232

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 2 FEBRUARY 1997

[PAPER

MOBnet: An Extended Petri Net Model for the
Concurrent Object-Oriented System-Level
Synthesis of Multiprocessor Systems

Pao-Ann HSIUNG', Nonmember, Trong-Yen LEE!", Member, and Sao-Jie CHEN'!, Nonmember

SUMMARY A formal system-level synthesis model for the
concurrent object-oriented design of parallel computer systems,
called Multi-token Object-oriented Bi-directional net (MOBnet),
is proposed. The MOBnet model extends the standard Petri net
by defining (1) multiple tokens to represent different kinds of
synthesis control information, (2) object-oriented nodes (places)
to denote the system parts under synthesis, and (3) bi-directional
arcs to model the design completion check and synthesis rollback
operations. In this paper, we first show that MOBnet can serve as
a pre-fabrication design methodology analysis tool in ways such
as class hierarchy construction, design specification comparison,
reachability analysis, and concurrent process management and
analysis. We then formally prove MOBnet to be a valid model
for concurrent synthesis and give experimental application exam-
ples to verify. Finally, solution schemes for the design completion
check and synthesis rollback problems are formally validated by
analyzing the dynamic behavior of MOBnet, and experimentally
illustrated through examples.

key words: concurrent object-oriented system-level synthesis, con-
current synthesis modeling, high-level Petri nets, design completion
check, synthesis rollback

1. Introduction

As proposed by the authors, the system-level synthesis
of parallel computer systems has recently become a re-
search topic in the design automation field [1], but the-
oretical modeling and analysis of the synthesis process
is still lacking. Previously proposed models of synthesis
process were mainly concerned with the interaction of
design tools within CAD frameworks. There are prac-
tically little known researches devoted to the theoreti-
cal modeling of concurrent synthesis at the system-level
of design. This lack of a formal model would be a
great obstacle to the progress of system-level design au-
tomation researches. This paper takes a pioneer step
in proposing such a model, called Multi-token Object-
oriented Bi-directional net (MOBnet) model.

A brief introduction of related models proposed in
CAD frameworks is given as follows. Version Server[2]
supports a coarse-grain management of chip design data
with versions and relationships modeling capability.

Manuscript received May 9, 1996.
Manuscript revised September 20, 1996.
TThe author is with the Institute of Information Science,
Academia Sinica, Taipei, Taiwan, R.O.C.
' The authors are with the Department of Electrical
Engineering, National Taiwan University, Taipei, Taiwan,
R.O.C.

Pace framework [3],[4] is an integration of Spook inter-
process communication tool, Ghost user-interface, and
Dwarf database system for electronic design automa-
tion. Roadmap model [5] represents a data-flow based
model for CAD frameworks with task definition, flow
definition, and tool execution. Ulysses system [6] sup-
ports a blackboard model using Artificial Intelligence
techniques and a dependency graph called the task
schema for the design tools execution. Nelsis[7],[8] is
a CAD framework with design data management and
design flow management services, advanced meta-data
handling facility, versioning, support for multi-view hi-
erarchical design, and consistency management.

The proposed MOBnet is basically a high-level
extension of the standard Petri net model [9] and a
modified version of the Colored Petri net (CP-net)
model [10],[11],[12]. Several definition terms are
adopted from the CP-nets. Since CP-net is a more gen-
eral model for system design and analysis, we felt the
need to have a modified version devoted specifically to
the modeling of the process of concurrent system-level
synthesis. Therefore, MOBnet extends the basic Petri
net model in the following ways: (1) define multiple
tokens to represent different synthesis control informa-
tion, (2) use object-oriented nodes (places) to represent
concurrently synthesizable system parts, and (3) use bi-
directional arcs for the modeling of design completion
check and synthesis rollback, the two problems induced
by concurrent synthesis.

The paper first describes the concurrent object-
oriented synthesis process and our motivating goals in
Sect. 2 and then gives a formal definition of the MOBnet
model in Sect. 3. Model validation is covered in Sect. 4.
The modeling of the solution schemes for the two con-
current synthesis problems, namely, design completion
check and synthesis rollback, are depicted in Sect. 5 and
Sect. 6, respectively. Section 7 illustrates the use of the
model in application examples. Finally, conclusion and
future work are given in the last section.

HSIUNG et al: MOBNET: A PETRI NET MODEL FOR SYSTEM-LEVEL SYNTHESIS

2. Concurrent Synthesis and Motivating Goals

2.1 Concurrent Object-Oriented System-Level Synthe-
sis

System-level synthesis is defined as the design automa-
tion of a parallel computer hardware system satisfying
user-given system-level specifications and design-specific
constraints. Object-oriented design is the encapsulation
and modeling of system parts or individual components
as object classes with design characteristics, class func-
tions, and inter-class relationships. A hierarchy of such
component classes can be constructed prior to the syn-
thesis process. When each of the component classes is
permitted to be actively participating in its own synthe-
sis, such classes are said to possess a certain degree of
self-autonomy and the whole design process is known
as concurrent synthesis.

233

An example of concurrent object-oriented system-
level synthesis is the methodology given in [13], called
the Object-Oriented Concurrent Synthesis Methodology
(OOCSM). This methodology is an integration of four
major techniques: object-oriented modeling, concurrent
synthesis, fuzzy logic, and machine learning. As shown
in Fig. 1, object-oriented modeling considered here is
an extended version of the Object-Modeling Technique
(OMT) proposed by Rumbaugh et al. [14]. Each sys-
tem part is modeled as an individual component object;
the objects are classified into aggregate nodes (A-nodes),
generalized nodes (G-nodes), and physical or leaf nodes
(P-nodes), depending on the relationship they have with
their child classes. There are three types of relation-
ships known as aggregation, generalization[14], and de-
pendence[13]. Aggregation denotes the “whole/part”
relationship in which classes of components are “part-
of” the class representing the “whole” assembly. Gener-

Object-Oriented Object-Oriented Object-Oriented MOBnet
Structure Relationship Operator Transitions
assembly

|4-node class T
aggregation iterator !
. u

component synthesis

classes l

G-node—y superclass T
generalization generator 4

subclasses specialization
e——
dependent classes +— dependence —s updator "'
A-node: aggregate node, G-node: generalized node

Object-oriented relationships and operators.

Fig. 1
s
Memory System
Subsystem [nterconnect

A

A-node
Processing Global Control
Subsystem Unit

Bus

- Globallly Globally Distributed | CCU
Primary J| Shared Dnslnbuled Unshared

Shared] MIN |@

| Secondary I l_s—hared l I

Processor {| Interface

Cccu
Interface

170] 110

P
Cluster
¢

l heduler "1/0 ln?“Buffer Processor—l ILocal Memoryl

Eha:ed Bus]

|Hypercube /S

Fig. 2 Class hierarchy.

234

alization is the relationship between a class and its one
or more refined versions. When two component classes
are inter-related with respect to their design character-
istics, they are said to have a dependence relationship.

A Class Hierarchy is shown in Fig.2 for illustra-
tion. A component class is synthesized by traversing
down the hierarchy of object classes and selecting the
proper synthesis action (object-oriented operator) ac-
cording to the object-oriented relationship between a
parent class and one of its child classes. As described
in OOCSM, the object-oriented operators used during
the synthesis process are iterator, generator, and upda-
tor, which correspond to the aggregation, generalization,
and dependence relationships, respectively.

2.2 Motivating Goals

Concurrent object-oriented synthesis induces two con-
trol-related problems, namely, identifying the comple-
tion point of the concurrent processes and clearing the
deadlock-like situation caused by unsatisfiable specifica-
tions, which are solved by the design completion check
and synthesis rollback mechanisms modeled by MOBnet
in Sect. 5 and Sect. 6, respectively. In addition, MOBnet
is also useful as a pre-fabrication design methodology
analysis tool in the following ways:

(i) Class Hierarchy Construction: The choice of im-
posing a dependence relationship between two
component classes impacts both the validity of
the final synthesized design as well as the de-
sign process itself. Prior to the actual design,
MOBnets can compare the effects before and af-
ter imposing any such dependence relationship
using the two cases in the proof of Theorem |
(Sect. 4).

(ii) Design Specification Comparison: Often two de-
sign alternatives may differ very little in their
specifications, thus affecting only a small por-
tion of the whole design. In such cases, MOBnets
can be used to compare the differential effect of
their specifications on the final design, by virtu-
ally synthesizing them using the guard functions
and arc expressions of MOBnet in Eq.(11).

(iii) Reachability Analysis. 1t is quite time-consuming
and resource-wasting to reach a stage where the
almost-completed synthesis process has to be
rolled back. Such undesirable situations can be
avoided by using the reachability analysis mech-
anism provided by MOBnets (Theorem 2).

(iv) Concurrent Process Management and Analysis:
In contrast to a serial design scheme, a concur-
rent one requires an overall analytic framework,
within which process management can be dis-
cussed and analyzed. MOBnet is one such frame-
work as each design thread starting from the root

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 2 FEBRUARY 1997

place represents a component synthesis process.
Interactions among the threads or processes is ac-
complished through the dependence relationship
and dependence checking mechanism as detailed
in Case 2 of Theorem 1.

3. Multi-Token Object-Oriented Bi-Directional Net
Model

Petri net is an effective modeling tool for the descrip-
tion and analysis of concurrency and synchronization
in parallel systems[15]. A standard Petri net (PN) is
defined as a 3-tuple, (P, T, A), where P is a set of places,
T is a set of transitions, and ACP x TUT x P, the
set of arcs. The PN depicted in Fig.3 comprises five
places and five transitions. The state of a Petri net is
depicted by places having tokens and such a state is
called a marking. A transition is enabled when all of
its input places contain at least one token. An enabled
transition can fire by removing one token from each in-
put place and placing one token in each output place.
Each firing of a transition modifies the distribution of
tokens on places and thus produces a new marking for
the PN.

Natural concurrency and synchronization in Petri
nets can be used to accurately model the concurrency in
the synthesis process. This is one of the main reasons
for using Petri nets as our basic modeling approach, but
Petri nets, in its standard form, is quite limited in its
modeling capabilities. Though there are two high-level
Petri nets in popular and wide use nowadays, namely,
Predicate/Transition nets (PT-nets) and Colored Petri
nets (CP-nets), yet both are too general to be applied
directly in modeling system-level synthesis. We provide
a modified version of Colored Petri nets, called Multi-
token Object-oriented Bi-directional net (MOBnet).

MOBnet is a high-level Petri net, where places de-
note component classes, transitions represent synthe-
sis actions, arcs specify the hierarchical relationships
among classes, and tokens provide control informa-
tion related to synthesis, dependence, design comple-
tion, and rollback. An example of MOBnet is shown
in Fig.4. Places in MOBnet are classified into three
classes: p,, pg, and p; corresponding to the aggregate,

P

P2 D3

A 15 3

Pa Ps
I

Fig. 3 A standard Petri net example.

HSIUNG et al: MOBNET: A PETRI NET MODEL FOR SYSTEM-LEVEL SYNTHESIS

235

Pcuster

Pcache Pconirotier

{

Pec Psc

Pas pos Peo Pou

@ = synthesis token (ky)

Pscheduler Prurier
Puo-tar

Note: For ease of illustration, the arc from each transition to its parent place has
been omitted, except for pcs, Pus» Pees Pocus and the instantiation transition
connected to each leaf place with its surrounding arcs have also been omitted,
except for Ppeeson and only one dependence has been illustrated in this
example (/g between pcy and Pecy.g)-

Fig. 4 A MOBnet example.

generalized, and leaf (physical) component classes, re-
spectively. MOBnet transitions are classified into four
types: t,, tg, and tq corresponding to the aggregation,
generalization, and dependence relationships among the
component objects, respectively, and ¢; is used for the
instantiation and the possible synthesis rollback of leaf
places. Arcs in MOBnets connected to ¢, or t, are bi-
directional in nature comprising the top-down synthe-
sis direction (the forward direction) and the bottom-
up completion checking direction (the reverse direc-
tion); arcs connected to t4 are also bi-directional in
nature comprising the dependence checking direction
(the forward direction) and the dependence response
direction (the reverse direction). There is an additional
arc from each transition to its parent place, which is
used for synthesis rollback. Four types of tokens are
defined, namely, synthesis (ks), dependence (k;), com-
pletion (k.), and rollback tokens (k,.). A synthesis to-
ken enables synthesis transitions (t, and ty). A depen-
dence token is used for checking the synthesis status of
the class (place), which has a dependence relationship
(transition) with the class (place) containing a synthe-

sis token. A completion token notifies parent classes
(places) of the completion of child class syntheses, and
a rollback token requests parent or dependent classes
(places) to relax design specifications so that the syn-
thesis of a child or a dependent class (place) is possible.
Note that synthesis tokens traverse only in the forward
(synthesis) arc direction, completion tokens and roll-
back tokens traverse only in the reverse arc direction,
and dependence tokens traverse in either arc directions.
The above informal presentation gives a brief idea
of what MOBnet is and how it models synthesis. The
rest of this section will give a more formal definition of
MOBnet (Definition 2) and some related definitions.
Definition 1 (Multi-Set): A multi-set m, over a non-
empty and finite set S, is a function m € [S — NI,
where N is the set of non-negative integers and w(s) €
N is the number of appearances of the element s € S in
the multi-set m. The multi-set m can be represented
by a formal sum:) _cw(s)s, and let Sps denote
the set of all multi-sets over S. For example, given
S ={a,b,c,d, e}, m; = a+2c+e and my = a+2b+3c+e
are both members of Sy;g. a

236

Some other notations used are: the type of a vari-
able v is denoted by Type (v) and the set of variables
in an expression expr is denoted by Var (expr).
Definition 2 (MOBnet): A MOBnet is a tuple
MOBN = (K,P,T,A,N,C,G,E,F,S) where:

(i) K is a finite set of tokens, K = {ks, k¢, ka, kr}.

(i) P is a finite set of places, P € Pj,;q, where
P = {pa7pg7pl}'

(iii) T is a finite set of transitions, T € T4, where
T, = {ta’tgvtdvti}~

(iv) A is a set of arcs, ACP xTUT x P and
Y(ai,az) € A= (az,a1) € A.

(v) N is a node function, N : A — P, i.e., each arc
is mapped to its connected place.

(vi) C is a token function, C : P — K5, mapping
each place to the multi-set of tokens that are al-
lowed at that place.

(vii) G is a guard function, G : T — {true, false}
and Var(G(t)) € Kyg foranyt e T.

(viii) FE is an arc expression function. It is defined
from A into expressions such that:
Va € A: [Type(Var(E(a))}) € C(N(a))].

(ix) F is a direction function, F' : A — D, where
D = {dy,d,} and dy and d, are the forward and
reverse directions, respectively.

Let a € A, a = (a1,az2), if a; is a parent of
ag in the MOBnet hierarchy or (a; = N(a) and
az = tq), then F(a) = dy, else if a1 is a child of
as or (a; =ty and ap = N(a)), then F(a) = d,.

(x) S is a status function,
S:P—{-1,0,1}, where ¥p € P,
—1, if synthesis not yet started
S(p) = 0, if still under synthesis a
1, if synthesis completed
Besides specializing K, P, and T from CP-nets,
MOBnet introduces two new functions, the direction
function, F, and the status function, S, for model-
ing synthesis actions and component status, respectively.
An example of MOBnet is shown graphically in Fig. 4
with P = 9p, +3p,+23p; and T = 9t +3t,+ 23t + 14.
Definition 3 (Binding Type and Bindings): For a
transition ¢ € T with variables Var(G(t)) =
{vi,va,...,v,}, the binding type BT(t) is de-
fined as: BT(t) = Type(vi) x Type(ve) x ... X
Type(v,). The set of all bindings B(t) is defined as:
€1,¢2,...,¢n) € BT(t) |

B(t) = { g(t)(vl =C1,V2 =Cg,...,Un = Cp) }’ where
G(t){v1 = ¢1,v2 = ¢a,...,v, = cp) denotes the eval-
uation of the guard expressions G(t) in the binding
{c1,62,. .., ¢4).]
For example, if G(t) = zks + ykg, x =1,y 2 0,
where x, y are non-negative integers and r is an arc

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 2 FEBRUARY 1997

connected to ¢t € T', then (1, 0) is a binding.
Definition 4 (Token Distribution): A token distri-
bution is a function M, defined on P such that M(p) €
C(p)ms for all p € P. A binding distribution is a
function Y, defined on T such that Y (t) € B(t)ys for
all t ¢ T. A marking of a MOBnet is a token dis-
tribution and a step is a non-empty binding distribu-
tion. For example, the initial marking of MOBnet is
Min : M(pcs) = {ks}. o

For any two markings, M; and M., relations +
and < are defined as follows:

(i) M+ M, iff 3pe P:M(p)+ Map).

(i) M; <M, iff Vpe€ P:M(p) £ Ma(p).
The other relations <, =, >, and = are defined
analogously to <.
Definition 5 (Step Enabling): A stepY isenabled in
a marking M iff the following property is satisfied:

VpeP:| > E(pt)(b) < M(p) (N

(t,b)ey

where the relation < is defined analogously to that for
M. O
For example, if p = pccy in Fig. 4 and M (pccu) =
ks + 5ka, E(pccu,ta) = ks +ykg, =1,y 21 (ref.
Eq.10), then Y(¢,) = (1,1),(1,2),...,(1,5) are all en-
abled in M(pccu).
Definition 6 (Direct Reachability): When astepY is
enabled in a marking M, it may occur, thus changing
the marking M; to another marking M, defined by:

Vpe P:
_ J(Mi(p) = X1 pyey Ep2)(B)) 2)
[M2(p) a {"‘ do(thyey E(tale);/@ H

M, is said to be directly reachable from Af; by
the occurrence of the step Y, which can be denoted by
MY M;. For example, referring to Fig. 4, the marking
M, (a kg in each of pus, pps, psi, and pgey) is directly
reachable from M; (a k,; in pcs). O

Definition 7 (Finite Occurrence Sequence): A finite
occurrence sequence is a sequence of markings and
steps: M Y1 MoYs ... M, Y, M,,1, such that n € N/, and
M;Y;M;,, for all i € N'*, the set of all positive inte-
gers. m]
Definition 8 (Reachability): A marking M, is
reachable from a marking M, iff there exists a finite
occurrence sequence having M; as start marking and
M, as end marking, i.e., iff there exists for some n € N
a finite sequence of steps such that: M;Y1Y5... Y, M.
O
For example, let M; = My, the initial marking,
through a sequence of steps Y; = Y5 = (1,0), the mark-
ing M(psg) = ks is reached, where psg is the place
representing Shared Bus.

HSIUNG et al: MOBNET: A PETRI NET MODEL FOR SYSTEM-LEVEL SYNTHESIS

4. Model Validation

Having known the static structure of the MOBnet model,
its dynamic behavior must be investigated in order to
prove that it is a valid model for synthesis. This section
shows how MOBnet models the dynamic behavior of
concurrent object-oriented synthesis.

As described in [16], conceptual models can be
validated using five different analysis techniques: face
validity analysis, historical analysis, intended use and
requirements analysis, model concepts and fidelity anal-
ysis, and logic trace analysis. The MOBnet model, be-
ing a conceptual model of the synthesis process, needs
to be validated before any further use. We base our val-
idation of the MOBnet model on two techniques: the
Model Derivative Analysis, a kind of historical analysis,
and the Requirements Analysis.

Definition 9 (Model Derivative Analysis): Model
Derivative Analysis is the process where the informa-
tion from any assessments of a previous model, upon
which the current model is based, is reviewed, changes
between the two models compared, and areas needing
reassessments determined. O

Definition 10 (Requirements Analysis):

Requirements Analysis involves review of the intended
use to derive critical requirements for the effective use of
resources. This method familiarizes the analyst with the
capabilities of the model, verifies that the requirements
of the intended use are supported by the model, and

Case 1(a): Only A-transition (tg)

N S-token

G

Case 1(b): Only G-transition ()

Y Ne)

Mg NMg)

e =synthesis token w = dependence token

MN(r) = aggregate node

N(q) not yet
started synthesis
or completed

synthesis ¥

237

provides a mechanism to focus the efforts during the
application phase on the critical portions of the model.
This method of analysis involves criticality analysis and
system analysis.]
MOBnet is a modified version of the Colored Petri
nets, therefore based on Model Derivative Analysis, we
are allowed to use all the results of analysis performed
on the CP-nets, which are unaffected by our modifi-
cations. The analysis specific to our modifications is
performed using the method of Requirements Analysis.
Definition 11 (Model Validity): A synthesis model
is said to be a valid model if it can correctly and con-
sistently model all synthesis actions, their concurrency,
and the synchronization among the actions.]
The following theorem shows that the MOBnet
model is a valid one.
Theorem 1: The MOBnet model is a valid model for
concurrent object-oriented synthesis.
Proof: There are mainly two synthesis operators in
an object-oriented synthesis environment, namely, iter-
ator and generator[1],[13], corresponding to the ag-
gregation and generalization relationships between ob-
jects[14]. The actions of these operators are modeled
by the transitions, t, and t4, respectively. The concur-
rency of synthesis actions is modeled by the concurrent
enabling and firing of the corresponding transitions. As
shown in Fig. 5, two cases are distinguished: synthesis
without dependence and synthesis with dependence. In
the proof below, unless otherwise specified, r and ¢ are

Case 2: At least one D-transition (1)

d
v
N{q) still under
synthesis

A = completion token

N(q) = generalized node

Fig. 5 MOBnet: Model validation.

238

arcs in A such that F(r) = dy, F(q) = d,, and N(r) and
N(q) are the places connected hierarchically above and
below the transition under consideration, respectively.
Case 1: Synthesis without dependence

The synthesis-specific guard functions for t € {t,,t,,t;}
are defined as follows:

G1(t) : [M(N(r)) = ks N F(r) = dy] 3)

where 7 is an arc in A connecting a place, N(r), to t in
the forward (synthesis) direction.

As seen from the above guard functions, t €
{tastg,t;} is enabled as soon as there is a synthesis token
in the place connected hierarchically above t. Hence,
more than one transition may be enabled simultane-
ously for modeling the concurrent nature of synthesis.

The synthesis actions are modeled through the arc
expressions as follows:

El(() ta) = k's and
Ei(ta,N(q)) = ks V child place N(q);
Ei(N(r),t;) = ks and 5
(tg’N(Q)) = k, if N(qg) selected; (
E(N(r),t;) = ks and

Ei(t;, N(r)) = k. if N(r) instantiated;

The above arc expressions mean that when a tran-
sition ¢t € {tq,t4,t;} is fired, the synthesis token is re-
moved from N(r) and a synthesis token added to each
N(q) connected to t,, to only those N(g) connected to
tgy that have been selected for further synthesis by the
design methodology, and a completion token added to
the leaf place N(r) if it can be instantiated under the
given specifications.

Case 2. Synthesis with dependence

MOBnet uses the dependence transition, t4, to model
the dependence relationship between objects. When-
ever a place, N(r), connected to a ty4 transition, receives
a synthesis token, k., it must first verify whether its
dependence on other object classes will affect its own
synthesis. This verification comprises two firings of t4:
a check-request firing (d1) and a check-response firing
(d2). The check-request firing of t; occurs as soon as
the place N(r) receives a k, token.

Gar(ta) : [M(N(r)) = k] (5)

On the first firing of ¢4, the synthesis token ks is
not removed, but a dependence token, k4, is added to
all the places N(q), which are connected to ¢, and have
a dependence relationship with N(r).

Edl(N(T‘),td) =0 and Edl(td,N(q)) = kd (6)

The second firing of t; occurs when the place, N(q),
receives a dependence token, k4, (as a result of the first
firing of ¢;5) and if the synthesis status of N(q) is —1
(synthesis not yet started) or | (synthesis completed).

Gus(ta) : %(NN(Q)); ko M (N@)=ka]

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 2 FEBRUARY 1997

On the check-response firing, the dependence token,
kg, is removed from N(q) and a dependence token, k4,
added to N(r).

Edg(N(q),td) = kd and Edg(td, N(T)) = kd (8)

The synthesis-related transition (¢4, t4, or t;) con-
nected to the place N(r) is fired only when N(r) has
a synthesis token and = dependence tokens, where x is
the degree of dependence of N(r) (i.e., the number of
places that N(r) depends on), and z = 1.

Go(t) : [M(N(r)) =k, + kg A F(r) = ds],z 2 1
9
Es(N(r),t) = ky + akgyz 2 1 (10)

Hence, in general, summarizing the above two
cases, Eq.(3) to Eq.(10) can be combined into the fol-
lowing Eq.(11):

Vx g O,t S {taatgvti}a
G(t) : [M(N(r)) = ks +xde(F(r) dg)l;

G(ta) : [M(N(r)) = ko] Vv [M(N(r)) = ki

AM(N(q))—deS((@) * 0;
E(N(r),t) = ks + zkg,z 20 and

Ey(t,N(q)) = ks; (an

Eq1(N(r),tg) =0 and

V N(q) dependent with N(r),

Eai(te, N(q)) = ka;

E2(N(q),ta) = ka and Eg(ta, N(r)) = kq

In summary, the concurrency of synthesis actions
in a concurrent object-oriented design environment can
be modeled by the concurrent enabling of guard func-
tions and firing of transitions in MOBnets (Eqgs. (3) and
(5)). Object-oriented synthesis actions, such as itera-
tion, generation, and instantiation, are modeled by the
arc expressions in Eq.(4). Synchronization among the
synthesis actions is modeled by the check-request fir-
ings (Eqgs.(5) and (6)) and the check-response firings
(Egs. (7) and (8)) of MOBnets. From the above discus-
sion, we conclude that MOBnet can accurately model
all concurrent synthesis actions, their concurrency, and
their synchronization, which makes MOBnet a valid
model by Definition [1. a

5. Modeling Design Completion Check

Concurrent design poses two problems that must be han-
dled by a synthesis kernel, and thus needs modeling and
analysis. One of the problems is the determination of
exactly when the design will be completed and the other
is the probable necessity for rollback of synthesis steps.
Since system parts undergo synthesis concurrently, it be-
comes quite difficult to grasp the exact synthesis status
of the full system under design. One solution is for
the individual system part to send an acknowledgment

HSIUNG et al: MOBNET: A PETRI NET MODEL FOR SYSTEM-LEVEL SYNTHESIS

of completion to its parent class once it has undergone
complete synthesis. Once the root of the hierarchy re-
ceives a message of design completion, we are sure that
the design is complete, otherwise there exist some unsat-
isfiable specifications that have hindered design comple-
tion. This blocking of design completion will be dealt
with in Sect. 6.

As shown in Fig. 6, design completion check is
modeled using completion tokens in MOBnet. This
checking process propagates in the direction exactly
opposite to that of synthesis. Synthesis is top-down
whereas completion check is bottom-up. As soon as
a leaf (physical) place has undergone object instantia-
tion (firing of ¢;), a completion token is added to it. An
aggregation transition, ¢, is fired in the reverse (bottom-
up) direction as soon as there is a completion token in
each of the child places connected to ,.

Ge(ta) : Vg, F(q) = d A M(N(q)) = k| (12)

A generalization transition, t,, is fired in the re-
verse (bottom-up) direction as soon as there is a com-
pletion token in at least one child place connected to
t
g

Ge(ty) : [3g, F(q) = dr A M(N(q)) = k] (13)

For the t; transition connected by an arc r to a leaf

Case 1: A-transition (t,)

A = completion token

Fig. 6 MOBnet: Modeling design completion check.

239

place, N(r), if the specifications of N(r) can be met
(i.e., meet(spec(N(r)))), then ¢; will be fired.

G.(t;) : [meet(spec(N(r)))] (14)

On firing of a transition ¢t € {t,,t,} in the reverse
direction, all completion tokens are removed from child
places and one added to the parent place.

Vq,F(q) =d,,E(N(q),t) = k. and

E(t, N(r)) = ko, VE € {tasty} (15)

Three special markings of MOBnet: the initial
marking, My (M(pcs) = ks), the design-complete
marking, Mpc(M(pcs) = k.), and the synthesis-
rollback marking, Msg(M (pcs) = k), are shown in
Fig.7, where pcs is the root place representing the
Computer System (CS).

Lemma 1: There exists a marking M(p) = k., for
some p € P, that is unreachable from My iff Mpc is
unreachable from M;y.

Proof: Suppose Ip € P such that the marking M (p) =
k. is unreachable from My . Since M (p) is unreachable
from M;y, the corresponding guard function (Eq. (12),
(13), or (14)) of the transition t € {t4,t4,t;} connected
hierarchically below p is never enabled in any step Y'().
Hence, by Eq.(15), no completion token, k., is placed
in any ancestor place of p, this means that the guard
functions (Egs. (12)—(14)) of all transitions connected
hierarchically above p will never be enabled, among
which one of the transitions is connected to the root
place, pcs. Thus, there does not exist any step in which
the transition connected below pcs is enabled, hence,
Mpc is unreachable.

Now suppose Mpc is unreachable from My, that
is, the guard function (Eq.(12)) of the transition, %,,
connected below pcs, cannot be enabled in any step
Y (t,). That means, there exists at least one child place,
p, connected to t, which does not own a completion
token, k.. This, in turn, means depending on the tran-
sition, t,, t,, or t; connected below that child place, the
transition’s guard function (Egs. (12)-(14)) cannot be
enabled. Hence, there exists at least one place, p, such
that M (p) is unreachable from M;y. |
Theorem 2: Mpc, is reachable from My, iff the de-
sign can be completed under the given specifications and
constraints.

Initial Marking (Mjy) Design-Complete Marking (Mpy¢7) Synthesis-Rollback Marking (M)

root

Pes place

Pcs

@ = synthesis token

A = completion token

V =rollback token

Fig. 7 MOBnet Markings: My, Mpc, Msr.

240

Proof: We prove by contradiction. Suppose Mpc is
reachable from M;y and the design cannot be com-
pleted under the given specifications and constraints,
which means there exists at least one physical object,
represented by a leaf place, p, whose specifications can-
not be satisfied. Hence, the marking M (p) = k. is un-
reachable from M;y. From Lemma I, if M(p) is un-
reachable, then Mpc is also unreachable, but this con-
tradicts the statement that Mpe is reachable from M.
Hence, our assumption is wrong, there is no such unsyn-
thesizable leaf place, p. Now, suppose the design can be
completed, but Mp¢ is not reachable from M;y. From
Lemma 1, since Mpc is not reachable, there exists a leaf
place, p, such that M(p) is not reachable. Hence, there
is at least one physical object, represented by p, that
cannot be synthesized; this means the design cannot be
completed, in contradiction with our assumption. O

6. Modeling Synthesis Rollback

When Mpe is not reachable from M;y, the synthesis
process is blocked due to the existence of object places
with unsatisfiable specifications such that synthesis can-
not be completed. To overcome such a deadlock-like
situation, a rollback of synthesis actions, called synthe-
sis rollback, is performed starting at the unsynthesizable
object place, and propagating in the reverse (bottom-
up) direction until a place with relaxable specifications
is encountered.

As illustrated in Fig.8, MOBnet models synthesis
rollback using the rollback token whose function is sim-
ilar to the antimessages used in the simulation time-
warp mechanism [17]. As mentioned in Sect. 3, there is
an arc from each transition to its parent place, which
is used for synthesis rollback. When a place N(r) is
found unsynthesizable, the connected synthesis transi-
tion t € {t,,t4,t;} is enabled (Eq.(16)) and fires, thus
removing the synthesis token and adding a rollback to-
ken to itself (Eq. (17)).

(M(N(r)) = ks + xkq)

Gr(t) : A {—~meet(specs(N(r)))) (16)
E.(N(r),t) =k, + kg and (17)
E.(t,N(r)) = k.

Rollback is propagated upwards as long as the
unsatisfiable specifications are not relaxed. Suppose
a place N(r;) has a rollback token which contains
an unsatisfiable specification inherited from N(r3). If
N{(r1) cannot relax the specification, then the transition
t € {ta,tg,tqa} connected between N(r;) and N(ry) is
fired in the reverse direction and a rollback token placed
in N(rz), thus propagating rollback information. If
N(rz) can relax the specification, then ¢ is fired and
a synthesis token placed in N(r;y), thus allowing the
resynthesis of N{rz) and all concerned child places.

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 2 FEBRUARY 1997

exists

specification
¥ not relaxable

specification
relaxable]

N(ra)

further synthesis

rollback propagation
V = rollback token
Fig. 8 MOBnet: Modeling synthesis rollback.

e = synthesis token A = completion token

vt € {ta,tg, ta}, (18)
Gy (t) : [Fr1, (F(r1) =dr A M(N(ry)) = k)]

E.(N(r1),t) =k, and

kr, if spec. of N(rq)
is not relaxable

ks, otherwise.

E,(t, N(ra)) = (19

Synthesis rollback of the complete system becomes
necessary if the marking, Mgpg, is reachable from the
initial marking, M;y. When such a situation occurs,
the designer of the system is requested to relax the sys-
tem specifications if possible.

Inter-relating design completion check (Sect. 5) and

synthesis rollback (Sect. 6), we have the following theo-
rem.
Theorem 3: The design-complete marking, Mpc, in
a MOBnet is reachable (or unreachable) from the ini-
tial marking, M;y, iff the synthesis-rollback marking,
Mgg, is unreachable (or reachable) from M;y.

7. Application Example

The MOBnet model for the Class Hierarchy of Fig.2 is

HSIUNG et al: MOBNET: A PETRI NET MODEL FOR SYSTEM-LEVEL SYNTHESIS

shown in Fig.4. An example is given in this section to
illustrate the modeling of synthesis rollback. The case of
a possible relaxation of unsatisfiable specification and
resynthesis after two steps of rollback is illustrated.
The target multiprocessor system, as synthesized
by OOCSM [13], is an Alpha-21064 chip-based SIMD
Shared Memory Architecture (SMA) with Globally
Shared (GS) memory and a Multistage Interconnection
Network (MIN) as the system interconnection.
1. Synthesis. As shown in Fig.9, starting with the ini-
tial marking, My : M(pcs) = ks, the transition, t,,
connected to pcg is enabled (Eq.(3)) and fires by re-
moving the synthesis token, k,, from pcs and by adding
a synthesis token to each place hierarchically connected
below t, (Eq.(4)), that is, pms, Pps, Psi» and pgcu. Let
us consider only the synthesis of pgcy in this exam-
ple. The addition of a synthesis token to pgcy enables

I-lnst /710 JPPE Peey, Prrocessor PUO-nd PCCU-Ind
st pLi ppe | POCU PProcessor PUo-mi| POCU-ntt ps pup e P £ 8

synthesis
not possible

specification
not relaxed
by CCU-1ntf

specification
relaxed by
GCU, enabling
resynthesis

l

Resynthesis of the sub-tree
rooted at pgey and of pecy.

*=synthesis token
A=completion token
s=dependence token
Y=rollback token

(1) = Initial Marking, M;N

(2,3) = Synthesis (1)

(4,5) = Design Completion Check
(6,7) = Dependence Check

(8-10) = Synthesis Rollback

Fig. 9 MOBnet: Application example.

241

the transition, t,, connected below pgcy to fire such
that the token is removed from pgcy and one added
to pccu.n- The enabling and firing of transitions re-
peat and we reach a stage where pccy has a synthe-
sis token. Since CCU and CCU-Intf are dependent ob-
jects, the dependence transition ¢4 connecting pccu and
pecu-me 15 enabled (Eq. (5)) and fires (Eq. (6)). Here,
CCU-Intf is assumed to be already synthesized, hence
tq is enabled again (Eq.(7)) and fires in the opposite
direction (Eq.(8)), resulting in a synthesis token and a
dependence token (containing information on the Data
Transfer Rate (DTR) specification of CCU) in pccu.

2. Synthesis Rollback: Suppose the specifications of
the Cluster Control Unit (CCU) are: DTR = 256 KB/s,
Throughput = 40 MB/s, and Cost < $500

Suppose the object, CCU, begins self-synthesis (i.e.,
a synthesis token is placed in pccy) and after depen-
dence checking, the t, connected to pccy fires and finds
that if it is synthesized, its DTR is at most 250 KB/s;
hence, synthesis is impossible. Now, the transition, .,
connected below pccy is enabled (Eq.(16)) and fires
(Eq.(17)) by removing ks and k4 from pccy and adding
a rollback token to pccy. According to Eq.(18), this
enables the rollback of pccy.ims, thus requesting it to
relax its DTR lower bound, if possible.

Since the design of the CCU-Intf might affect the

other components within the GCU, a rollback token is
added to pccu.am. enabling the connected transition, ¢,,
and thus propagating the rollback to GCU. Now, accord-
ing to Eq. (19), GCU relaxes DTR and resynthesizes itself
by adding a synthesis token to pgcuy, thus the CCU-Intf
is resynthesized using the relaxed specification. CCU can
now synthesize itself, under the given specifications.
3. Design Completion Check: Suppose that after the
firing of each instantiation transition ¢; connected to
the leaf places pscheguler> P1/0-1ntfs and ppufer and adding
a completion token to each of them; the ¢, connected
above these leaf places is now enabled (Eq.(12)) and
fires in the reverse direction by removing all comple-
tion tokens from the leaf places and adding a comple-
tion token to pccy (Eq.(15)). This design completion
information is propagated upward until the root place
(pcs) receives a completion token, thus reaching Mpc
from M;n.

8. Conclusion and Future Work

A formal model called Multi-token Object-oriented Bi-
directional net (MOBnet) model was proposed for the
concurrent object-oriented system-level synthesis. It was
first proved to be a valid model in modeling synthe-
sis actions, their concurrency, and the synchronization
among them. Then, the analysis of the dynamic behav-
ior of the model was performed by modeling solution
schemes for the design completion check and synthe-
sis rollback problems in a concurrent synthesis environ-
ment. The validation and dynamic behavior analysis

242

of MOBnets presented in this paper show that it can
be quite a helpful model for synthesis in ways such as
class hierarchy construction, design specification com-
parison, reachability analysis, and concurrent process
management and analysis. Application examples have
shown how MOBnet can be successfully applied to real
synthesis problems.

Acknowledgment

This research was supported by the National Science
Council, Taipei, Taiwan under grant NSC 85-2623-
D002-015.

References

[1] P.A. Hsiung, SJ. Chen, T.C. Hu, and S.C. Wang, “PSM:
An object-oriented synthesis approach to multiprocessor
system design,” IEEE Trans. VLSI Systems, vol.4, no.l,
pp.83-97, March 1996.

[2] R.H. Katz, “Managing the chip design database,” IEEE
Computer, vol.16, no.12, pp.26-35, Dec. 1983.

[3] P.R. dos Santos, H. Sarmento, and L. Vidigal, “Ghost/
Spook, user interface and process management in the Pace
framework,” Proc. European Design Automation Confer-
ence, pp.501-505, March 1990.

[4] H. Sarmento and P.R. dos Santos, “Pace—a framework
for electronic design automation,” Proc. IFIP WG 10.2
Workshop on Electronic Design Automation Frameworks,
pp-85-97, Nov. 1990.

[5] P.van den Hamer and M.A. Treffers, “A data flow based ar-
chitecture for CAD frameworks,” Proc. International Con-
ference on Computer-Aided Design, pp.482—485, 1990.

[6] M. Bushnell and S.W. Director, “Automated design tool
execution in the Ulysses design environment,” IEEE Trans.
CAD of Integrated Circuits and Systems, vol.8, no.3,
pp.279-287, March 1989.

[7] P. van der Wolf and T.G.R. van Leuken, “Object type
oriented data modeling for VLSI data management,”
Proc. 25th ACM/IEEE Design Automation Conference,
pp.351-356, June 1988.

(8] P. van der Wolf, P. Bingley, and P. Dewilde, *“On the ar-
chitecture of a CAD framework: The Nelsis approach,”
Proc. European Design Automation Conference, pp.29—
33, March 1990.

[9] C.A. Petri, “Kommunikation mit automaten,” Schriften
des IIM Nr. 2, Institut fur Instrumentelle Mathematik,
Bonn, 1962. English Translation: Technical Report
RADC-TR-65-377, Griffiss Air Forse Bas, New York,
vol.1, suppl. 1, 1966.

[10] K. Jensen, “Colored Petri nets and the invariant method,”
Theoretical Computer Science, vol.14, pp.317-336, 1981.

[11] K. Jensen, “High-level Petri nets,” Applications and
Theory of Petri Nets, ed. G. Rozenberg Informatik-
Fachberichte, vol.66, Springer-Verlag, pp.166—180, 1983.

[12] K. Jensen, “Colored Petri nets,” Petri Nets: Central Models
and Their Properties, in Advances in Petri Nets 1986 Part
I, Lecture Notes in Computer Science, vol.254, Springer-
Verlag, pp.248-299, 1987.

[13] P.A. Hsiung, “System Level Synthesis for Parallel Comput-
ers,” Ph.D. Dissertation, Graduate Institute of Electrical
Engineering, National Taiwan University, June 1996.

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, “Object-Oriented Modeling and Design,”

IEICE TRANS. INF. & SYST,, VOL. E80-D, NO. 2 FEBRUARY 1997

Prentice-Hall, Englewood Cliffs, 1991.

[15] K. Jensen and G. Rozenberg, eds., “High-level Petri Nets
Theory and Application,” Springer-Verlag, Berlin, Heidel-
berg, 1991.

[16] P.L. Knepell and D.C. Arangno, Simulation Validation:
A Confidence Assessment Methodology, IEEE Computer
Society Press, Los Alamitos, CA., 1993,

[17] D.R. Jefferson, “Virtual time,” ACM Trans. Programming
Languages and Systems, vol.7, no.3, pp.404-425, July 1985.

Pao-Ann Hsiung received the B.S. de-
gree in mathematics and the Ph.D. de-
gree in electrical engineering from the
National Taiwan University, Taipei, Tai-
wan, ROC, in 1991 and 1996, respec-
tively. From 1993 to 1996, he was a Teach-
ing Assistant and System Administrator
in the Department of Mathematics, Na-
tional Taiwan University. Currently, he
_is a post-doctoral researcher at the In-
stitute of Information Science, Academia
Sinica, Taipei, Taiwan, ROC. His main research interests include:
system-level design automation of multiprocessor systems, formal
specification, modeling, and verification, parallel architecture de-
sign and simulation, and object-oriented design techniques in
system syntheses.

Trong-Yen Lee received the B.S. and
M.S. degree from National Taiwan Nor-
mal University, Taiwan, Republic of
China, in 1981 and 1988, respectively.
Currently he is a Ph.D. candidate in
the Department of Electrical Engineering,
National Taiwan University. His current
research interests include parallel archi-
tectures, simulation, and design automa-
tion systems.

Sao-Jie Chen received the B.S. and
M.S. degrees in electrical engineering
from the National Taiwan University,
Taipei, Taiwan, ROC, in 1977 and 1982
respectively, and the Ph.D. degree in
electrical engineering from the Southern
Methodist University, Dallas, USA, in
1988. Since 1982, he has been a member
of the faculty in the Department of Elec-
trical Engineering, National Taiwan Uni-
versity, where he is currently a full pro-
fessor. From 1985 to 1988, he was on leave from the National
Taiwan University and working toward his Ph.D. at the South-
ern Methodist University. During the fall of 1987, he held a
visiting appointment at the Department of Electrical and Com-
puter Engineering, University of Wisconsin, Madison. His cur-
rent research interests include: VLSI physical design automation,
object-oriented software engineering, and supercomputer archi-
tecture design and simulation. Dr. Chen is a member of the
Chinese Institute of Engineers, the Association for Computing
Machinery, the IEEE, and the IEEE Computer Society.

