
MISSE: A MULTI-LEVEL INTELLIGENT SYNTHESIS AND
SIMULATION ENVIRONMENT

Pao-Ann Hsiung

Institute of Information Science
Academia Sinica, Taipei, TAIWAN, R.O.C.

Email: eric@iis.sinica.edu.tw

ABSTRACT

Multi-level Intelligent Synthesis and Simulation
Environment (MISSE) is an object-oriented, top-down,
high-level design environment for multiprocessor systems.
Three important aspects of multiprocessor system design:
modeling, synthesis, and simulation are supported in
MISSE. First, multiprocessor systems are hierarchically
classified and system parts modeled as objects with inter-
relationships. Second, two system level design
methodologies: Performance Synthesis Methodology and
Intelligent Concurrent Object-Oriented Synthesis
Methodology are proposed and implemented in MISSE.
Third, an object-oriented flexible simulation tool,
Modularized Reconfigurable Simulator, is proposed to
simulate the various synthesized design alternatives. In a
typical design process using MISSE, a multiprocessor
system is iteratively modeled, classified, synthesized,
simulated, and its performance evaluated at each of the
four MISSE-levels: system, cluster, node, and instruction.
The environment is theoretically consolidated by an
analytical model called Multi-token Object-oriented Bi-
directional net, which is a high-level Petri net similar to
the popularly used Colored Petri net. Besides the
systematic design of a complete multiprocessor system,
MISSE can also be used to explore the design of new
interconnection architectures, to verify fault-tolerant
architecture schemes, to validate performance bounds of
multiprocessor task scheduling algorithms, and to test
parallel application software. Thus, MISSE is suitable for
the rapid prototyping of completely new systems as well
as for the evaluation and improvement of existing ones.

1. INTRODUCTION

The design automation of multiprocessor (MP) systems
calls for an integrated environment in which the whole
design process, starting from system modeling to design
simulation and performance evaluation, can be completed
within a single common locale such that the unnecessary
construction of interfaces and exchange of data between
different design phases can be avoided. Multi-level
Intelligent Simulation and Synthesis Environment
(MISSE) is proposed for this purpose. Such an
environment will not only speed up the whole design
process, but also eliminate human or machine errors
during data exchange between any two different design

phases, for instance, misrepresentation of a modeled
system when it is input to a synthesizer.

When a new MP architecture or system interconnection is
proposed, one has to verify its various characteristics, for
example, reliability, scalability, and fault-tolerance.
Application algorithms or programs have to be rewritten
and tested on the newly proposed architecture. MISSE
provides such a design and test environment. New MP
task scheduling methodologies also need such an
environment to validate its correctness and performance
bounds. Hence, both newly proposed hardware as well as
software can be designed and tested within MISSE.

2. RESEARCH RESULTS

Though MISSE was designed for the system-level
synthesis of multiprocessor systems, yet both new
hardware architecture and system software applications
have been tested and verified using MISSE. The
following three subsections give a description on the
various research results achieved under this project: the
design of two novel fault-tolerant Extra-Stage Cube
Multistage Interconnection Networks (MIN), the
validation of performance bounds of some recently
introduced multiprocessor task scheduling algorithms, and
the testing of some hypercube programs.

2.1 Fault-Tolerant Alternative Extra-Stage Multistage

Interconnection Network

Chen et al. proposed two fault-tolerant MINs: Alternative
Extra-Stage Cube (AESC) and Combined Extra-Stage
Cube (CESC) [1]. An example of AESC MIN is shown in
Fig. 1. The fault-tolerant capabilities of AESC and CESC
were theoretically analyzed by Chen. In this article, we
model these MINs as objects and synthesize them into real
parallel architectures. These architectures are then
simulated using the Modularized Reconfigurable
Simulator, which will be described in Section III.C. On
simulation, the single and double fault-tolerance
capabilities of AESC and CESC, respectively, are
experimentally verified using MISSE.

2.2 Multiprocessor Task Scheduling

Recently, Lin et al. proposed several new heuristic
algorithms for scheduling multiprocessor tasks with tight

performance bounds [2]-[6]. The performance bounds of
these algorithms were analyzed theoretically by them.

The scheduling algorithms modeled and implemented in
MISSE are Modified Largest Dimension First (MLDF)
[3], Largest Scheduled Parallelism First (LSPF) [4],
Largest Scheduled Dimension First (LSDF) [5], and
Largest Width with Largest Processing Time first
(LWLPT) [6]. Different hypercube-based parallel systems
have been specified, modeled, and synthesized using
MISSE, and the MLDF, LSPF, and LSDF algorithms have
been used during the simulation process to schedule MP
tasks on these systems. The performance bounds
experimentally obtained reflect the correctness of the
theoretical results. Since the LWLPT algorithm schedules
tasks on an abstract MP system without considering any
interconnection networks, the implementation of LWLPT
in MISSE is used to show how different interconnection
networks, for instance Shared Bus, MIN, and Hypercube,
affect the performance bounds of the scheduling
algorithm.

2.3 Hypercube Programs

Based on the Modularized Reconfigurable Simulator, a
hypercube-based system simulator [7] was developed.
Since this simulator could execute hypercube programs
written in C using pre-defined libraries, all existing
hypercube algorithms and newly invented algorithms
could be executed and tested in MISSE.

3. MULTI-LEVEL INTELLIGENT SYNTHESIS
AND SIMULATION ENVIRONMENT

Multi-level Intelligent Synthesis and Simulation
Environment (MISSE) provides the designer with a
complete environment for the design of multiprocessor
systems. MISSE adopts a top-down design methodology
such that a global view of the system can be maintained,
the system under design can be simulated, and its
performance evaluated at each design level. As shown in
Fig. 2, MISSE begins with the designer’s system-level
specification of a multiprocessor architecture, then it
models, synthesizes, and simulates the system, and finally
outputs the architecture-level configuration of the desired
system.

As shown in Fig. 3, MISSE includes three main aspects of
multiprocessor design: MP modeling, MP synthesis, and
MP simulation. These three design aspects form the three
branches of the MISSE Y-Chart, which is used to model
the three phases of the design transformation process of an
MP system as detailed in the following three subsections.
MP modeling, as described in Section 3.1, is based on
Rumbaugh’s Object Modeling Technique [8]. For MP
synthesis, as described in Section 3.2, two methodologies
are proposed: Performance Synthesis Methodology (PSM)
[9], [10] and Intelligent Concurrent Object-Oriented
Synthesis Methodology (ICOS) [11]. PSM was proposed
first and then ICOS, an extended work based on PSM,
improved its synthesis efficiency by incorporating

2

7

6

5

4

3

1

0

2

7

6

5

4

3

1

0

STAGE 2 1 0 -1

Fig. 1 Alternative Extra Stage Cube MIN

System-level
Specification

Multiprocessor
Simulation

Multiprocessor
Synthesis

Multiprocessor
Modeling

Change Design
Level

MP Architecture

Design
Complete?

Part
Repository

Yes

No

Fig. 2 MISSE Design Flow

PSM
&

OODSM
MRS

MP
Modeling

MP
Simulation

MP
Synthesis

Level Change

Fig. 3 MISSE Y-Chart

ICOS

Machine Learning and Fuzzy Logic in the design process
and by adopting a distributed approach. Lastly, for MP
simulation, a Modularized Reconfigurable Simulator is
proposed in Section 3.3.

3.1 Multiprocessor Modeling

MISSE uses object-oriented techniques to model
multiprocessor systems. Each system part is modeled as
an individual component class which is stored in an
object-oriented hierarchical part repository for future
retrieval and use in the Multiprocessor Synthesis phase.

PSM uses an Object Base and a Model Base. The Object
Base consists of component parts modeled as objects with
two types of relationships among them, namely,
aggregation and generalization [8]. The Model Base
consists of memory organization based architecture
models: UMA, NUMA, COMA, and NORMA [13] and
model-related information. PSM uses the Model Base to
map user specifications into architecture models which are
further refined and implemented using object parts from
the Object Base. On the other hand, ICOS relies on a
Class Hierarchy which is basically similar to the Object
Base used in PSM, except that a dynamic relationship
among dependent component classes, known as
“dependence,” is also modeled. This dependence
relationship helps to maintain the precedence among the
objects to be synthesized in the distributed environment.

MISSE is a system-level design environment, hence the
user input is basically system-level design specifications.
Two different forms of input are used by PSM and ICOS.
PSM allows the designer to input system-level
specifications through Functional Models which is a
combination of the Dynamic Model and Functional Model
used in Rumbaugh’s Object Modeling Technique (OMT)
[8]. An example of the Functional Model is illustrated in
Fig. 4. ICOS works at a more abstract level by providing
the designer with a specification language. An example
input specifications is given in Fig. 5, which corresponds
to the Functional Model example in Fig. 4. Using the
specification language, the designer can thus specify
architecture, performance, and synthesis related
requirements.

3.2 Multiprocessor Synthesis

Two synthesis methodologies: Performance Synthesis
Methodology (PSM) and Intelligent Concurrent Object-
Oriented Synthesis Methodology (ICOS) have been
implemented in MISSE. PSM is an iterative, heuristic
synthesis methodology, whereas ICOS is a distributed,
fuzzy, intelligent synthesis methodology.

3.2.1 Performance Synthesis Methodology

Performance Synthesis Methodology (PSM) [9], [10] is a
simple heuristic-based synthesis methodology for the

system-level design of multiprocessor systems. PSM uses
an Object Base and a Model Base for modeling and
synthesizing system parts. Colored Petri Nets used in
modeling system components and Object Modeling
Technique used in the design process both contributed to
the shortening of system development time and to the
reduction of design cost. First, user specification
consisting of functional models and performance
constraints is translated into architecture models. Then,
the system is configured by selecting the method of
control, the memory organization, the type of processor,
and the type of system interconnection. Finally, a
heuristic design-space exploration algorithm is used to
generate several near-optimal design alternatives. The
best architecture is chosen by evaluating the design
alternatives using a flexible Performance Estimation
Formula (PEF) that mainly considers the system level
design features, such as system throughput (T), utilization
(U), reliability (R), scalability (S), fault-tolerance (F), and
cost (C).

PEF =
× × ×

×
T R S F

U C
(1)

Several systems were successfully synthesized using this
top-down object-oriented methodology, thus showing its
feasibility as a design automation tool for parallel systems.

3.2.2 Intelligent Concurrent Object-Oriented Synthesis

Methodology

After the successful implementation of PSM in the system

user

interfacing 8 ClustersI/O subsystem

perform task
hypercube
connection

exchange data

allocate cluster
(dispatch)

ack

req

commands

response

control

controlcontrol

data

data

ack

req

data

Constraints:
C ≤ $40,000
P ≥ 0.125 MFlops

Fig. 4 PSM Input: Functional Model Example

architecture:
 system:

Architecture Type = Message-Passing,
Control Type = SIMD,
 Memory Type = Distributed-Unshared,
System Interconnect = Hypercube,
System Processors = 32, No. of Clusters = 8

 cluster:
Processor Unit = RISC,
Cluster Interconnect = Bus,
Cluster Processors = 4

performance:
Cost ≤ $40,000, Power ≥ 0.125 Mflops

synthesis:
Machine Learning = Yes

Fig. 5 ICOS Input: Specification Example

level design of MP systems, we have further extended the
work to improve its synthesis efficiency and to produce
more balanced designs. Besides enhancing the use of
more object-oriented techniques, various other techniques,
such as distributed synthesis, fuzzy design-space
exploration, fuzzy specification-guided learning, and
example-guided learning have all been incorporated into
the design scheme. The resulting work was Intelligent
Concurrent Object-Oriented Synthesis Methodology
(ICOS) [11].

First, object-oriented relationships such as aggregation,
generalization, and dependence; and object-oriented
operators such as iterator, generator, and updator; both
are used in the methodology to guide the process of
component synthesis. Second, instead of following the
commonly used centralized control of synthesis tasks, a
distributed control approach is adopted to manipulate the
exponential exploration of design space. Using distributed
control in ICOS necessitates checking for design
completion and synthesis rollback, for which a Multi-
token Object-oriented Bi-directional net (MOBnet) model
[12] was proposed. Third, since the comparison between
two or more designs is not a crisp decision, both the
design-space exploration and the identification of similar
design configurations during learning should be fuzzified
for ease of comparison. Finally, the application of
machine learning makes the methodology intelligent
enough to reuse the experiences of previous synthesis
configurations. Experiments show all these applied
techniques contribute to the synthesis efficiency and the
degree of automation.

3.3 Multiprocessor Simulation

Multiprocessor simulation is much more complicated than
uniprocessor simulation which itself is already quite a
complex task. Different memory organization models,
system interconnections, and the interaction between
processors are some features exclusive to multiprocessors,
which must be correctly and efficiently simulated such
that the design performance can be more accurately
estimated at the end of each design level in MISSE.

There are two purposes of simulation in MISSE: (1) the
performance evaluation of design alternatives during the
design-space exploration, (2) the final validation of
estimated performance at the end of each design level.

3.3.1 Modularized Reconfigurable Simulator

Modularized Reconfigurable Simulator (MRS) is an
object-oriented flexible simulation tool used in MISSE.
Both hardware and software multiprocessor parts are
modeled as subsimulators. Each subsimulator has

simulation attributes which determine the characteristics
and the number of a component to be simulated. The
unconfigured MRS architecture, as shown in Fig. 6,
consists of groups of subsimulators. A group, as enclosed
within a dotted-line box, consists of subsimulators
representing the specializations or instances of a
multiprocessor part. Besides the actual hardware and
software parts of a multiprocessor, there are two more
components: the system workloads and the performance
monitor. A combination of the system workloads is used
to generate the simulation workload, and the function of
the system monitor is to collect dynamic performance
information of the system under simulation.

3.3.2 MRS Simulation Procedure

As shown in Fig. 7, the input to MRS is the detailed
configuration of the system as synthesized in the MP
Synthesis phase of MISSE. This information is used to
configure the MRS architecture. Each simulation attribute
is configured according to the input information which
may consist of the type of memory organization (shared or
unshared, global or distributed), the kind of global
interconnection, the total number of processors, etc. One
subsimulator is selected from each group of subsimulators.
An example of a configured MRS architecture is shown in
Fig. 8.

System Workload

Cluster

GI

GM

size:

GS DS DU

GC

size:

SWI SWU

size:

Bus MIN Cube

LI

LCLM

#:

PE GS DS DU
#:

LCU
TSA:

Bus MIN Cube

SWI SWU
sz: sz: sz:

#: sz: sz:

GCU

Task
Scheduler

I/O
Processor

Buffer

Alg.: #.:

size:

PMP

RIT

PSU

RDT Performance Evaluation
P, R, S, F, C:

System Monitor

Architecture Control

Fig. 6 Unconfigured Modularized Reconfigurable
Simulator Architecture

A simulation workload is also generated using the system
workloads component of MRS, which contains several
predefined workloads, such as random independent tasks,
random dependent tasks, pre-determined memory access
proportions, and pre-determined system interconnection
utilization. One or more of these workloads are used to
create a simulation workload which when used in the
simulation process gives the desired performance figures.
Fig. 9 shows the various workloads, the different
performance characteristics, and the relationships among
them. By executing MRS with one or more workloads,
one can evaluate the corresponding performance
characteristics of a design alternative. Different types of
workloads are used for the evaluation of different
performance characteristics such that the results can be
more accurate. Once the MRS is configured and the
simulation workload generated, the system monitor is
initialized so that it can begin collecting the desired
performance results of the system under simulation.
Finally, the configured Modularized Reconfigurable
Simulator is executed with the generated simulation
workload and the performance readings collected by the
initialized performance monitor.

 3.3.3 Advantages of MRS

MRS was developed using the basic fact that any two
design alternatives of the same system usually differ in
only one or two design characteristics. This small
difference between design alternatives allows the easy
transition from the simulation of one design alternative to
that of another through a simple reconfiguration of MRS.
The reconfiguration of MRS involves direct replacements
of subsimulator modules and/or reconfiguration of
simulation attributes of currently used subsimulator
modules. For example, if one design alternative was a
1024-processor hypercube and another was a 1536-
processor system connected by a generalized cube with no

difference in any other design characteristics, then the
former can be reconfigured into the latter by replacing the
hypercube system interconnection subsimulator module
with a generalized cube MIN subsimulator module and the
number of PE in the Cluster subsimulator reconfigured
from 1024 to 1536. On reconfiguration of MRS, the
simulation workloads have to be regenerated and the
performance monitor re-initialized so that the system can
be re-simulated.

Besides the ease of design transformation, MRS is also
flexible and extendible. New architecture, protocols, and
components can be easily included in MRS by creating the
corresponding subsimulator modules. MRS is both
technology and implementation independent since no
technology specific information is used and the
implementation of the subsimulators into hardware or
software components are not implied. The architecture of
an example hypercube simulator is shown in Fig. 10.

3.4 MISSE Design Levels

MISSE follows a top-down design methodology with each
design cycle consisting of modeling, synthesis, and
simulation. This cycle occurs at each design level.
Between two design cycles, levels change from a higher
design level into a more detailed design level. As shown
in Fig. 11, MISSE considers four design levels: system
level, cluster level, node level, and instruction level. First,
at the system level, the user-given system level

MP Simulation
Design

Alternatives

System
Simulation

Performance Monitor
Initialization

System Workload
Generation

MRS
 Configuration

Last DA

YES

NO

end

reconfiguration

System
Performance

Fig. 7 MRS Simulation Procedure

size: 1024x1024

System Workload

Cluster

GI

GM

size: 1024 MB

DU

GC

size: 2 MB

SWI Cube

LI

LCLM

#: 128

PE GS
#: 8

LCU
A: LPT

Bus

SWU
#:2 MB

#: 2

GCU

Task
Scheduler

I/O
Processor

Buffer

Alg.: LPTF #.: 2

size: 2 MB

PMP

RIT

PSU

RDT Performance Evaluation
P, R, S, F, C:

System Monitor

Architecture Control

Fig. 8 Configured Modularized Reconfigurable
Simulator Architecture

specifications are analyzed and an object-oriented MP
model created, then either PSM or ICOS is applied to
synthesize this model into a system-level description of
the MP architecture which may include the total number
of processors, the total amount of RAM, the global
interconnection (shared bus, multistage interconnection
network, or hypercube), and the control scheme (SIMD or
MIMD, synchronous or asynchronous). This system level
MP architecture is simulated by configuring MRS based
on the architecture description.

Second, once the system level performance characteristics
are verified through simulation, the MP model is then
perceived at the cluster level, where the MP model is
synthesized into a cluster level architecture description
which may consist of the number of processors per cluster,
the amount of cluster memory, the type of cluster
interconnection, and the cluster control scheme. MRS is
now configured to simulate the various design alternatives
at the cluster level. One or more of the alternatives are
chosen for further synthesis. Then, the MP model is
viewed at the node level. A node is the basic computation

unit in MISSE and includes a CPU, local memory, and
local cache. Synthesis at this level results in a node level
description of the system, consisting of the type of CPU
and the amount of local memory and local cache.
Simulation at this level provides a more accurate
estimation of the system performance since the type of
CPU and the other node level characteristics are already
determined. Finally, at the instruction level, the MP
model is viewed as a collection of interacting instruction
set processors. Since MISSE is basically a system level
design environment, the CPU is chosen from existing
ones, rather than resynthesized, hence there is no actual
synthesis at this level, but this level is still considered such
that actual parallel programs can be simulated and a more
realistic performance estimation of the MP system
obtained. This simulation may be trace-driven using
program traces.

1 1

PSM
&

OODSM
MRS

MP
Modeling

MP
Simulation

MP
Synthesis

Level Change

23 2 3
4 4

1: System Level, 2: Cluster Level, 3: Node Level, 4:

Instruction Level

Fig. 11 MISSE Design Levels

W2

W3

W4

W5

W6

W1

W7

W8

P1

P2

P3

P4

P5

P6

W1: Random Independent Parallel Tasks
W2: Random Dependent Parallel Tasks
W3: Predetermined Memory access Proportions
W4: Predetermined System Interconnection Utilization
W5: Fault Testing
W6: High Comp/Comm Ratio
W7: High Comm/Comp Ratio
W8: Comp/Comm ≅ 1

P1: System Throughput
P2: System Utilization
P3: Average Memory Access Latency
P4: Fault-tolerance
P5: Communication Overhead
P6: System Efficiency

Fig. 9 Workloads and Performance Factors used in
MRS

user host and node executable programs USER

 SIMULATOR

 COMMAND SHELL

 MAXHOST's (2^MAXDIM)'s
 host processes node processes

 correct result of user program and time records

Fig. 10 Hypercube Simulator Architecture

ICOS

The input Functional Model and the specification input
illustrated in Fig. 4 and Fig. 5, respectively, were
synthesized using MISSE. The results of synthesis at each
design level are shown in Fig. 12 for both PSM and ICOS.
The system level design results in an 8-cluster system
interconnected using the hypercube connection, the
method is SIMD, and the total system memory is 256 MB.
The cluster level design results in each cluster containing
4 processing elements (PEs) interconnected by a shared
bus with 32 MB of cluster memory. The node level
design results in each node having a SPARC RISC CPU, 1
MB local memory, and 256 KB local cache.

4. CONCLUSION AND FUTURE WORK

MISSE, a Multi-level Intelligent Synthesis and Simulation
Environment, provides the designer with a complete
environment for the system level design of multiprocessor
systems. Using such an environment increases the
productivity of a designer as it reduces the design time and
eliminates the interchange of design formats between two
successive design phases. The successful application of
object-oriented techniques in all the three phases of MP
design has not only simplified the manipulation of system
components, but also increased synthesis efficiency [11].

Hypercube

ClusterClusterCluster ...
Total RAM: 256 MB No. of Cluster: 8
Control: SIMD

System-levelSystem-level

Instruction-level

Instruction-level:

 SPARC Instruction
Set

Node-level
Cluster-level

Cluster-level

Memory

PE

Total RAM: 1 MB
Total Cache: 256 KB

Total RAM: 32 MB
Control: SIMD

PE PE PE

Bus

SPARC RISC
CPU

Local
Cache

Local
Memory

SPARC Instruction Set

Memory
Subsystem

System
Interconnect

Processing
Subsystem
No.: 8

Computer
System

Global Control
Unit

Control: SIMD

Main
Memory

Total: 256 MB

Distributed
Unshared

Hypercube

Processor
Cluster

Processor
Cluster Processor I/O

Intf
Cluster
Control
Unit Intf

FDSE
MM

GCUPSSSIMSS

DU

CS

CCU LI SI Intf.PE

Scheduler I/O Intf. Buffer

SB

Processor LM

Cache RAM

Node-level:
Learnt from previous

experiences using Fuzzy
Specification-Guided
Learning in OODSM

ICOSPSM

Fig. 12 Multi-level Design Example

Besides the design of complete MP systems, MISSE can
also be used for verifying design characteristics of partial
systems or system parts such as the introduction of a new
interconnection architecture and the verification of its
capability of fault-tolerance. In addition to hardware
design, software can also be tested within the MISSE
environment. Example such as multiprocessor task
scheduling algorithms and parallel programs were given in
this article. One of the most important future work is the
integration of software development and testing
techniques into MISSE such that the hardware-software
codesign [17] of multiprocessor systems can be made
feasible.

REFERENCES

[1] C. H. Chen and S. J. Chen, “An Alternative Extra
Stage Structure to Increase the Reliability of MIN,”
Proc. of International Computer Symposium,
December 1991.

[2] J. F. Lin and S. J. Chen, “Scheduling Algorithm for
Non-preemptive Multiprocessor Tasks,” Computers
and Mathematics with Applications, Vol. 28, No. 4,
pp. 85-92, 1994.

[3] J. F. Lin and S. J. Chen, “Scheduling Parallel Tasks
on Hypercubes,” Electronic Letters, Vol. 30, No. 11,
pp. 841-842, 1994.

[4] J. F. Lin, W. B. See, and S. J. Chen, “Performance
Bounds on Scheduling Parallel Tasks with
Communication Cost,” IEICE Trans. on Info. & Sys.,
Vol. E78-D, No. 3, pp. 263-268, March 1995.

[5] J. F. Lin, W. B. See, S. J. Chen, “Scheduling Parallel
Tasks with Setup Time on Hypercube Systems,”
Proc. of International Computer Symposium,
December 1994, pp. 689-693.

[6] J. F. Lin and S. J. Chen, “An Analysis of
Multiprocessor Tasks Scheduling,” to appear in
Computer Systems Science and Engineering,

[7] T. Y. Lee, M. J. Tsai, and S. J. Chen, “The Designing
of a Simulator for Hypercube Supercomputer,” Proc.
of the 1995 Workshop on High Performance

Multiprocessor Systems, HsinChu, Taiwan, ROC,
July, 1995, pp. 248-254.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, Englewood Cliffs, 1991.

[9] P. A. Hsiung, S. J. Chen, T. C. Hu, and S. C. Wang,
“PSM: An Object-Oriented Synthesis Approach to
Multiprocessor System Design,” IEEE Trans. on VLSI
Systems, Vol. 4, No. 1, pp. 83-97, March 1996.

[10] P. A. Hsiung and S. J. Chen, “Object-Oriented
Synthesis Application Tool,” Fourth Workshop on
Object-Oriented Technology, September 1994.

[11] P. A. Hsiung, C. H. Chen, T. Y. Lee, and S. J. Chen,
“ICOS: An Intelligent Concurrent Object-Oriented
Synthesis Methodology for Multiprocessor Systems,”
ACM Trans. On Design Automation of Electronic
Systems, Vol. 3, No. 2, to appear in April 1998.

[12] P. A. Hsiung, T. Y. Lee, and S. J. Chen, “MOBnet:
An Extended Petri Net Model for the Concurrent
Object-Oriented System-Level Synthesis of
Multiprocessor Systems,” IEICE Trans. On
Information and Systems, Vol. E80-D, No. 2, pp. 232-
242, February 1997.

[13] K. Hwang, Advanced Computer Architecture,
McGraw-Hill Inc., Singapore, 1993.

[14] C. A. Petri, “Kommunikation Mit Automaten,”
Schriften des IIM Nr. 2, Institut fur Instrumentelle
Mathematik, Bonn, 1962. English Translation:
Technical Report RADC-TR-65-377, Griffiss Air
Forse Bas, New York, Vol. 1, Suppl. 1, 1966.

[15] K. Jensen, “Colored Petri Nets and The Invariant
Method,” Theoretical Computer Science, Vol. 14, pp.
317-336, 1981.

[16] D. R. Jefferson, “Virtual Time,” ACM Trans. on
Programming Languages and Systems, Vol. 7, No. 3,
pp. 404-425, July 1985.

[17] P. A. Hsiung, “CMAPS: A Cosynthesis
Methodology for Application-Oriented Parallel
Systems,” accepted to appear in ACM Trans. on
Design Automation of Electronic Systems.

