam-
ple, a processing subsystem is an aggregate of some processors, a local
interconnection network, some memory modules, and perhaps a controller.
The specifications of the processing subsystem may include a maximum

POSE • 73

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

cost of $10,000, a minimum throughput of 2 MFlops, which may be satisfied
if we use 4 processors, a shared bus, and 100 MB memory.

“Generator” is the design-space exploration operator, used at a G-node
for implementing this generalized class of components. Based on the
specifications satisfaction of a G-node, the generator generates a sequence
of classes ordered in the preference of their feasibility in implementing the
G-node. This order of feasibility preference may be a simple cost-based
heuristic as in PSM [Hsiung et al. 1996] or a fuzzy comparison of specifica-
tions as in ICOS [Hsiung et al. 1998]. An example is the implementation of
a system interconnection which is represented as a G-node having Shared
Bus, Multistage Interconnection Network (MIN), and Hypercube as
its specialized classes. If the specification sets a maximum cost of $2,000
and if Shared Bus and MIN can satisfy the cost specification, then one
order of preference might be based on the throughput of the interconnec-
tion systems.

“Updator” is the query operator since its main job is to query others for
specification values. This operator is quite essential for hardware consis-
tency and feasible integration because through this operator a sort of
communication or information transfer is setup between the hardware
components under synthesis, which is necessary if the components are to be
integrated into a feasible working design. For example, the memory access
time should be a multiple of the processor cycle time, hence the Memory
class and the CPUclass should communicate the values of their respective
specifications so that they can be compatible when integrated or synthe-
sized into the same system. The updator operator is used by a class
whenever it has a dependence relationship with another class.

Object-Oriented
Structure

dependent classes

A-node

G-node

assembly
class

component
classes

superclass

subclasses

Object-Oriented
Relationship

aggregation synthesis

generalization
design space
exploration

dependence

Synthesis
 Action

Object-Oriented
Operator

iterator

generator

updator spec update

Fig. 1. Object-oriented structure, relationships, operators, and synthesis actions.

74 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

3.1.4 Class Hierarchy. In the above descriptions: object-oriented struc-
ture dealt with how a component can be modeled as a class and how classes
are divided into three types; object-oriented relationships described how
classes may be related and how relationships can be used to guide synthe-
sis; and object-oriented operators described what kinds of actions can be
taken at different nodes. By modeling all the components of a system as
classes, we are thus able to construct a hierarchy of classes called Class
Hierarchy, where classes are interrelated by the object-oriented relation-
ships. This hierarchy is usually constructed a priori just as software library
is constructed for future (re)use. CH must be constructed by a tool-vendor,
which implements the hierarchy as a library or database of design primi-
tives corresponding to the target system. For SOC target systems, CH
would have a hierarchy of IPs, power units, and interconnections. For ERS
target systems, CH would consists of ASICs, CPUs, environment interfaces,
I/O mechanisms, etc. Tool vendors must create all these Class Hierarchies
as reusable libraries for system designers. An example of Class Hierarchy
for a hierarchical parallel computer system is given in Figure 2. The
purpose of this hierarchy is to serve as a framework in which synthesis
proceeds. The main concept of object-oriented synthesis can be defined as:

Definition 1. Starting from the root node of a Class Hierarchy, which
represents the computer system to be designed, we traverse down the
hierarchy using class relationships as guidelines, choosing appropriate
operators at each node, performing corresponding actions, and synthesizing
or implementing components along the hierarchy.

3.2 Synthesis Model

Before going into the details of how OO design techniques are used in the
synthesis process, we will first discuss the design flow in a typical synthe-
sis methodology. We mainly refer to ICOS, and show how POSE has been
applied in ICOS.

As shown in Figure 3, the ICOS methodology is divided into three design
phases called Specification Analysis, Concurrent Design, and System Inte-
gration. ICOS provides a specification language for architecture, perfor-
mance, and synthesis related specification input. Details can be found in
Hsiung et al. [1998].

In the specification analysis phase, a user’s system specifications are first
analyzed to check if there are any errors such as architecture related or
obvious ones such as constraints that are not feasible under current
technology. In the concurrent design phase, the main system synthesis is
performed. Here, components (including complete subsystems) are designed
concurrently. POSE is a generalization of the concurrent design techniques
used in this phase of ICOS. Generalizations include the different messages
that objects pass among themselves, the design completion check (see
Section 4.1), and the synthesis rollback mechanisms (see Section 4.2). A
design hierarchy and a design queue are utilized in ICOS in this design
phase for recording the current design status. The final phase of system

POSE • 75

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

integration mainly evaluates the performance of a completed design and
outputs the system design that best meets the design constraints.

POSE is applied mainly in the concurrent component design phase of
ICOS. Here, components are designed concurrently and in an active man-
ner, as described in this section. The work presented in ICOS [Hsiung et al.
1998] focussed mainly on what is the methodology for designing a parallel
system, whereas here in POSE we show how the design environment can be
generalized, formalized, and applied to other design methodologies. Thus,
technical details of ICOS are left out and a more general design environ-
ment is presented. POSE shows how high-level design space explorations
may be carried out, how existing sequential design methodologies may be
enhanced by parallelism, and how OO can actually be applied to hardware
design.

The model used for synthesis is based mainly on object-oriented and
parallel design techniques. In the system model, as described in the
previous section, each system part is modeled as an object class. In the

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Main
Memory

Cache
Memory

Primary

Secondary

Globallly
Shared

Distributed
Shared

Globally
Distributed

Distributed
Unshared

Shared
Bus

MIN Cube Processor
Cluster

CCU LI SI InterfacePE

Scheduler I/O Intf. Buffer

Shared Bus MIN RISC CISCCube

Processor Local Memory

Cache RAM

I/O
Processor

I/O
Interface

CCU
Interface

A-node

G-node

P-node

Memory
Controller

Priority Time

Fig. 2. Class hierarchy.

76 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

synthesis model, these object classes actively synthesize themselves using a
message-passing communication scheme. Totally, eight types of messages
are used for different types of communication. Classified into three groups,
there are synthesis-related, update-related, and rollback-related messages.
There are three synthesis-related messages, namely, synthesize ~ms!,
synthesis-complete ~msc!, and synthesis-incomplete ~msi! messages;
two update-related messages, namely, update ~mu! and update-complete
~muc! messages; and three rollback-related messages, namely, rollback
~mr!, rollback-complete ~mrc!, and rollback-incomplete ~mri! mes-
sages. These messages are all implemented as method invocations in each

Fig. 3. ICOS design flow.

POSE • 77

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

individual object. The roles played by these messages will be discussed in
this section and Section 4.

Active synthesis is an important feature of the synthesis model in POSE.
Each system part, modeled as an object class, does not get passively
synthesized, it instead actively seeks to synthesize itself by sending and
receiving messages. This kind of synthesis control reduces the overhead of
a synthesis kernel, whose main job now becomes the maintenance of the
current design status and consistency. A reduced synthesis kernel allows
greater scalability in terms of the complexity of systems synthesized.
Within the underlying object-oriented system model, the proposed active
synthesis approach further strengthens the encapsulation of objects such
that not only are the static features (the data and the function members)
encapsulated as an object, but also are the dynamic states (the synthesis
status) of an object encapsulated. Parallel synthesis, thus becomes a
product of the object-oriented system model and the active synthesis
approach.

The rest of this section goes into the details of how the object actively
synthesize themselves by sending and receiving messages within the OO
design environment.

3.2.1 Synthesis Process. Whenever an object receives a synthesize
message in the form of a method invocation, it first checks if it is associated
with any other object. Here, association is the dependence relationship as
described in Section 3.1.3. In case of no association, synthesis actions are
performed depending on its node-type; whereas if there is one or more
associations, the object must actively send messages to all of the objects
associated with it. Three types of messages are used in this process,
namely, synthesize , update , and update-complete messages. In the
following, cases (a), (b), and (c) describe objects with no association, while
case (d) describes objects with at least one association as shown in Figure 4.

Case (a) A-node with no association with other objects: On receiving a
synthesize message, an A-node with no association with other objects
uses the iterator operator to synthesize itself. It iterates through its child
objects (which are sub-classes of the aggregate class representing the
A-node under synthesis), checking which objects are required to synthe-
size itself. It then simultaneously sends a synthesize message to each
of the selected objects. The selection policy may be based on a simple
functional composition as in PSM or a complex fuzzy decision as in ICOS.

Case (b) G-node with no association with other objects: On receiving a
synthesize message, a G-node with no association with other objects
uses the generator operator to implement itself by sending a synthesize
message to a child object. The child objects (which are specialized classes
of the generalized class representing the G-node) are selected based on a
straightforward cost-based heuristic approach as in PSM or a fuzzy
design-space exploration method as in ICOS. The number of specializa-
tions used to implement each G-node may be a complete set considering

78 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

all available design options for synthesizing an optimal solution or a
partial set of only the most preferable ones, where preference can be
defined as the heuristic proximity of design points near the optimal
solution as in PSM or defined in terms of the overall degree of specifica-
tion satisfaction as in ICOS.

Case (c) P-node with no association with other objects: On receiving a
synthesize message, a P-node with no association with other objects
instantiates itself by selecting one or more physical instances from the
physical object library. Instantiation of the physical objects may either
consider all the instances available as in PSM or a subset of more
preferable ones in terms of specification satisfaction as in ICOS. Synthe-
sizing a P-node is almost like a G-node except that we can consider more
instances at a P-node without increasing the design space by an exponen-
tial factor.

Case (d) Any node with at least one association with other objects: On
receiving a synthesize message, an object with at least one association
with other objects must update all of its specifications by sending an
update message to each associated object. When an object receives an
update message, if the association is only a relative dependence, an

A-node, G-node, or P-node with no association:

with relative dependence:

child
classes

parent
class

parent
class

child
classes

dependent
class

synthesize
message

synthesize
message

update
message

update
complete
message

with absolute dependence:

parent
class

child
classes

dependent
class

synthesize
message

update
message

update
complete
message

immediately

wait until
dependent class
i

s s

ynthesized

Fig. 4. Synthesis process.

POSE • 79

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

acknowledging update-complete message is returned immediately
along with the values of the predesign characteristics that were re-
quested. If it is an absolute dependence, then the object on which the
current object under synthesis is dependent should have already com-
pleted synthesis for the current object to begin synthesis immediately,
otherwise, the current object must wait for that object to finish synthesis.
When the object receiving an update message is already synthesized it
will send an acknowledging update-complete message notifying the
update-requesting object about its completion of synthesis along with the
values of the postdesign characteristics and/or specifications that were
requested. After the update process, when all the update messages are
acknowledged, the behavior of an object under synthesis is the same as in
the above three cases.

The above synthesis process assures that each object will know how to
synthesize itself and at the same time maintain the dependence relation-
ships amongst themselves.

3.2.2 Synthesis Kernel. The synthesis kernel is responsible for design
consistency and status maintenance. Some data structures used in the
POSE synthesis kernel and the maintenance of the design state for an
object are described in this section.

3.2.2.1 Design Hierarchy. In order to keep track of all the design
alternatives generated during synthesis, a hierarchy of currently synthe-
sized classes, called Design Hierarchy (DH), is maintained. It is an imple-
mentation of the Class Hierarchy, that is classes in CH are substituted by
real designs with specifications. For example, Figure 5 depicts a completed
design alternative consisting of a shared-memory multiprocessor architec-
ture with 1024 processors interconnected by a generalized-cube multistage
interconnection network, and 8 GB of main memory. Besides representing
the current state of synthesis, it may be used for various other purposes.

(1) Information Query: When a component under design needs information
related to the current design architecture, they can be answered by
referring to DH. For example, an inquiry could be: “Is the current
design using any secondary level cache?”

(2) Synthesis Rollback: There may arise a situation in concurrent synthesis
where a particular component cannot be synthesized under the cur-
rently derived specifications, at this point of synthesis, a rollback of
design steps could possibly alter or redesign some previously designed
components such that the specifications related to the unsynthesizable
component are relaxed and synthesis can proceed further. Rollback may
also propagate from an unsynthesizable component upwards in the
Class Hierarchy. Here, Design Hierarchy comes into use since it is
possible to know exactly what components were used and what were
their specifications that necessitated rolling back the synthesis steps.

80 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

(3) Design Completion Check: Design Hierarchy can also indicate when a
design alternative is complete for further processing such as simulation
and performance evaluation.

3.2.2.2 Design Queue. Design Hierarchy stores the components which
have already been synthesized, but there is a stage in the design life-cycle
where a component is already selected or ready for synthesis, but has to
wait for its turn. At this stage, we need a queue structure that holds the
components which are ready for synthesis. We call such a queue structure
Design Queue (DQ). After removing an A-node from the front of the queue,
it is synthesized into several component classes which have then to be
appended to DQ. After removing a G-node from the front of the queue, it is
implemented into one or more specialized classes which then have to be
appended to DQ. Whenever a P-node results from some component synthe-
sis process, it is not appended to the queue, but instead is instantiated into
actual physical instances. For example, a RISC processor may be instanti-
ated into an Alpha-21064 CPU. Design Queue does not sequentialize
synthesis, it just sequentializes the processing of components for synthesis
since more than one component may be undergoing synthesis after removal
from the queue, that is, a component once removed from the queue need not
be completely synthesized before the next component is removed from the
queue.

3.2.2.3 Design State. The above DH and DQ are global structures that
are visible to all components. When a component is in DH or DQ, it is
supposed to be in a “passive” state and when it is outside these structures,

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Cube
MIN Cluster

No. = 8

GCUPSSSIMSS

CS

PE

No. = 128

SI IntfLICCU

Bus

Main Memory

Size = 8 GB

Fig. 5. Design hierarchy.

POSE • 81

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

it is in an “active” state. The reason for distinguishing between passive and
active states mainly lies in the fact that a component represented by a class
remains in an idle condition in DH or DQ, whereas it actively seeks to
synthesize itself using appropriate operators and relationships as guide-
lines while outside DH or DQ. Figure 6 illustrates how a component can
transit from passive to active and then back to a passive state. While
active, a component first updates whatever specifications are needed, then
it tries to reuse components that were designed before. If no such compo-
nents exists, it goes on to synthesize itself. At this point, it may encounter
a deadlock situation where it cannot complete synthesis due to some
unsatisfiable specification, it enters a rollback state which leads to the
earlier specification update state if rollback is successful. If a component is
reused or synthesized successfully, it enters DH and remains passive.
Otherwise, it enters a passive synthesis incomplete state.

Using the above described data structures, a synthesis kernel keeps
track of the design states and consistency, while each system part actively
synthesizes itself. But, there still might be some problems related to the
systems specifications. The common problems are described and solutions
presented in the next section.

4. SOME RELATED PROBLEMS

Parallel Object-Oriented Synthesis Environment, just like any other paral-
lel environment, must solve problems inherent to parallelism. This section
defines and solves two related problems, namely, emptiness and deadlock.
A designer must know as early as possible if the given specifications are

queued in
DQ

(Passive)

remove from DQ

specification
update
(Active)

component
reuse

(Active)

component
synthesis
(Active)

synthesis
rollback
(Active)

synthesized
(Passive)

A-node/P-node

G-node

synthesis
deadlock

reuse
 successful

reuse not
successful

rollback
successful

synthesis
incomplete
(Passive)

rollback
unsuccessful

Fig. 6. State transition diagram of a class.

82 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

feasible under the current technology. This is the emptiness problem. At
the same time, a top-down design environment must be able to ensure that
all specifications propagated from the top of the design hierarchy are
satisfied by each designed part. In case of infeasible specifications, a
deadlock occurs.

4.1 Design Completion Check

A system designer stipulates his or her requirements by giving system-
level specifications including performance-related constraints such as the
minimum throughput, the maximum cost, the utilization factor, and archi-
tecture-related constraints such as the system interconnection, the amount
of main memory, the memory organization, etc. In terms of the current
technology, the given specifications may either be feasible or infeasible.
Feasibility is defined in terms of satisfying all the system constraints under
the current technology. Current technology is generally encoded within
each object, for example the maximum possible power allowed, the heat
dissipation rate, the response time, maximum network bandwidth, etc.

Sometimes, infeasibility due to obvious contradictions and errors is
detected easily by a predesign specification analysis. But at times, infeasi-
bility may go undetected until the design process has well advanced into
some intermediate stage. Hence, it is desirable to detect infeasible specifi-
cations at the earliest-possible stage of the design process. We call this the
emptiness problem. A practical solution called the design-completion check
for the emptiness problem is presented within POSE.

Definition 2 (The Emptiness Problem). Given a set of performance and
architecture specifications, is there a system design that can satisfy all the
stipulated specifications and is feasible under the current hardware tech-
nology.

Since the synthesis process is a distributed-control parallel-design pro-
cess, a mechanism is needed to ensure that a particular design is either
feasible and complete or infeasible and incomplete. This design completion
check (DCC) process is accomplished using two types of messages or
method invocation calls, namely, synthesis-complete and synthesis-
incomplete messages.

As the synthesize message is gradually propagated in a top-down
direction and broadcast in a breadth-first-search hierarchy traversal, a
synthesize message eventually reaches a P-node at the hierarchy leaf.
The three types of nodes behave in the following ways:

(a) Whenever a P-node receives a synthesize message, it starts to instan-
tiate itself. If this instantiation process is feasible and complete, the
P-node sends a synthesis-complete message upwards to its parent
node in the Class Hierarchy; otherwise, the P-node performs a synthesis
rollback action as described in the next section. If the rollback process
also fails, the P-node then sends a synthesis-incomplete message to
its parent node. This process is depicted in Figure 7.

POSE • 83

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

(b) Whenever a G-node receives at least one synthesis-complete mes-
sage from one of its child objects and synthesis-incomplete mes-
sages from the other child objects, the G-node sends a synthesis-
complete message to its parent object. If no synthesis-complete
message is received from its child nodes, then the G-node performs a
synthesis rollback action (as described in the next section). If the
rollback process also fails, the G-node sends a synthesis-incomplete
message to its parent object. This process is illustrated in Figure 8.

(c) Whenever an A-node receives a synthesis-complete message from
each of its child objects that has been sent a synthesize message, the
A-node sends a synthesis-complete message to its parent object. If
the A-node receives a synthesis-incomplete message from any one
or more of its child objects, it first performs a synthesis rollback action
(as described in the next section). If this rollback process also fails then
a synthesis-incomplete message is sent upwards to its parent class.
This process is shown in Figure 9.

The above design completion check process will finally result in either a
synthesis-complete or a synthesis-incomplete message being re-
ceived at the root node that represents the whole computer system. In the
former case, the design is feasible under the current constraints and
specifications, while in the latter case, it is infeasible and incomplete.

4.2 Synthesis Rollback

Since POSE is a top-down parallel design environment, specifications are
propagated from the top of the class hierarchy towards the leaf physical
classes. In the course of this propagation, it may happen that some
component cannot be synthesized under the derived specifications as prop-
agated by its parent class. This is called the deadlock problem since the
parent requires its child to satisfy certain specifications while the child
cannot do so. A rollback mechanism is proposed to solve this problem in
POSE.

Definition 3 (The Deadlock Problem). When a child class (or component)
cannot be synthesized under the derived specifications as propagated by its
parent class (or component), a deadlock occurs.

P-node

synthesize
message

synthesis-
complete
message

Case (a): P-node is feasible

P-node

synthesize
message

synthesis-
incomplete
message

Case (b): P-node is infeasible

Fig. 7. Design completion check process for a P-node.

84 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

As mentioned in the previous section, the synthesis rollback process is
interleaved with the design completion check process. Three types of
messages, namely, rollback , rollback-complete , and rollback-
incomplete messages, are used in this process which is illustrated in
Figure 10.

Whenever an object, either an A-node or a G-node, receives a rollback
message along with the object characteristics that have triggered the
rollback and the range of values acceptable for each of the object character-
istics, the object then behaves as follows:

Case (a) If by resynthesizing itself, the object can relax the infeasible
specifications and characteristics to satisfy all the constraints of the
parent object, the associated object(s), and the child object(s), then it will
resynthesize itself and relax the specifications and characteristics. After
synthesis, the object will send a confirmation in the form of a rollback-
complete message to the sender of the rollback message. This is shown
graphically in Figure 10-Case (a).

Case (b) If the object receiving a rollback message cannot relax the
infeasible specifications and the specifications are not related to either
the parent class or any associated classes, the object sends a rollback-

child
classes

G-node synthesize
message

synthesis-
complete
message

synthesis-
incomplete
message

synthesis-
complete
message

child
classes

G-node synthesize
message

synthesis-
incomplete
message

synthesis-
incomplete
message

synthesis-
incomplete
message

Case (a): synthesis complete for at least one child class of G-node

Case (b): synthesis incomplete for all child classes of G-node

Fig. 8. Design completion check process for a G-node.

POSE • 85

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

incomplete message to the sender of the rollback message. The
rollback is unsuccessful in this case. This is shown graphically in Figure
10-Case (b).

Case (c) If the object cannot relax the infeasible specifications but they
are related to other objects, then it will propagate the rollback message
along with the related information to its parent object and/or the associ-
ated objects. One or more rollback messages are sent simultaneously. If
at least one rollback completes, then the rollback is successful, otherwise
the rollback is unsuccessful and a rollback-incomplete message is
sent to the rollback message sender. On receiving a rollback-complete
message, if the object itself had been the receiver of a rollback message,
it will pass on the rollback-complete message to the rollback message
sender. In this way, all rollbacks are confirmed and finally the original
message sender will receive a confirmation. This process is shown graph-
ically in Figure 10-Case (c).

5. APPLICATION

The proposed environment, POSE, has been implemented as a working
design framework in which the recently proposed Intelligent Concurrent
Object-oriented Synthesis (ICOS) methodology [Hsiung et al. 1998] for

child
classes

A-node synthesize
message

synthesis-
complete
message

synthesis-
complete
message

synthesis-
complete
message

child
classes

A-node synthesize
message

synthesis-
complete
message

synthesis-
incomplete
message

synthesis-
incomplete
message

Case (a): synthesis complete for all under-synthesis child classes of A-node

Case (b): synthesis incomplete for at least one child class of A-node

Fig. 9. Design completion check process for an A-node.

86 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

system-level synthesis of parallel systems was developed. Besides practical
implementation, POSE has also been theoretically modeled, validated, and
analyzed by the authors using high-level Petri nets called Multi-token
Object-oriented Bi-directional net (MOBnet) [Hsiung et al. 1997a]. ICOS
and MOBnet were respectively concerned with the synthesis methodology
and the model analysis. The general design environment incorporating
parallel and OO techniques was not presented before. Two examples are
given in the rest of this section to understand the step-wise design
evolution in POSE and the two processes of the design completion check
and synthesis rollback.

Node with
unsatisfiable derived

specifications

rollback
message

rollback-
complete
message

rollback
message

Case (a): one-step successful rollback

Case (c): multi-step rollback (rollback propagation)

unsynthesizable
specifications

relaxed

Node with
unsatisfiable derived

specifications

rollback
message

rollback-
incomplete
message

unsynthesizable
specifications NOT

relaxed

Case (b): one-step unsuccessful rollback

Node with
unsatisfiable derived

specifications

dependence
relationship rollback

message

dependence
relationship

rollback
message

rollback
complete
message

dependence
relationship

rollback
complete
message

rollback
complete
message

Fig. 10. Rollback process in POSE.

POSE • 87

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

5.1 Example 1

Our target system is specified to be a tightly-coupled shared-memory
multiprocessor architecture with a maximum cost of $12,000, at least 1 GB
main memory and 1024 processors interconnected using a multistage
interconnection network. The design steps are given in Table I and the
intermediate status of DH are given in Figure 11, where CH and LH are
referenced during synthesis. LH is the Learning Hierarchy used in ICOS.

Starting from the root node, the target system is iteratively synthesized
by traversing down the Class Hierarchy towards the leaf nodes (P-nodes).
Depending on the type of node (A, G, or P), each component is either
synthesized or implemented using relationships as guidelines and opera-
tors to perform corresponding actions. The root node in this example is
Computer System (CS) which is an A-node, the relationship it has with its
child classes is aggregation, hence we use the “iterator” to synthesize CS
into Memory SubSystem (MSS), System Interconnect (SI), Processing Sub-
System (PSS), and Global Control Unit (GCU), all of which are appended to
the Design Queue (DQ). This completes step (a) in Table I. Now, in step (b),
MSS is removed from the front of DQ. Though MSS is an A-node, there is a
memory subsystem in LH that satisfies all the specifications of MSS, and
that subsystem is reused for MSS and thus no component is appended to
DQ in this step. Next, in step (c) SI which is a G-node is removed from DQ
and a design-space exploration (DSE) is performed using the “generator” at
SI, which results in the two alternative multistage interconnection net-
works (MIN): Cube and Omega. These MINs are physically available
components so they are not appended to DQ. They are, in fact, instantiated
into actual usable objects in ICOS. In step (d), PSS is synthesized into
Cluster. In step (e), GCU is synthesized by reusing an acceptable design
version from LH. In step (f), Cluster is synthesized into CCU, LI, and PE.
In step (g), CCU is synthesized by reusing a design version from LH. Steps
(h) and (i) complete the synthesis process by synthesizing LI and PE
through DSE and reuse. This synthesis process terminates when DQ is
empty.

The above is a description of how objects get synthesized in POSE.
Parallelism is achieved in POSE by simultaneously starting steps (b), (c),

Table I. Design Steps of an Illustrative Example

Step Node
Class
Type Relation Operator Action DQ Status

(a) CS A aggregation iterator reuse {MSS,SI,PSS,GCU}
(b) MSS A aggregation iterator synthesis {SI,PSS,GCU}
(c) SI G generalization generator DSE {PSS,GCU}
(d) PSS A aggregation iterator synthesis {GCU,Cluster}
(e) GCU A aggregation iterator reuse {Cluster}
(f) Cluster A aggregation iterator synthesis {CCU,LI,PE}
(g) CCU A aggregation iterator reuse {LI,PE}
(h) LI G generalization generator DSE {PE}
(i) PE A aggregation iterator reuse {}

88 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

(d), (e) after step (a) completes. All the four objects can be dequeued and
start synthesizing themselves in parallel. Next, steps (f), (g), (h), (i) can
also start in parallel. Thus, there is actually only three parallel steps
compared to the nine sequential steps. Readers interested in a detailed
account of the actual synthesis methodology may refer to ICOS [Hsiung et
al. 1998].

As shown in ICOS, when system parts are modeled as objects and
synthesized in parallel, the overall design time is between one-half to
one-third the time required when components are synthesized sequentially.
The experimental results obtained show the practical usefulness of POSE
in a real design methodology. We believe that POSE can also be incorpo-
rated with any other design methodology as long as off-the-shelf building
blocks are used and modeled using OO technology.

Learning
Hierarchy

Class
Hierarchy

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Cube
MIN

Omega
MIN

Cluster

Reuse

DSE

Computer
System

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

GCUPSSSIMSS

CS

step (b) – step (e)

step (f) – step (i)

step (a)

Reuse

PE SI IntfLICCU

Reuse Reuse

DSE

Bus

Fig. 11. Example 1 (intermediate DH status).

POSE • 89

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

5.2 Example 2

This example illustrates how the three processes: synthesis, design comple-
tion check, and rollback, work together in POSE to design a system. The
target multiprocessor system is an SIMD machine with a Multistage
Interconnection Network (MIN) as the system interconnection. The
system specifications include a data transfer rate of at least 8 MB/s for each
block of MIN, a total throughput of at least 64 MB/s, and a maximum total
cost of $7,000. These specifications are input to ICOS. We will mainly
concentrate on how POSE handles situations with unsynthesizable specifi-
cations. As shown in Figure 12, (a) and (b) illustrate the synthesis process,
(c) and (d) illustrate design completion check, (d) and (e) illustrate the
specification update process, (f)–(j) illustrate synthesis rollback. Since
parts (a)–(e) of Figure 12 are straightforward and self-explanatory, we only
explain in detail the parts (f)–(j).

Here, the derived specifications from Processing Cluster (PC) for
System Interconnect Interface (SI-Intf) include a maximum cost of
$200, which could only result in an interface that has a maximum data
transfer rate of only 8.0 MB/s. This is in contradiction to the data transfer
rate specification updated from System Interconnect (SI) in Figure 12(e)
(which is 8.5 MB/s). Thus, SI-Intf is unsynthesizable in such a situation.
It makes requests for synthesis rollback to both PCand SI (Figure 12(f)). PC
cannot increase the cost of SI-Intf due to other cost constraints (Figure
12(g)). Meanwhile, SI propagates the rollback message to MIN (Figure
12(g)). MIN decreases the data transfer rate specification to 8 MB/s as
required (Figure 12(h)). Finally, rollback completes informing SI-Intf of
the change in the data transfer rate specification value (Figure 12(i)). Thus,
SI-Intf can now synthesize itself under the derived cost specification of
$200 and updated data transfer rate specification of 8 MB/s (Figure 12(j)).

6. CONCLUSION AND FUTURE WORK

A general design environment for the synthesis of computer hardware
systems was proposed. Parallel Object-Oriented Synthesis Environment
(POSE) used parallel design techniques to synthesize system parts which
were modeled using object-oriented techniques. Being a general environ-
ment, one of its advantages is that it can be easily incorporated into any
system design automation methodology such as PSM [Hsiung et al. 1996]
and ICOS [Hsiung et al. 1998]. Experimental results of using POSE in
ICOS has shown how the overall design time can be sped up by a factor of
two to three as compared to PSM. Besides the practical efficiency, it was
also shown how POSE can be used to solve two parallel design related
problems, namely, the emptiness and the deadlock problems. POSE was
also formally validated and analyzed in another related work [Hsiung et al.
1997a]. Both experimentally and theoretically, POSE was shown to be a
useful working design environment.

Future work will be the application of POSE to hardware-software
system codesign and its incorporation with other synthesis methodologies.

90 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

REFERENCES

DE ANTONELLIS, V. AND PERNICE, B. 1995. Reusing specifications through refinement levels.
Data Knowl. Eng. 15, 2 (Apr.), 109–133.

BIRMINGHAM, W. P., GUPTA, A. P., AND SIEWIOREK, D. P. 1989. The MICON system for
computer design. In Proceedings of the 26th ACM/IEEE Conference on Design Automation
(DAC ’89, Las Vegas, NV, June 25–29), D. E. Thomas, Ed. ACM Press, New York, NY,
135–140.

System
Interconnect

Computer
System

synthesize
message

Shared
Bus

Multistage
Interconnection

Network

Cube Cluster
Control

Unit Local
Interconnect

Processing
Element

System
Interconnect

-Interface

synthesize
message

Processing
Cluster

synthesis-
complete
message

synthesis-
complete
message

dependence

synthesize
message

update message
data transfer rate = ?

update-complete message
data transfer rate = 8.5 MB/s

rollback
message

Unsynthesizable specifications:
 data transfer rate = 8.5 MB/s
 cost ≤ $200 (⇒ data transfer

rate ≤ 8.0 MB/s)

rollback-
incomplete
message

specifications not relaxed,
rollback propagates

specifications
not relaxed

rollback-
complete
message

synthesis-
incomplete
message

rollback-complete
message

(a)

(b)

(f)

(g)

(c) (h)

(i)(d)

(e) (j)

synthesis-
complete
message

Fig. 12. Example 2.

POSE • 91

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

BROOKS, F., GROSS, R. R., AND HEATH, L. S. 1984. Transfer of software methodology to VLSI
design. TR 84-007. University of North Carolina at Chapel Hill, Chapel Hill, NC.

CHUNG, M. J. AND KIM, S. 1990. An object-oriented VHDL design environment. In
Proceedings of the 27th ACM/IEEE Conference on Design Automation (DAC ’90, Orlando,
FL, June 24-28), R. C. Smith, Chair. ACM Press, New York, NY, 431–436.

DUTTA, R., ROY, J., AND VEMURI, R. 1992. Distributed design-space exploration for high-level
synthesis systems. In Proceedings of the 29th ACM/IEEE Conference on Design Automation
(DAC ’92, Anaheim, CA, June 8–12), D. G. Schweikert, Chair. IEEE Computer Society
Press, Los Alamitos, CA, 644–650.

GADIENT, A. J. AND THOMAS, D. E. 1993. A dynamic approach to controlling high-level
synthesis CAD tools. IEEE Trans. Very Large Scale Integr. Syst. 1, 3 (Sept.), 328–341.

GROSS, R. R. 1985. Using software technology to specify abstract interfaces in VLSI
design. TR-85-017. University of North Carolina at Chapel Hill, Chapel Hill, NC.

GUPTA, A. P., BIRMINGHAM, W. P., AND SIEWIOREK, D. P. 1993. Automating the design of
computer systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits 12, 4 (Apr.), 473–487.

HSIUNG, P.-A., CHEN, C.-H., LEE, T.-Y., AND CHEN, S.-J. 1998. ICOS: an intelligent concurrent
object-oriented synthesis methodology for multiprocessor systems. ACM Trans. Des. Autom.
Electron. Syst. 3, 2 (Apr.), 109–135.

HSIUNG, P.-A., CHEN, S.-J., HU, T.-C., AND WANG, S.-C. 1996. PSM: An object-oriented
synthesis approach to multiprocessor system design. IEEE Trans. Very Large Scale Integr.
Syst. 4, 1, 83–97.

HSIUNG, P.-A., LEE, T.-Y., AND CHEN, S.-J. 1997. MOBnet: An extended Petri net model for the
concurrent object-oriented system-level synthesis of multiprocessor systems. IEICE Trans.
Inf. Syst. E80-D, 2 (Feb.), 232–242.

HSIUNG, P. -A., LEE, T. -Y., AND CHEN, S. -J. 1997. Object-oriented technology transfer to
multiprocessor system-level synthesis. In Proceedings of the 24th International Conference
on Technology of Object-Oriented Languages and Systems (Sept.). 284–293.

KANG, E. Q., LIN, R.-B., AND SHRAGOWITZ, E. 1994. Fuzzy logic approach to VLSI
placement. IEEE Trans. Very Large Scale Integr. Syst. 2, 4 (Dec.), 489–501.

KUMAR, S., AYLOR, J. H., JOHNSON, B. W., AND WULF, WM. A. 1994. Object-oriented techniques
in hardware design. IEEE Computer 27, 6 (June), 64–70.

LEE, Y. K. AND PARK, S. J. 1993. OPNets: an object-oriented high-level Petri net model for
real-time system modeling. J. Syst. Softw. 20, 1 (Jan.), 69–86.

LIN, R.-B. AND SHRAGOWITZ, E. 1992. Fuzzy logic approach to placement problem. In
Proceedings of the 29th ACM/IEEE Conference on Design Automation (DAC ’92, Anaheim,
CA, June 8–12), D. G. Schweikert, Chair. IEEE Computer Society Press, Los Alamitos, CA,
153–158.

MITCHELL, T. M., MAHADEVAN, S., AND STEINBERG, L. I. 1985. LEAP: A learning apprentice for
VLSI design. In Proceedings of the 9th Conference on IJCAI (IJCAI). 573–580.

PARNAS, D. L. 1985. The modular structure of complex systems. IEEE Trans. Softw. Eng.
SE-11, 3 (Mar.), 259–266.

REZAZ, M. AND GAU, J. 1990. Fuzzy set based initial placement for ic layouts. In Proceedings
of the European Conference on Design Automation. 655–659.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., LORENSEN, B., AND LORENSON, W. 1991.
Object Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ.

THOMAS, D. E., DIRKES, E. M., WALKER, R. A., RAJAN, J. V., NESTOR, J. A., AND BLACKBURN, R. L.
1988. The system architect’s workbench. In Proceedings of the 25th ACM/IEEE Conference
on Design Automation (DAC ’88, Atlantic City, NJ, June 12–15), D. W. Shaklee and A. R.
Newton, Chairs. IEEE Computer Society Press, Los Alamitos, CA, 337–343.

TOBIAS, J. R. 1981. LSI/VLSI building blocks. IEEE Computer 14, 8 (Aug.), 83–101.
TRICK, M. T. AND DIRECTOR, S. W. 1989. Lassie: Structure to layout for behavioral synthesis

tools. In Proceedings of the 26th ACM/IEEE Conference on Design Automation (DAC ’89,
Las Vegas, NV, June 25–29), D. E. Thomas, Ed. ACM Press, New York, NY, 104–109.

Received: May 1998; accepted: August 1999

92 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001.

