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Hardware-Software Multi-Level Partitioning for

Distributed Embedded Multiprocessor Systems

Trong-Yen LEE†, Regular Member, Pao-Ann HSIUNG††, and Sao-Jie CHEN†, Nonmembers

SUMMARY A novel Multi-Level Partitioning (MLP) tech-
nique taking into account real-world constraints for hardware-
software partitioning in Distributed Embedded Multiprocessor

Systems (DEMS) is proposed. This MLP algorithm uses a gra-
dient metric based on hardware-software cost and performance
as the core metric for selection of optimal partitions and consists
of three nested levels. The innermost level is a simple binary
search that allows quick evaluations of a large number of possi-
ble partitions. The middle level iterates over different possible
allocations of processors (that execute software) to subsystems.
The outermost level iterates over the number of processors and
the hardware cost range. Heuristics are applied to each level to
avoid the expensive exhaustive search. The application of MLP
as a recently purposed Distributed Embedded System Codesign

(DESC) methodology shows its feasibility. Comparisons between
real-world examples partitioned using MLP and using other exist-
ing techniques demonstrate contrasting strengths of MLP. Shar-
ing, clustering, and hierarchical system model are some impor-
tant features of MLP, which contribute towards producing more
optimal partition results.
key words: distributed embedded multiprocessor system, multi-

level partitioning, codesign, clustering, sharing

1. Introduction

Most of today’s computerized embedded systems such
as coal mine monitoring and control systems [1], auto-
matic parking management systems, flexible manufac-
turing systems, and security systems are all Distributed
Embedded Multiprocessor Systems (DEMS). They are
distributed in more than one physical location, have
multiple processors and ASICs performing individual
functions at different locations, are embedded within
environment systems, and contain both hardware and
software parts. Traditional hardware-software coparti-
tioning techniques are based on task-graphs with edge
weights denoting communication costs, which is a flat
representation of system functionalities, and thus re-
sults in loss of information that could otherwise be
used for obtaining better copartitioning results. Tra-
ditional techniques thus fail to obtain good partitions
when DEMS are targeted.

A novel technique called Multi-Level Partitioning
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(MLP) is proposed for DEMS here, which is based on
objects, thus maintaining system hierarchy. Due to its
distributed characteristics, a DEMS has an inherent
hierarchy that allows a very large number of possible
hardware-software partition choices. The large number
of partitions is a result of the multiplication of manifold
choices to be made at each level: total number of sys-
tem processors, different allocation schemes of proces-
sors to subsystems, hardware-software copartitioning
within a subsystem, sharing of hardware among sub-
systems, sharing of software among subsystems, var-
ious clustering possibilities for hardware, and various
grouping possibilities for software on multiple proces-
sors. To cover all these possibilities in a DEMS, MLP
takes into account real-world system constraints such
as physical inter-distance between subsystems, sharing
of CPUs and ASICs among subsystems, modularized
hierarchical structure in distributed systems, cluster-
ing of hardware components, and grouping of software
modules.

MLP consists of mainly three nested levels: the
innermost binary search copartitioning (BSC) level, the
middle system structural partitioning (SSP) level, and
the outermost codesign space exploration (CSE) level.
The inner BSC level is the core part of hardware-
software copartitioning, where the metric used for com-
parison between two or more partitions is based on
hardware cost, software cost, hardware performance,
and software performance. Hardware clustering and
software grouping are performed at this level. The
middle SSP level iterates over possible allocations of
processors (that execute software) to the subsystems in
a DEMS. Heuristics are applied here to avoid exhaus-
tive iteration over all possible allocations. Hardware
sharing and software sharing are also considered at this
level. The outer CSE level iterates over the number
of processors feasible under user-given cost constraints.
Heuristics are also applied at this level so that iteration
is limited to near-optimal design points.

This article is organized as follows. Section 2 gives
some previous work related to DEMS codesign method-
ologies, existing partitioning techniques that target dis-
tributed systems, and how MLP is related to existing
techniques. Section 3 discusses Object Modeling Tech-
nique (OMT) upon which MLP is based. Section 4
describes MLP in detail. Section 5 demonstrates the
usefulness of MLP through several examples. Section 6
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concludes the article with some future work.

2. Previous Work

Hardware-software partitioning techniques for the 1-
CPU-1-ASIC topology have been studied by many
researchers. Gupta and De Micheli [2], [3] at Stan-
ford University developed the VULCAN co-synthesis
system, based on the Olympus high-level synthesis
[4]. COSYMA (COSYnthesis of eMbedded Architec-
tures), developed by Ernst et al. [5], [6] at Technical
University of Braunschweig, is an experimental co-
synthesis system for embedded controllers. Vahid et
al. [7] proposed a binary-constraint search algorithm for
hardware-software partition. The algorithm is based
on an iterative improvement partition algorithm such
as simulated annealing. Barros et al. [8] used a multi-
stage clustering technique to partition a system speci-
fied by the UNITY language. Jantsch et al. [9] added
a separate phase into GNU C compiler to partition
the implementation of a C program on a Sparc CPU
and an FPGA chip. Kalavade and Lee [10] proposed a
GCLP algorithm for hardware-software partition. The
application is represented by a directed acyclic graph,
where nodes are processes and arcs are data or control
precedences between nodes. The GCLP algorithm has
been integrated into Design Assistant [11], a system-
level codesign framework.

As far as the n-CPU/m-ASIC topology is con-
cerned, related works are fewer. Yen and Wolf [12] pro-
posed a sensitivity-driven method for the co-synthesis
of real-time distributed embedded systems. The cosyn-
thesis algorithm selects the number of processing el-
ements (PEs), the type of each PE, allocates func-
tions to PEs, and schedules their executions. Dick
and Jha [13] proposed an algorithm for hardware-
software cosynthesis of distributed embedded systems,
namely MOGAC, which partitions and schedules em-
bedded system specifications consisting of multiple pe-
riodic task graphs. MOGAC synthesizes real-time het-
erogeneous distributed architectures using an adaptive
multiobjective genetic algorithm that can escape local
minima. Recently, Dave, Lakshminarayana, and Jha
[14] proposed a heuristic-based constructive cosynthe-
sis technique, called COSYN, which includes allocation,
scheduling, and performance estimation steps. COSYN
takes periodic acyclic task graphs as input and gener-
ates a low-cost heterogeneous distributed embedded-
system architecture meeting real-time constraints.

For hardware-software partitioning of distributed
embedded multiprocessor systems, existing techniques
include the following. Kalavade and Subrahmanyam
[15] proposed two methods for multifunction partition-
ing, namely hardware-oriented partitioning and con-
sistency and hardware-oriented partitioning, which as-
sume that each application is specified by a directed
acyclic graph. Recently, some research works have

started considering system hierarchy for hardware-
software partitioning problems in a variety of ways [16]–
[18].

In comparison to previous researches on hardware-
software partitioning, which were based on task graphs
as system model, our partitioning method uses object-
oriented (OO) hierarchy as system model. The task
graph model basically assumes an arbitrary system ar-
chitecture, without considering any restrictions on sub-
system locations. In contrast, our OO model takes re-
alistic physical restrictions into consideration for the
target system architecture. This is more appropriate
for the inherent architectural restrictions of distributed
systems. Many cosynthesis algorithms do not have an
explicit partitioning step. But, we are inclined towards
an explicit partitioning step, especially for distributed
systems. Task graph based partitioning flattens out
system architecture, thus information on subsystem
boundaries is lost, which results in no sharing possible
among subsystems. Our MLP emphasizes on sharing
during partitioning for a more optimal partition result.

3. Object Modeling Technique

Multi-Level Partitioning is based on objects. MLP takes
objects as input and the popular Object Modeling Tech-
nique (OMT) developed by Rumbaugh et al. [19] is used
for specifying input to MLP. A distributed embedded
multiprocessor system can be described using the three
models of OMT, namely Object Model, Dynamic Model,
and Functional Model.

Relationships between objects determine the pos-
sibility of object sharing among subsystems. Among all
the different kinds of object oriented relationships that
may exist between two objects, such as whole/part, a-
kind-of, and others, only those relationships that rep-
resent mutually exclusive temporal behavior or schedu-
lably implementable dynamic behaviors can be used as
indicators of possible sharing.

Events in state diagrams determine the dynamic
relationships among objects, such as method invoca-
tion, object creation, object destruction, etc. These
dynamic relationships indicate how closely coupled are
two objects in an object oriented system model. Hard-
ware clustered into individual ASICs and software
grouped into scheduled programs on processing ele-
ments require the knowledge of how closely two or more
objects interact dynamically.

Functional model can help estimate the execution
steps required for a particular process, which might
eventually be used for estimating the performance of
a hardware component or a software program.

3.1 Illustration Example

In the following, we will describe a distributed embed-
ded system which will be a running example for illus-
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Fig. 1 Object model of VPMS.

trating our partitioning methodology. This example
consists of a project for designing a vehicle parking
system, we call this system Vehicle Parking Manage-
ment System (VPMS). A preliminary case study on
VPMS illustrating hardware-software codesign of dis-
tributed systems can be found in [20]. VPMS consists
of three subsystems: ENTRYmanagement, EXIT man-
agement, and DISPLAY. As both of the ENTRY and
EXIT subsystems allow vehicles to pass through them
one by one, they are similar in most respects. DIS-
PLAY subsystem shows the current number of vacant
parking space available in a parking lot or garage.

An ENTRY (or an EXIT) subsystem consists of
three parts: a ticket facility, a gate controlled by a gate-
motor, and a pair of sensors. The ticket facility at the
entry stamps the current date and time and gives a new
ticket to an in-coming vehicle. The ticket facility at the
exit checks whether the ticket (parking) fees have been
paid and the current time is within 15 minutes of the
ticket fee payment. After a positive response is received
from the ticket facility, a gate controller opens the EN-
TRY (EXIT) gate to allow a vehicle to drive in (out).
A pair of sensors are located after the gate (in the di-
rection of the vehicle, that is, further in for the entry
and further out for the exit). The sensors then send
a signal to the gate controller to close the gate after
a vehicle has passed by. At the same time, the sen-
sors also send a signal to the display for updating the
displayed number of parking vacancies. The DISPLAY
system consists of a control system (counter and dis-
play interface) and a display device such as 7-segment
display, LCD, or dot matrix LED display. The counter
value (count) indicates the number of available parking
vacancies.

Constraints for the VPMS system include: a max-

Fig. 2 Dynamic model of ENTRY management subsystem.

imum cost of $1,300, a maximum display response time
(DRT) of 14,000 µs, and a maximum ENTRY (EXIT)
gate response time (GRT) of 250 µs. An n-CPU/m-
ASIC system cost includes the total cost for m ASICs
in the system and the total cost for n PEs used for exe-
cuting software. Display response time (DRT) includes
a signal sensing period, a signal processing time, the
time for a signal transmission from sensor to display,
the time for updating (incrementing or decrementing)
the count value, and the time for updating the display.
Gate response time (GRT) includes a signal sensing pe-
riod, a signal processing time, the time for a signal
transmission from sensor to gate, the time for a motor
driver to respond to a signal, and the time for a signal
to be transmitted from a motor driver to a gate.

The three models of VPMS are illustrated in Fig. 1,
Fig. 2, and Fig. 3, respectively. Some dynamic and func-
tional models are not shown here.

4. Multi-Level Partitioning

Since our target systems are distributed with n-
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Fig. 3 Functional model of ENTRY management subsystem.

Fig. 4 Flow diagram of multi-level partitioning.

CPUs/m-ASICs, the inherent hierarchy in system
structure necessitates a multiple level partitioning
scheme. We must explore not only how many CPUs
and ASICs to use, but also where they must be lo-
cated or distributed in the system. For example, if we
have a system consisting of three subsystems, such as
VPMS, and if we decide on using two CPUs for soft-
ware implementation and execution, we must also de-
cide on where the two CPUs are located among the
three subsystems. We propose a Multi-Level Partition-
ing (MLP) algorithm which consists of three nested
levels called codesign space exploration (CSE), system
structural partitioning (SSP), and binary search copar-
titioning (BSC) as described in the following three sub-
sections. The flow diagram for MLP is shown in Fig. 4.
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4.1 Codesign Space Exploration Level

At the CSE level, the outermost level of partitioning,
we iterate on the possible number of CPUs to use for
software implementation and execution and the possi-
ble hardware costs after the cost of CPUs is deducted
from the total maximum cost bound. In general, each
subsystem can have either zero or some positive num-
ber of processors, depending on the system cost bound.
In Distributed Embedded System Codesign (DESC), by
default the maximum number of CPUs in a system
is constrained by the total number of different parts
that could be implemented as hardware or software.
Such parts are called codesign parts. System designers
can easily override this default restriction, but doing so
lengthens the period of design space exploration due to
a much larger design space size. Suppose a distributed
embedded system under design has n codesign parts.
Currently, exhaustive search is carried out under the
default of at most n processors. This level (loop) pro-
duces a multiplicative factor of n in the overall parti-
tioning complexity. For the VPMS example, there are
three codesign parts: Counter, Sensor Driver, and Mo-
tor Driver. Hence, by default in DESC at most three
CPUs are considered. We begin by no CPU for the
system, then one, two, and finally three. Hence, this
design space exploration step incurs a factor of 4 in the
partitioning complexity.

4.2 System Structural Partitioning Level

At the second level, we must decide where the se-
lected CPUs are distributed among the different code-
sign parts. This leads to a combination and permuta-
tion problem. For example, for one CPU and k parts,
there are only k different ways (structural partitions).
For two CPUs and k parts, there are k + Ck

2 different
structural partitions, where Ck

2 is the total number of
ways (combinations) of selecting 2 objects out of k. For
three CPUs and k parts, there are k+ k× (k− 1)+Ck

3

different structural partitions. With an increase in the
number of CPUs, the total number of ways (structural
partitions) increases at an exponential rate. Exhaustive
evaluation of all possible structural partitions would
require an unacceptable amount of time and space.
Hence, heuristics are applied at this level in DESC par-
titioning.

Codesign parts that have one or more hard real-
time constraints have a higher probability of being im-
plemented in hardware, while the other parts with rela-
tively soft constraints will be implemented in software.
This is because dedicated ASIC hardware usually can
be optimized to meet hard constraints, while software
optimization is limited by the capabilities of the pro-
cessor executing the software. A useful heuristic dis-
covered here is that we can dedicate processors (that

execute software) to only those parts that do not have
hard constraints.

Furthermore, codesign parts that have a greater
number of associated soft constraints must usually
strive to meet its deadlines or specifications. Thus, an-
other heuristic that comes handy is that parts with a
greater number of constraints are assigned more num-
ber of processors. In the structural partitioning of
DESC, we use approximated ratios of processors de-
pending on the degrees of constraint satisfaction re-
quirements for each part. Parts that are to be imple-
mented as hardware are called hardware parts, while the
parts that are to be implemented as hardware-software
are called hardware-software parts.

4.3 Binary Search Copartitioning Level

The first two levels concentrated on the distributed
characteristics of a system. This level will form the
core part of hardware-software copartitioning. Here, we
do not start from either of the two extreme solutions:
all-hardware and all-software. Rather we start some-
where in-between, we start moving towards the opti-
mal feasible solution based on two simple assumptions
as follows. First assumption is that hardware imple-
mentations always cost more than software solutions.
This is true in general when costs are amortized over
several components of a system. Second assumption is
that hardware implementations always perform better
than software solutions. This is true in general be-
cause hardware ASICs can be optimized to a greater
extent than software. Software optimizations are often
restricted by compiler technology and microprocessor
architecture that is hosting and executing it. Though
these two assumptions may sound not so realistic at
first, yet they have been validated by most design ex-
periences [21], [22].

The copartitioning flow diagram and algorithm are
given in Fig. 4 and Algorithm 1 (Fig. 5), respectively.
In Algorithm 1 (Fig. 5), Steps (2)–(5) correspond to
Initialization in Fig. 4. The first for-loop in Step (6)
corresponds to the CSE level. The second for-loop in
Step (9) corresponds to the SSP level. Steps (10)–(40)
correspond to the BSC level.

Two linear arrays are used to store system objects
during copartitioning, namely, Immovable Linear Array
(ILA) and Movable Linear Array (MLA). ILA is used
to store all objects that belong to hardware parts, while
MLA is used to store the objects of hardware-software
parts. Objects in ILA are not movable as they are
already selected for hardware implementations. ILA
is not used in this phase of copartitioning. Coparti-
tioning will be performed only on the objects in MLA.
Each component in a system under partition is associ-
ated with a Cost-Performance Difference (CPD) ratio
as defined below:
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HW/SW PARTITION(N1, N2, N3, . . . , Ni, . . . , Nr)
/* N1, N2, N3, . . . , Ni, . . . , Nr, where Ni is a system object */ 1
Generate Immovable Linear Array (ILA) and
Movable Linear Array (MLA). 2
Calculate Cost-Performance Di�erence (CPD) ratio for
each MLA object. 3
Sort all MLA objects in an ascending order of their CPD
ratios such that MLA = 〈M1,M2,M3, . . . ,Mm〉 4
u:= Number of PE; 5
for (p = 0, p ≤ u, p++) 6
{
HW Cost :=Max Cost− Cost(PE) × p; 7

sp(p):= {all ways of distributing p CPU
among the subsystems}; 8

for each structural partition s ∈ sp(p) do 9
{
k := 1, j := m; /* where k is called the lower bound
object index, j is called the upper bound object index */ 10

i := 	m
2

 /* where i represents the divider object index */ 11

Use software to implement objects from Mi to Mj and
use hardware to implement objects from Mk to Mi−1 12

while true do 13
{
switch(cost and performance estimations(s)) 14
{
Case 1: Cost constraint not satisfied,

but performance constraints satisfied 15
j := i; 16
i := i− 	 i−k

2

; 17

break; 18

Case 2: Cost and performance constraints satisfied 19
if the partition result is heuristically optimal{ 20

s′ = Store structural partition result for s; 21
Share Components(s′);
/* Refer to Algorithm 2

(Fig. 6)*/ 22
Cluster Components(s′);
/* Refer to Algorithm 5

(Fig. 9)*/ 23

} 24

else { if performance is more important{ 25

k := i; 26

i := i+ 	 j−i
2


; } 27

else { j := i; /* cost is more important */ 28

i := i− 	 i−k
2


;} 29

} 30

break; 31

Case 3: Cost constraint satisfied, but
performance constraints not satisfied 32

k := i; 33

i := i+ 	 j−i
2


; 34

break; 35

Case 4: No satisfactory partition 36

break; 37

} /* end of switch */ 38

if (heuristically optimal partition found or
no satisfactory partition) break; 39

} /* end of while */ 40

} 41
} 42
if partition found then output least costly partition 43
else print ”No partition” 44

Fig. 5 Multi-level partitioning algorithm (Algorithm 1).

CPD(x) = [HW Cost(x)− SW Cost(x)]
/ |HW Perf(x)− SW Perf(x)|

Perf Bound(x)
(1)

where x is an object in MLA; HW Cost(x) is either
the actual cost or the VLSI area of x; SW Cost(x) is
either the cost of the main memory spent or the cost
of the CPU used for executing x as a software pro-
gram code; HW Perf(x) is the hardware response time;
SW Perf(x) is the program execution time as imple-
mented in a processor; and Perf Bound(x) is the value
of the performance bound associated with part x. Here,
it is assumed that each part is associated with only one
performance bound. The denominator in CPD(x) is a
normalization of the performance difference, which is
required for a fair comparison between different parts
and performance bounds. The CPD metric is a useful
hardware-software partitioning criterion. All objects
are sorted in an ascending order of their CPD ratios
and placed in a horizontal one-dimensional array called
Movable Linear Array (MLA) from left to right.

The copartitioning method begins somewhere
around the middle of the sorted sequence of objects
in MLA. A median object is selected as an initial di-
vider or separator. The role played by a divider is that
all objects to the right of the divider, including the
divider, are implemented in software and the rest (at
the left of the divider) are implemented in hardware.
The reason, that such an implementation is correct, is
two-folds. Firstly, the objects in the left part of the
sequence have a greater gain in performance if imple-
mented as hardware (i.e., a larger difference between
hardware and software performance) and at a smaller
expense (i.e., a smaller difference between hardware and
software costs). Secondly, the objects in the right part
of the sequence have a greater gain in saving costs if
implemented as software (i.e., a larger difference be-
tween hardware and software costs) and at a smaller
loss in performance (i.e., a smaller difference between
hardware and software performance). Thus, the intu-
ition for the CPD definition is clear from the role of the
divider in copartitioning.

The initial partition obtained is then tested for fea-
sibility under the given system constraints on cost and
performance. Four cases are encountered here. First, if
the cost specifications are not satisfied but performance
specifications are satisfied, then we must increase the
software part by selecting a new divider towards the
right of the current divider along the linear array of
sorted objects. Second, if both cost and performance
specifications are satisfied, then depending on whether
preference is given to minimizing cost or to maximiz-
ing performance we move towards the left or right,
respectively. This will lead to a more cost-oriented
or performance-oriented heuristically optimal solution.
Third, if the cost specifications are satisfied but per-
formance specifications are not, then we must increase
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Share Components(s) {
/* s = 〈s1, s2, ..., sΨ〉, si = (si1, si2) where si1 is the
number of PE in subsystem Si and si2 is the number
of ASIC in subsystem Si. si1, si2 ∈ {0, 1, . . .}*/
for (i = 1, i ≤ Ψ, i++) {
for (j = i, j ≤ Ψ, j ++) {
if SLI(Si, Sj) ≤ STD {
if (si1 > 0 ∧ sj1 > 0)

Share PE(Si, Sj);

/* Refer to Algorithm 3 (Fig. 7)*/

if (si2 > 0 ∧ sj2 > 0)

Share ASIC(Si, Sj);

/* Refer to Algorithm 4 (Fig. 8)*/

}
}

}
}

Fig. 6 Share components algorithm. (Algorithm 2)

the hardware part by selecting a new divider towards
the left of the current divider along the linear array of
sorted objects. Lastly, if both cost and performance
specifications are not satisfied, then the algorithm de-
clares that no feasible partition can be found for the
given system under the given constraints.

4.4 CPU/ASIC Sharing

Often two or more subsystems of a DEMS are quite
close to each other physically. For example, the EN-
TRY management subsystem and the EXIT manage-
ment subsystem of VPMS can be located adjacent to
each other and yet cannot be considered as one sub-
system due to functional differences. Under light work-
loads, these two subsystems might share a single CPU
for executing software programs. This reduces overall
cost without affecting performance. Such overlapping
of a subsystem with other subsystems in its vicinity
is often not taken into consideration while partitioning
by conventional techniques. This results in redundant
hardware components and under-utilized processors in
budget-limited embedded systems. MLP thus considers
sharing of CPUs and ASICs among subsystems while
partitioning. A sharing algorithm is given in Algorithm
2 (Fig. 6), which calls two functions given in Algorithms
3 (Fig. 7) and 4 (Fig. 8).

In contrast to hardware clustering and software
grouping which are confined to a single subsystem,
CPU and ASIC sharing require the consideration of two
subsystems simultaneously. Examples of CPU shar-
ing include time quantum-based multitasking on a sin-
gle CPU (using multi-threading) and multiprocessor-
scheduled programs. Examples of ASIC sharing include
history-less counters (based on time-division), timers,
and data compressor.

Sharing is not as simple as it appears to be. Sev-
eral factors affect whether sharing can be implemented.

Share PE(S1, S2) {
/* S1 = {P11, P12, P13, . . . , P1k} */
/* S2 = {P21, P22, P23, . . . , P2l} */
for (i = 1, i ≤ k, i++) {
MinP := 0;MinIC := −1;MoveDir := NULL;

for (j = 1, j ≤ l, j ++) {
if PE shareable (P1i, P2j) {
/* PE shareable(P1i, P2j) = ∧r=4...8Cr(P1i, P2j)*/

/* For Cr() see Eq. (3), P1i, P2j are PE. */

if IC(P1i, P2j) < IC(P2j , P1i) {
if (MinP = 0) or (IC(P1i, P2j) ≤ MinIC) {
MinP := j;MinIC := IC(P1i, P2j);

MoveDir := S2 to S1;

}
}
else {
if (MinP = 0) or (IC(P2j , P1i) < MinIC) {
MinP := j;

MinIC := IC(P2j , P1i);

MoveDir := S1 to S2;

}
}
if (MoveDir = S2 to S1) {
P1i := schedule (P1i, P2MinP );

remove (P2MinP );

interconnect(P1i, S2);

}
else if MoveDir = S1 to S2 {
P2j := schedule(P2MinP , P1i);

remove(P1i);

interconnect(P2j , S1);

}
}

}
}

}

Fig. 7 Share PE algorithm. (Algorithm 3)

Among them, one main factor is the physical dis-
tance. Sharing among subsystems should be allowed
only among those that are near each other and not
among faraway ones. A distance metric called Shar-
ing Threshold Distance (STD) is proposed for deciding
on whether two subsystems can share some hardware
or software.

Definition 1: Sharing Threshold Distance
(STD). STD is defined as a minimum physical distance
between any two subsystems in a Distributed Embedded
Multiprocessor System, which is required for these sub-
systems to share any component such as CPU or ASIC.

The actual distance between any two subsystems
is called the Subsystem Location Inter-distance (SLI).
When SLI(S1, S2) is not greater than a given value of
STD, subsystems S1 and S2 are qualified for sharing.
But, sharing is not that simple or straightforward, sev-
eral conditions need to be satisfied for two subsystems
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Share ASIC(S1, S2) {
/* S1 = Q11Q12Q13...Q1p */

/* S2 = Q21Q22Q23...Q2q */ for (i = 1, i ≤ p, i++) {
MinQ := 0;MinIC := −1;MoveDir := NULL;

for (j = 1, j ≤ q, j ++) {
if ASIC shareable(Q1i, Q2j) {
/* ASIC shareable(Q1i, Q2j) = ∧r=1...5Cr(Q1i, Q2j)*/

/* For Cr() see Eq. (3), Q1i, Q2j are ASIC. */

if IC(Q1i, Q2j) ≤ IC(Q2j , Q1i) {
if (MinQ = 0 or (IC(Q1i, Q2j) < MinIC) {
MinQ := j;MinIC := IC(Q1i, Q2j);

MoveDir := S2 to S1;

}
}
else {
if (MinQ = 0 or IC(Q2j , Q1i) < MinIC) {
MinQ := j;

MinIC := IC(Q2j , Q1i);

MoveDir := S1 to S2;

}
}
if (MoveDir = S2 to S1) {
D = enhance(Q1i);

remove(Q2j);

interconnect(D,S2);

}
else if (MoveDir = S1 to S2) {
D = enhance(Q2i);

remove(Q1i);

interconnect(D,S1);

}
}

}
}

}

Fig. 8 Share ASIC algorithm. (Algorithm 4)

to actually share anything.
Sharing can be easily turned on or off by a system

designer. The threshold distance STD can be given
specific values. When STD is zero, it implies that no
sharing of any sort is allowed. STD can be given a
special value denoting infinity, which implies all sub-
systems can take part in sharing. This is called global
sharing. When STD is given a small positive value such
as one meter, it is called local sharing.

Before going into the conditions that must be sat-
isfied for sharing, we define an Interconnect Cost Model
for interconnecting two subsystems via the shared CPU
or ASIC.

Definition 2: Interconnect Cost (IC) Model.
Suppose two subsystems S1 and S2 are qualified for
sharing, that is, SLI(S1, S2) is not greater than a given
STD. Let X1 and X2 be a component (PE or ASIC)
in S1 and S2, respectively. The cost for using X1 as
the shared component between S1 and S2, such that all

the functions of X2 are performed by the shared X1, is
defined as follows:

IC(X1, X2) = α× SLI(S1, S2)
×#Link(X1, S2)
×BW (X1, S2) + EC(X1) (2)

where α is a parameter that depends on the intercon-
nection technology, SLI(S1, S2) is the Subsystem Loca-
tion Inter-distance between S1 and S2, #Link(X1, S2)
represents the number of links between X1 and S2, and
BW (X1, S2) represents the communication bandwidth
between X1 and S2, and EC(X1) is the cost for en-
hancing X1 such that both S1 and S2 can use X1.

Here, a processing element (PE) is considered in-
stead of a CPU. A PE consists of a CPU and associ-
ated memory or caches. PEs allow CPU-sharing be-
tween two subsystems because only with memory in-
stalled can we consider program scheduling. Hence-
forth, PE and CPU are used interchangeably. Given
the IC model, we can now list the constraints that
two subsystems and their components must satisfy for
sharing. The constraints are listed as conditions C1 to
C8, which must be satisfied by the components to be
shared.

• C1: same functional specifications or super-
set/subset relationship,

• C2: mutually exclusive temporal behavior,
• C3: history-less (for example, combinational cir-
cuits and sequential circuits with resets),

• C4: the interconnect cost of two sharing subsys-
tems should be less than the total cost of all shared
components,

• C5: all real-time constraint specifications of the
system should be met when sharing,

• C6: the total size of all the programs sharing a
single PE should not be larger than the memory
capacity of the shared PE,

• C7: the programs should be schedulable on the
shared PE, including priority-based interrupt han-
dling, and

• C8: there should be sufficient number of I/O ports
for all the programs sharing the PE.

For any two components X1 and X2, we define the fol-
lowing function to represent satisfaction of conditions:

Cr(X1, X2) =



TRUE if condition Cr

holds for X1, X2,
FALSE otherwise.

(3)

Sharing Algorithms: Some of the above constraints
are suitable for PE sharing and some for ASIC sharing.
Corresponding to the different architectural character-
istics between software and hardware, we have two dif-
ferent algorithms: Algorithm 3 (Fig. 7) and Algorithm
4 (Fig. 8) for Share PE() and Share ASIC(), respec-
tively. In the Share PE() algorithm, suppose we have
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two subsystems S1 and S2 such that they have k and
l PEs, respectively. For each PE, P1i in S1, the algo-
rithm finds the best possible sharing candidate in S2 in
terms of the PE shareable conditions (C4 to C8) and
the interconnect cost (Definition 2) using three vari-
ables: MinP, MinIC, and MoveDir. MinP records the
index of a PE in S2 which is currently the best candi-
date for sharing. MinIC records the current minimum
IC value. MoveDir records the sharing direction for
the current candidate sharing. Sharing direction can be
from S1 to S2 or from S2 to S1. Sharing is performed
by scheduling all the programs from the redundant PE
to the shared PE (schedule()), removing the redundant
PE (remove()), and finally interconnecting the shared
PE with the subsystem that has a redundant PE re-
moved (interconnect()). The EC cost in IC (Definition
2) for PE is incurred in the interconnect() function,
where I/O interface has to be constructed for connec-
tion to the shared PE. The other Share ASIC() algo-
rithm works in a similar strategy except it is for sharing
ASICs that have different shareable conditions (C1 to
C5). The enhance() function in Share ASIC() algo-
rithm is for increasing the connectivity of the shared
ASIC. The EC cost in IC (Definition 2) for ASIC is
incurred in enhance().

4.5 Hardware Clustering and Software Grouping

Previous works on hardware-software copartitioning
mostly produced results about which components
(tasks) are to be implemented in hardware and which
in software. This information is often not adequate or
complete for a system to be fabricated due to the lack
of knowledge on exactly which components are to be
implemented together as one ASIC and exactly which
components are to be grouped into one program on a
single PE. We call this information as hardware clus-
tering and software grouping. Although system-level
design methodologies might have techniques for clus-
tering/grouping, yet we think that pre-design cluster-
ing/grouping would save design time and efforts.

Hardware clustering is performed by utilizing con-
ventional hardware partitioning techniques such as the
group migration method of Kernighan and Lin [23] and
its extensions, simulated annealing [24].

Software grouping is performed by scheduling ob-
ject functions on a set of processors. The num-
ber of processors and processor allocation scheme
were selected in the codesign space exploration level
and the system structural partitioning level, respec-
tively. Several multiprocessor task scheduling algo-
rithms such as Largest Scheduled Parallelism First
(LSPF) [25], Largest Width with Largest Processing
Time first (LWLPT) [26], and a heuristic algorithm [27]
for multiprocessor task scheduling can be used here. In
MLP, clustering is performed independently for each
subsystem in a DESC as illustrated in Algorithm 5

Cluster Components(s) {
/* s = 〈s1, s2, . . . , sΨ〉, si = (si1, si2) where si1 is the num-
ber of PE in subsystem Si and si2 is the number of ASIC
in subsystem Si. si1, si2 ∈ 0, 1, ......*/
for (i = 1toΨ) do {
Cluster HW(Si); /* Refer to [23], [24] */

Group SW(Si); /* Refer to [25], [26], [27] */

}
}

Fig. 9 Cluster components algorithm. (Algorithm 5)

(Fig. 9).

4.6 Analysis and Validation of MLP

The MLP algorithm is analyzed in this section in terms
of its execution complexity and important features. A
formal validation of MLP is given in three theorems in
Sect. 4.6.2.

4.6.1 Complexity Analysis

In analyzing the Algorithm 1 (Fig. 5) of MLP, if the
number of objects is r and the number of subsystems
is Ψ, then its complexity can be given as follows:

τMLP = Init time+BSC

×
∑

p=0,...,Ψ

[sp(p)

× (Share time+ Cluster time)]

τMLP = r + r log r + log r

×
∑

p=0,...,Ψ

[sp(p)× CΨ2

× (2×max1≤k<p(p− k)× k + r2)] (4)

where sp(p) is the number of ways in which p proces-
sors can be assigned to r objects, BSC is the time
required for binary search copartitioning, Init time
is the time required for MLP initialization as illus-
trated in Fig. 6, Share time and Cluster time are the
times required for Share Components() and Clus-
ter Components(), respectively. From Eq. (4), it can
be observed that MLP spends a certain amount of time
in sharing and clustering. Thus, to find a better solu-
tion (i.e., one with a lower cost) MLP takes longer time
than that required for a straightforward solution.

4.6.2 MLP Features and Validation

There are several qualities of our algorithm that deserve
further investigations. Firstly, whenever there exists a
feasible solution for a system, our algorithm will defi-
nitely output heuristically optimal solution. Secondly,
if a feasible solution is found by the algorithm, then the
final result will also be feasible. Finally, if a completely
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Table 1 Partitioning results for three VPMS specifications with and without sharing.

Specification
VPMS-1 VPMS-2 VPMS-3

STD(m) 1.0 1.0 1.0
SLI(ENTRY, EXIT)(m) 6.0 0.5 0.8
SLI(DISPLAY, EXIT)(m) 7.0 3.0 0.5
SLI(DISPLAY, ENTRY)(m) 2.0 3.0 0.5

Partitioning Results
Number and Locations of PE (1)ENTRY (MENTRY ) (1)ENTRY/EXIT (M) (1)ENTRY/EXIT/
in Subsystems 3 (2)EXIT (MEXIT ) 2 (2)DISPLAY 1 DISPLAY
(parts implemented) (3)DISPLAY
Number and Locations of ASIC (1)ENTRY (SENTRY ) (1)ENTRY/EXIT (S) (1)ENTRY/EXIT/

in Subsystems (parts implemented)
2

(2)EXIT (SEXIT )
1 1

DISPLAY
System Cost($) 1,430 1,250 1,180

DRT (µs) 13,200 13,200 14,020
Performance

GRT (µs) 210 210 1,030
MLP Execution Time (sec) 0.602 3.857 14.789

M=Motor Driver, MENTRY =ENTRY Motor Driver, MEXIT=EXIT Motor Driver, S=Sensor Driver, SENTRY =ENTRY Sensor
Driver, SEXIT=EXIT Sensor Driver

non-feasible solution (both cost and performance spec-
ifications are not satisfiable) is found, then there does
not exist a feasible solution for the given system and
thus our algorithm stops all further searching. The va-
lidity of the above three qualities requires the two basic
assumptions as mentioned in Sect. 4.3. With these two
assumptions and some useful features of binary search
method adapted in MLP, the following three theorems
can then be formalized, where divider(Z) is the object
that acts as a divider of the MLA array into hardware
and software parts corresponding to some partition Z.
Further, cost(Z) and performance(Z) are the cost esti-
mate and performance estimate of partition Z, respec-
tively. These concepts are formalized into the following
three theorems.

Theorem 1: If a feasible partition exists, then the
BSC copartitioning algorithm will find one.

Theorem 2: Once a feasible partition is found, the
final heuristically optimal partition found by the co-
partitioning algorithm is always feasible.

Theorem 3: If a completely infeasible partition
(both cost and performance constraints are not satis-
fied) is ever found during BSC, then there exists no
feasible partition for the system. Hence, the partition-
ing algorithm can stop searching.

When all objects in a system satisfy the two as-
sumptions on hardware-software cost and performance,
MLP will find a heuristically optimal solution. But, if
there are one or more objects whose hardware-software
cost and performance do not satisfy the two assump-
tions, then MLP will not be able to find a feasible so-
lution as MLP is not an exhaustive approach.

All performance readings for each of the examples
were taken for the worst case. Although the dynamic
behavior may differ between two executions of a sys-
tem, worst-case readings usually suffice for accounting
dynamic behavior. This is because worst-case readings

correspond to a critical path within the behavior space
or reachability tree. Thus, although our MLP algo-
rithm does not explicitly consider the dynamic behavior
of a system, it is handled by performance estimation.

5. Experiment Results

Through the following examples, we present the advan-
tages of the use of the sharing and clustering techniques
in MLP based on several variants of the VPMS case
study (see Sect. 3.4). Finally, we give the partition re-
sults for VPMS.

5.1 Advantage of Sharing in MLP

In this subsection, we illustrate how the use of shar-
ing techniques in MLP produces partitions with a lower
cost, without or with a slight performance degradation.
For the VPMS example described in Sect. 3.4, Let Shar-
ing Threshold Distance (STD) be 1 meter (m). MLP
was applied to three versions of the VPMS specification:
VPMS-1, VPMS-2, and VPMS-3, as shown in Table 1.

From experiment results, VPMS-1 (without shar-
ing) needs 3 PEs and 2 ASICs for basic system feasi-
bility which results in the cost being higher than all
the other versions. VPMS-3 shows maximum sharing
due to all subsystem functions being implemented using
only one PE and one ASIC. In VPMS-2, ENTRY and
EXIT gate controls share the same PE and DISPLAY
subsystem uses one PE. Here, both the performance
and cost constraints are satisfied (see Sect. 3.4 for con-
straints). Comparing the three results, we observe that
sharing to a certain extent (as in VPMS-2) results in
a significant cost reduction (12.6%) without affecting
overall system performance. Whereas, when sharing is
carried out to a larger extreme, the further slight re-
duction in cost has an adverse effect on performance
such that constraints might not be satisfied.
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Table 2 Partitioning results for five VPMS specifications with and without clustering.

Specification
VPMS-A VPMS-B VPMS-C VPMS-D VPMS-E

Num. of Subsystems 1 2 2 2 3
(1)ENTRY/ (1)ENTRY/ (1)ENTRY/ (1)ENTRY (1)ENTRY

Subsystems EXIT/ EXIT DISPLAY (2)EXIT/ (2)EXIT
DISPLAY (2)DISPLAY (2)EXIT DISPLAY (3)DISPLAY

Partitioning Results
(1)M/C (1)M (1)MENTRY /C (1)MENTRY (1)MENTRY

Num./locations of PE 1 2 (2)C 2 2 (2)MEXIT /C 3 (2)MEXIT

(2)MEXIT (3)C
(1)S (1)S (1)SENTRY (1)SENTRY (1)SENTRYNum./locations of ASIC 1 1 2

(2)SEXIT
2

(2)SEXIT
2

(2)SEXIT

System Cost ($) 1,180 1,250 1,340 1,340 1,430
DRT (µs) 14,020 13,200 13,100 13,100 13,200Performance
GRT (µs) 1,030 210 110 110 110

M=Motor Driver, MENTRY =ENTRY Motor Driver, MEXIT=EXIT Motor Driver, C=Counter, S=Sensor Driver,
SENTRY =ENTRY Sensor Driver, SEXIT=EXIT Sensor Driver

Table 3 Eight critical partitions for VPMS.

A B C D E F G H
HC ,HS , HM SC , HS ,HM HC , SS , HM HC , HS , SM SC , SS ,HM SC ,HS , SM HC , SS , SM SC , SS , SM

H:hardware, S:software, Suffixes: C=Counter, S=Sensor Driver, M=Motor Driver

Table 4 Partitioning results of VPMS.

Partitions A B C D E F G H
System Cost ($) 1450 1420 1425 1280 1395 1250 1255 1225
Display response time (DRT) (µs) 190 13,100 290 190 13,200 13,100 290 13,200

Gate response time (GRT) (µs) 0.2 0.2 820 210 820 210 1030 1030

5.2 Advantage of Clustering in MLP

The clustering process is used to select a set of com-
ponents from the same subsystem such that they can
be scheduled into a single PE or implemented into an
ASIC. In order to demonstrate the benefits of clustering
during partitioning, MLP was applied to five variants of
the original VPMS specification (see Sect. 3.4): VPMS-
A, VPMS-B, VPMS-C, VPMS-D, VPMS-E, as shown
in Table 2.

On one hand, only one PE and one ASIC are re-
quired for a feasible partitioning of VPMS-A. While,
on the other hand three PEs and two ASICs are re-
quired for feasibly partitioning VPMS-E. The costs and
performance also vary among the different variants of
VPMS. Although VPMS-A has the lowest implemen-
tation cost, yet its performance shows a degradation
compared to the others. This degraded performance
might not be acceptable if the original performance con-
straints (as given in Sect. 3.4) are considered. Further,
we observe that the performances of the other four ver-
sions (VPMS-B, VPMS-C, VPMS-D, and VPMS-E) are
almost the same, while there is a difference in cost. In
summary, we can conclude that clustering also allows
a decrease in cost without affecting performance, pro-
vided that some subsystems could be grouped into new
ones to allow clustering. Here, VPMS-B is the best

partitioning result as it has the lowest cost while satis-
fying all performance constraints. The total time taken
by running MLP for this example is 30.54 seconds.

5.3 VPMS Partition Results

Coming back to the original VPMS specification, exper-
imental results of applying MLP show that we need con-
sider only 19 hardware-software partitions of the sys-
tem, instead of a much larger number that depends on
the cost constraints. For illustration purpose, 8 critical
partitions of VPMS are shown in Table 3.

The VPMS partitioning results are as shown in
Table 4. Out of the eight partitions only two of them
(D and F ) satisfy the cost ($1,300), sensor to display
response time (14,000µs), and sensor to gate response
time (250µs) constraints. Hence, there are two satis-
factory partition results for VPMS, namely the D and
F partitions in Table 4.

6. Conclusions

A partitioning technique, called Multi-Level Partition-
ing (MLP) and targeted at Distributed Embedded Mul-
tiprocessor Systems (DEMS), was proposed. MLP cov-
ered several characteristics of DEMS that existing tech-
niques have not touched: inter-distance between phys-
ical locations (subsystems), sharing of hardware, shar-
ing of software, clustering of hardware, grouping of
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software, and maintaining the hierarchical structure of
DEMS. MLP is based on objects, which allows a high-
level hierarchical view of DEMS as well as modular-
ized partitioning appropriate for distributed systems.
The feasibility of applying MLP as a Distributed Em-
bedded System Codesign (DESC) methodology showed
that it is a working technique. Several examples parti-
tioned using MLP showed improvements in lower cost
and higher performance over the results produced by
existing techniques.

For the future, MLP will try to incorporate more
sophisticated heuristics to improve upon its perfor-
mance and results. Other features of DEMS not yet
considered would also be taken into consideration such
as priority-based scheduling, degree of communication
among subsystems, and nested hierarchies.
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