
Parallel Design Automation of Computer Systems

Pao-Ann Hsiung
Institute of Information Science

Academia Sinica, Taipei, Taiwan.

Abstract With the increasing complexity of todays’
parallel computer systems and the design time being ex-
ponential in the number of system parts used, parallel
design automation has become a necessity, rather than
a luxury. The system parts are modeled using object-
oriented technologies such that not only are the static
features of the components encapsulated, but also are
the dynamic design states. A system is designed by em-
powering each object class with design autonomy, thus
leading to a distributedly controlled environment where
objects actively seek to synthesize themselves in paral-
lel. Inherent problems such as emptiness and deadlock
are also solved.

Keywords: hardware synthesis, parallel design, object-
oriented technology, design-completion check, synthe-
sis rollback

1 Introduction

The application of parallel techniques often in-
creases the efficiency of an executing process. But,
at the same time some overhead of parallel data
manipulations are incurred. Furthermore, parallel
techniques also introduce inconsistencies among
participating actors. These two issues are inherent
to parallelism. In this paper, a novel way of in-
creasing the efficiency of computer system design
automation using parallel techniques, with a neg-
ligible overhead and a consistent design result, is
proposed. It basically is an integration of object-
oriented modeling and parallel design techniques.

Object-oriented (OO) technology has been pop-
ularly and widely used in the software world.
Some recent literatures and work also show how
OO may be utilized in the hardware world [1, 2].
The basic concept is to model each system part,

both physical and logical ones, as an object. Hard-
ware links and dependencies are modeled as the
relationships between the objects. Some common
relationships found are “part-whole” and “is-a”.
Objects with close relationships are then grouped
into classes, such as, various types of CPUs may
be grouped into the class CPU. Classes inter-linked
with relationships then form a hierarchy, which we
call the Class Hierarchy. Object-oriented design is
then simply a traversal of the hierarchy, designing
parts along the way.

Parallel design technique is mainly the concur-
rent design of more than one system parts. An ac-
tive approach is proposed. Objects actively seek to
design themselves once they have all the required
specifications. For example, a Memory class up-
dates its specifications from the CPU by requesting
for the CPU cycle time. Architectural dependen-
cies among parts, such as the data transfer speed,
the channel bandwidth, etc are all modeled as re-
lationships in the Class Hierarchy. Consistency
among the parts are maintained by transmitting the
specifications using a message-based communica-
tion scheme.

There have been several methodologies and
tools developed to either fully or partially automate
the design process at various levels of hardware
system design such as the MICON system [3], the
Megallan system [4] including the System Archi-
tect’s Workbench [5], WOLFIE, and LASSIE [6],
Performance Synthesis Methodology (PSM) [7]
and Intelligent Concurrent Object-oriented Synthe-
sis (ICOS) methodology [8], to mention a few.

The problem of synthesis efficiency has been
tackled by introducing heuristics into the design
methodology. Rather than searching the entire
design-space exhaustively, several techniques have
been proposed in the past to partially explore the

region that most likely contains the optimal de-
sign solution. The techniques include fuzzy logic
[9], learning [10], object-oriented design [11],
object-oriented language [12], specification reuse
[13], distributed exploration [14], and formal ap-
proaches [15]. Though the proposed techniques
help to increase synthesis efficiency, yet they do
not guarantee optimal solutions.

With the increasing wide-spread use of object-
oriented technology in software modeling and de-
velopment, there has been a technology transfer
from software to hardware [2]. Application of OO
to hardware synthesis has matured from a sim-
ple modeling as in PSM [7] to a complex design
methodology such as ICOS [8]. OO has also been
applied in the formal analysis of systems [16] and
synthesis [2]. Though OO has been applied, but the
actual method of application is not very clear from
the previous work. Formerly, distributed design
techniques have been used to reduce the design
space exploration time [14]. With the increased
use of parallel computers, it is naturally desirable
to parallelize the synthesis process in order to de-
sign more complex and larger systems. In con-
trast to the previous work, the current work does
not lose optimality in the solutions for efficiency in
the design process. Object-oriented modeling and
design techniques coupled with the parallel design
process illustrate an efficient design environment
as evidenced by practical implementation [8] and
formal analysis [15]. Solutions to the emptiness
and deadlock problems found in a parallel design
environment are also proposed.

Due to page-limit, we mainly delve on the solu-
tions to the two problems inherent to parallelism.
The paper is organized as follows. Section 2 briefly
describes the design process. Section 3 shows
how some parallel design related problems such as
emptiness and deadlock are solved. Section 4 gives
an application example. Section 5 concludes the
paper giving some future work.

2 Object-Oriented Parallel Design

The objects in the Class Hierarchy are clas-
sified into three types of nodes: Aggregate
node (A-node), Generalized node (G-node), and

Physical node (P-node) [7]. Depending on
the type of node, different design actions are
performed. Totally, eight types of messages
are used for different types of communica-
tion among the objects. Classified into three
groups, there are synthesis-related, update-related,
and rollback-related messages. There are three
synthesis-related messages, namely, synthe-
size (��), synthesis-complete (���), and
synthesis-incomplete
(���) messages; two update-related messages,
namely, update (��) and update-complete
(���) messages; and three rollback-related mes-
sages, namely, rollback (��), rollback-
complete (���), and rollback-
incomplete (���) messages. These messages
are all implemented as method invocations in each
individual object.

2.1 Synthesis Process

Whenever an object receives a synthesize
message in the form of a method invocation, it
first checks if it is associated with any other ob-
ject. In case of no association, synthesis actions
are performed depending on its node-type; whereas
if there is one or more associations, the object
must actively send messages to all of the objects
associated with it. Three types of messages are
used in this process, namely, synthesize, up-
date, and update-complete messages. Due
to page-limit, we do not explain this process, but
we do include a figure (Fig. 1) which is quite self-
explanatory. Here, absolute dependence restricts
the order in which objects are to be synthesized,
whereas relative dependence places no such re-
strictions.

3 Some Related Problems

Two problems inherent to parallelism, namely,
emptiness and deadlock are defined and solved in
this section. A designer must know as early as pos-
sible if the given specifications are feasible under
the current technology. This is the emptiness prob-
lem. At the same time, a top-down design environ-
ment must be able to ensure that all specifications

Case 1: No association:

Case 2: With relative dependence:

child
classes

parent
class

parent
class

child
classes

dependent
class

synthesize
message

synthesize
message

update
message

update
complete
message

Case 3: With absolute dependence:

parent
class

child
classes

dependent
class

synthesize
message

update
message

update
complete
message

immediately

wait until
dependent class
is synthesized

Figure 1: Synthesis Process

propagated from the top of the design hierarchy are
satisfied by each designed part. In case of infeasi-
ble specifications, a deadlock occurs.

3.1 Design Completion Check

A system designer stipulates his or her require-
ments by giving system-level specifications includ-
ing performance-related constraints such as the
minimum throughput, the maximum cost, the uti-
lization factor, and architecture-related constraints
such as the system interconnection, the amount of
main memory, the memory organization, et al. In
terms of the current technology, the given specifi-
cations may either by feasible or infeasible. Some-
times, infeasibility due to obvious contradictions
and errors is detected easily by a pre-design spec-
ification analysis. But at times, infeasibility may
go undetected until the design process has well ad-
vanced into some intermediate stage. Hence, it is
desirable to detect infeasible specifications at the
earliest-possible stage of the design process. We

call this the emptiness problem. A practical so-
lution called the design-completion check for the
emptiness problem is presented.

Since the synthesis process is a distributed-
control parallel-design process, a mechanism is
needed to ensure that a particular design is ei-
ther feasible and complete or infeasible and in-
complete. This design completion check process
is accomplished using two types of messages or
method invocation calls, namely, synthesis-
complete and synthesis-incomplete
messages.

As the synthesize message is gradually
propagated in a top-down direction and broad-
cast in a breadth-first-search hierarchy traversal,
a synthesize message eventually reaches a P-
node at the hierarchy leaf. The three types of nodes
behave in the following ways.

(a) Whenever a P-node receives a synthesize
message, it starts to instantiate itself. If this in-
stantiation process is feasible and complete, the P-

P-node

synthesize
message

synthesis-
complete
message

Case (a): P-node is feasible

P-node

synthesize
message

synthesis-
incomplete
message

Case (b): P-node is infeasible

Figure 2: Design Completion Check (P-node)

node sends a synthesis-complete message
upwards to its parent node in the Class Hierarchy;
otherwise, the P-node performs a synthesis roll-
back action as described in the next subsection.
If the rollback process also fails, the P-node then
sends a synthesis-incomplete message to
its parent node. This process is depicted in Fig. 2.

(b) Whenever a G-node receives at least one
synthesis-complete message from one of
its child objects and synthesis-incomplete
messages from the other child objects, the G-node
sends a synthesis-complete message to its
parent object. If no synthesis-complete
message is received from its child nodes, then the
G-node performs a synthesis rollback action (as de-
scribed in the next subsection). If the rollback pro-
cess also fails, the G-node sends a synthesis-
incomplete message to its parent object. This
process is illustrated in Fig. 3.

(c) Whenever an A-node receives a synthesis-
completemessage from each of its child objects
that has been sent a synthesize message, the
A-node sends a synthesis-complete mes-
sage to its parent object. If the A-node receives
a synthesis-incompletemessage from any
one or more of its child objects, it first performs a
synthesis rollback action (as described in the next
subsection). If this rollback process also fails then
a synthesis-incomplete message is sent
upwards to its parent class. This process is shown
in Fig. 4.

The above design completion check process will
finally result in either a synthesis-complete
or a synthesisincomplete message being
received at the root node that represents the whole

child
classes

G-node synthesize
message

synthesis-
complete
message

synthesis-
incomplete

message

synthesis-
complete
message

child
classes

G-node synthesize
message

synthesis-
incomplete

message

synthesis-
incomplete

message

synthesis-
incomplete

message

Case (a): synthesis complete for at least one child class of G-node

Case (b): synthesis incomplete for all child classes of G-node

Figure 3: Design Completion Check (G-node)

computer system. In the former case, the design is
feasible under the current constraints and specifi-
cations, while in the latter case, it is infeasible and
incomplete.

3.2 Synthesis Rollback

Since it is a top-down parallel design environment,
specifications are propagated from the top of the
class hierarchy towards the leaf physical classes.
In the course of this propagation, it may happen
that some component cannot be synthesized under
the derived specifications as propagated by its par-
ent class. This is called the deadlock problem since
the parent requires its child to satisfy certain spec-
ifications while the child cannot do so. A rollback

child
classes

A-node synthesize
message

synthesis-
complete
message

synthesis-
complete
message

synthesis-
complete
message

child
classes

A-node synthesize
message

synthesis-
complete
message

synthesis-
incomplete

message

synthesis-
incomplete

message

Case (a): synthesis complete for all under-synthesis child classes of A-node

Case (b): synthesis incomplete for at least one child class of A-node

Figure 4: Design Completion Check (A-node)

mechanism is proposed to solve this problem. As
mentioned in the previous subsection, the synthe-
sis rollback process is interleaved with the design
completion check process. Two types of messages,
namely, rollback and rollback-complete
messages, are used in this process which is illus-
trated in Fig. 5.

Whenever an object, either an A-node or a G-
node, receives a rollback message along with
the object characteristics that have triggered the
rollback and the range of values acceptable for
each of the object characteristics, the object then
behaves as follows.
Case a) If by resynthesizing itself, the object can
relax the concerned specifications and character-
istics to satisfy all the constraints of the parent
object, the associated object(s), and the child ob-
ject(s), then it will resynthesize itself and relax the
specifications and characteristics. After synthesis,
the object will send a confirmation in the form of a
rollback-completemessage to the sender of
the rollback message.
Case b) If the object cannot relax the specifications
and characteristics, then it will propagate the roll-
back message along with the related information
to its parent object and/or the associated objects.
The rollback process could be quite expensive as it
might propagate throughout the whole design and

result in resynthesizing the whole system from the
start. In order to avoid this, the values of the object
characteristics are specified as ranges or enumera-
tions whenever possible.

On receiving a rollback-complete mes-
sage, if the object itself had been the receiver
of a rollback message, it will pass on the
rollback-complete message to the rollback
message sender. In this way, all rollbacks are con-
firmed and finally the original message sender will
receive a confirmation. If a rollback fails, instead
of a confirmation, a synthesis-incomplete
message is sent as described in the previous sub-
section.

4 Application

The proposed design technique has been im-
plemented as a working design framework in
which the recently proposed Intelligent Concurrent
Object-oriented Synthesis (ICOS) methodology [8]
for system-level synthesis of parallel systems was
developed. Besides practical implementation, it
has also been theoretically modeled, validated, and
analyzed by the authors using high-level Petri nets
called Multi-token Object-oriented Bi-directional
net (MOBnet) [15]. ICOS and MOBnet were re-
spectively concerned with the synthesis methodol-
ogy and the model analysis. The general design
environment incorporating parallel and OO tech-
niques was not presented before. An example is
given in this section to understand the processes of
design completion check and synthesis rollback.

The target multiprocessor system is
an SIMD machine with a Multistage Inter-
connection Network (MIN) as the system in-
terconnection. The system specifications include a
data transfer rate of at least 8 MB/s for each block
of MIN, a total throughput of at least 64 MB/s, and
a maximum total cost of $7,000. These specifica-
tions are input to ICOS. We will mainly concen-
trate on how situations with unsynthesizable spec-
ifications are handled. As shown in Fig. 6, (a) and
(b) illustrate the synthesis process, (c) and (d) illus-
trate design completion check, (d) and (e) illustrate
the specification update process, (f)–(j) illustrate
synthesis rollback. Since parts (a)–(e) of Fig. 6 are

Node with
unsatisfiable derived

specifications

rollback
message

rollback-
complete
message

rollback
message

Case (a): one-step successful rollback

Case (c): multi-step rollback (rollback propagation)

unsynthesizable
specifications

relaxed

Node with
unsatisfiable derived

specifications

rollback
message

synthesis
incomplete

messageunsynthesizable
specifications NOT

relaxed

Case (b): one-step unsuccessful rollback

Node with
unsatisfiable derived

specifications

dependence
relationship rollback

message

dependence
relationship

rollback
message

rollback
complete
message

dependence
relationship

rollback
complete
message

rollback
complete
message

Figure 5: Rollback Process

straight-forward and self-explanatory, we only ex-
plain in detail the parts (f)–(j).

Here, the derived specifications from Pro-
cessing Cluster (PC) for System In-
terconnect Interface (SI-Intf) include
a maximum cost of $200, which could only result
in an interface that has a maximum data trans-
fer rate of only 8.0 MB/s. This is in contradic-
tion to the data transfer rate specification updated
from System Interconnect (SI) in Fig. 6
(e) (which is 8.5 MB/s). Thus, SI-Intf is un-
synthesizable in such a situation. It makes requests
for synthesis rollback to both PC and SI (Fig. 6

(f)). PC cannot increase the cost of SI-Intf due
to other cost constraints (Fig. 6 (g)). Meanwhile,
SI propagates the rollback message to MIN (Fig.
6 (g)). MIN decreases the data transfer rate spec-
ification to 8 MB/s as required (Fig. 6 (h)). Fi-
nally, rollback completes informing SI-Intf of
the change in the data transfer rate specification
value (Fig. 6 (i)). Thus, SI-Intf can now syn-
thesize itself under the derived cost specification
of $200 and updated data transfer rate specifica-
tion of 8 MB/s (Fig. 6 (j)).

System
Interconnect

Computer
System

synthesize
message

Shared
Bus

Multistage
Interconnection

Network

Cube Cluster
Control

Unit Local
Interconnect

Processing
Element

System
Interconnect

-Interface

synthesize
message

Processing
Cluster

synthesis-
complete
message

synthesis-
complete
message

dependence

synthesize
message

update message
data transfer rate = ?

update-complete message
data transfer rate = 8.5 MB/s

rollback
message

Unsynthesizable specifications:
� data transfer rate = 8.5 MB/s
� cost ≤ $200 (⇒ data transfer

rate ≤ 8.0 MB/s)

rollback-
incomplete

message

specifications not relaxed,
rollback propagates

specifications
not relaxed

rollback-
complete
message

synthesis-
incomplete

message

rollback-complete
message

(a)

(b)

(f)

(g)

(c) (h)

(i)(d)

(e) (j)

synthesis-
complete
message

Figure 6: Application Example

5 Conclusion and Future Work

An elegant integration of object-oriented and paral-
lel design techniques has resulted in an efficient de-
sign environment and at the same time has solved
the emptiness and deadlock problems of paral-
lelism. Being a general design environment, one
of its advantages is that it can be easily incorpo-
rated into any system design automation methodol-
ogy such as PSM [7] and ICOS [8]. Experimental
results of using the proposed design technique in
ICOS has shown how the overall design time can
be sped up by a factor of two to three as compared

to PSM. Besides the practical efficiency, it was also
shown how two parallel design related problems,
namely, the emptiness and the deadlock problems
are solved. It was also formally validated and an-
alyzed in another related work [15]. Both exper-
imentally and theoretically, it was shown to be a
useful working design environment.

References

[1] F. R. Jr. Brooks, R. R. Gross, and L. S. Heath.
Transfer of software methodology to VLSI

design. Technical Report TR 84-007, Univ.
of North Carolina, Chapel Hill, 1984.

[2] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen.
Object-oriented technology transfer to mul-
tiprocessor system-level synthesis. In Proc.
24th International Conference on Technology
of Object-Oriented Languages and Systems,
September 1997.

[3] A. P. Gupta, W. P. Birmingham, and D. P.
Siewiorek. Automating the design of com-
puter systems. IEEE Trans. on CAD,
12(4):473–487, April 1993.

[4] A. J. Gadient and D. E. Thomas. A dynamic
approach to controlling high-level synthesis
CAD tools. IEEE Trans. on VLSI Systems,
1(3):328–341, September 1993.

[5] D.E. Thomas, E.M. Dirkes, R.A. Walker, J.V.
Rajan, J.A. Nestor, and R.L. Blackburn. The
system architect’s workbench. In Proc. 25th
ACM/IEEE Design Automation Conference,
pages 337–343, June 1988.

[6] M.T. Trick and S.W. Director. Lassie: Struc-
ture to layout for behavioral synthesis tools.
In Proc. 26th ACM/IEEE Design Automation
Conference, pages 104–109, June 1989.

[7] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and S.-
C. Wang. PSM: An object-oriented synthe-
sis approach to multiprocessor system design.
IEEE Trans. on VLSI Systems, 4(1):83–97,
Mar. 1996.

[8] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and
S.-J. Chen. ICOS: An intelligent concur-
rent object-oriented synthesis methodology
for multiprocessor systems. To appear in
ACM Trans. on Design Automation of Elec-
tronic Systems, 3(2), April 1998.

[9] E. Q. Kang, R.-B. Lin, and E. Shragowitz.
Fuzzy logic approach to VLSI placement.
IEEE Trans. on VLSI Systems, 2(4):489–501,
December 1994.

[10] T. M. Mitchell, S. Mahadevan, and L. I.
Steinberg. LEAP: A learning apprentice for

VLSI design. In Proc. 9th IJCAI, pages 573–
580, 1985.

[11] S. Kumar, J. H. Aylor, B. W. Johnson, and
Wm. A. Wulf. Object-oriented techniques in
hardware design. IEEE Computer, 27(6):64–
70, June 1994.

[12] M. J. Chung and S. Kim. An object-oriented
VHDL design environment. In Proc. 27th
ACM/IEEE Design Automation Conference,
pages 431–436, 1990.

[13] V. De Antonellis and
B. Pernice. Reusing specifications through
refinement levels. Data and Knowledge En-
gineering, 15(2):109–133, April 1995.

[14] R. Dutta, J. Roy, and R. Vemuri. Distributed
design-space exploration for high-level syn-
thesis systems. In Proc. 29th. ACM/IEEE De-
sign Automation Conference, pages 644–650,
1992.

[15] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen.
MOBnet: An extended Petri net model for
the concurrent object-oriented system-level
synthesis of multiprocessor systems. IE-
ICE Trans. on Information and Systems, E80-
D(2):232–242, Feb. 1997.

[16] Y. K. Lee and S. J. Park. OPNets: An object-
oriented high-level Petri net model for real-
time system modeling. Journal Systems Soft-
ware, 20:69–86, 1993.

