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ABSTRACT 
 

Multi-level Intelligent Synthesis and Simulation 
Environment (MISSE) is an object-oriented, top-down, 
high-level design environment for multiprocessor systems.  
Three important aspects of multiprocessor system design: 
modeling, synthesis, and simulation are supported in 
MISSE.  First, multiprocessor systems are hierarchically 
classified and system parts modeled as objects with inter-
relationships.  Second, two system level design 
methodologies: Performance Synthesis Methodology and 
Intelligent Concurrent Object-Oriented Synthesis 
Methodology are proposed and implemented in MISSE.  
Third, an object-oriented flexible simulation tool, 
Modularized Reconfigurable Simulator, is proposed to 
simulate the various synthesized design alternatives.  In a 
typical design process using MISSE, a multiprocessor 
system is iteratively modeled, classified, synthesized, 
simulated, and its performance evaluated at each of the 
four MISSE-levels: system, cluster, node, and instruction.  
The environment is theoretically consolidated by an 
analytical model called Multi-token Object-oriented Bi-
directional net, which is a high-level Petri net similar to 
the popularly used Colored Petri net.  Besides the 
systematic design of a complete multiprocessor system, 
MISSE can also be used to explore the design of new 
interconnection architectures, to verify fault-tolerant 
architecture schemes, to validate performance bounds of 
multiprocessor task scheduling algorithms, and to test 
parallel application software.  Thus, MISSE is suitable for 
the rapid prototyping of completely new systems as well 
as for the evaluation and improvement of existing ones. 

 
1.  INTRODUCTION 

 
The design automation of multiprocessor (MP) systems 
calls for an integrated environment in which the whole 
design process, starting from system modeling to design 
simulation and performance evaluation, can be completed 
within a single common locale such that the unnecessary 
construction of interfaces and exchange of data between 
different design phases can be avoided. Multi-level 
Intelligent Simulation and Synthesis Environment 
(MISSE) is proposed for this purpose. Such an 
environment will not only speed up the whole design 
process, but also eliminate human or machine errors 
during data exchange between any two different design 

phases, for instance, misrepresentation of a modeled 
system when it is input to a synthesizer. 
 
When a new MP architecture or system interconnection is 
proposed, one has to verify its various characteristics, for 
example, reliability, scalability, and fault-tolerance.  
Application algorithms or programs have to be rewritten 
and tested on the newly proposed architecture.  MISSE 
provides such a design and test environment.  New MP 
task scheduling methodologies also need such an 
environment to validate its correctness and performance 
bounds.  Hence, both newly proposed hardware as well as 
software can be designed and tested within MISSE. 
 

2.  RESEARCH RESULTS 
 
Though MISSE was designed for the system-level 
synthesis of multiprocessor systems, yet both new 
hardware architecture and system software applications 
have been tested and verified using MISSE.  The 
following three subsections give a description on the 
various research results achieved under this project: the 
design of two novel fault-tolerant Extra-Stage Cube 
Multistage Interconnection Networks (MIN), the 
validation of performance bounds of some recently 
introduced multiprocessor task scheduling algorithms, and 
the testing of some hypercube programs. 
 
2.1 Fault-Tolerant Alternative Extra-Stage Multistage 

Interconnection Network 
 
Chen et al. proposed two fault-tolerant MINs: Alternative 
Extra-Stage Cube (AESC) and Combined Extra-Stage 
Cube (CESC) [1].  An example of AESC MIN is shown in 
Fig. 1.  The fault-tolerant capabilities of AESC and CESC 
were theoretically analyzed by Chen.  In this article, we 
model these MINs as objects and synthesize them into real 
parallel architectures.  These architectures are then 
simulated using the Modularized Reconfigurable 
Simulator, which will be described in Section III.C.  On 
simulation, the single and double fault-tolerance 
capabilities of AESC and CESC, respectively, are 
experimentally verified using MISSE. 
 
2.2 Multiprocessor Task Scheduling 
 
Recently, Lin et al. proposed several new heuristic 
algorithms for scheduling multiprocessor tasks with tight 



performance bounds [2]-[6].  The performance bounds of 
these algorithms were analyzed theoretically by them.   
 
The scheduling algorithms modeled and implemented in 
MISSE are Modified Largest Dimension First (MLDF) 
[3], Largest Scheduled Parallelism First (LSPF) [4], 
Largest Scheduled Dimension First (LSDF) [5], and 
Largest Width with Largest Processing Time first 
(LWLPT) [6].  Different hypercube-based parallel systems 
have been specified, modeled, and synthesized using 
MISSE, and the MLDF, LSPF, and LSDF algorithms have 
been used during the simulation process to schedule MP 
tasks on these systems.  The performance bounds 
experimentally obtained reflect the correctness of the 
theoretical results.  Since the LWLPT algorithm schedules 
tasks on an abstract MP system without considering any 
interconnection networks, the implementation of LWLPT 
in MISSE is used to show how different interconnection 
networks, for instance Shared Bus, MIN, and Hypercube, 
affect the performance bounds of the scheduling 
algorithm. 

 
2.3 Hypercube Programs 
 
Based on the Modularized Reconfigurable Simulator, a 
hypercube-based system simulator [7] was developed.  
Since this simulator could execute hypercube programs 
written in C using pre-defined libraries, all existing 
hypercube algorithms and newly invented algorithms 
could be executed and tested in MISSE. 
 

3. MULTI-LEVEL INTELLIGENT SYNTHESIS 
AND SIMULATION ENVIRONMENT 

 
Multi-level Intelligent Synthesis and Simulation 
Environment (MISSE) provides the designer with a 
complete environment for the design of multiprocessor 
systems.  MISSE adopts a top-down design methodology 
such that a global view of the system can be maintained, 
the system under design can be simulated, and its 
performance evaluated at each design level.  As shown in 
Fig. 2, MISSE begins with the designer’s system-level 
specification of a multiprocessor architecture, then it 
models, synthesizes, and simulates the system, and finally 
outputs the architecture-level configuration of the desired 
system. 
 
As shown in Fig. 3, MISSE includes three main aspects of 
multiprocessor design: MP modeling, MP synthesis, and 
MP simulation.  These three design aspects form the three 
branches of the MISSE Y-Chart, which is used to model 
the three phases of the design transformation process of an 
MP system as detailed in the following three subsections. 
MP modeling, as described in Section 3.1, is based on 
Rumbaugh’s Object Modeling Technique [8].  For MP 
synthesis, as described in Section 3.2, two methodologies 
are proposed: Performance Synthesis Methodology (PSM) 
[9], [10] and Intelligent Concurrent Object-Oriented 
Synthesis Methodology (ICOS) [11].  PSM was proposed 
first and then ICOS, an extended work based on PSM, 
improved its synthesis efficiency by incorporating 
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Machine Learning and Fuzzy Logic in the design process 
and by adopting a distributed approach.  Lastly, for MP 
simulation, a Modularized Reconfigurable Simulator is 
proposed in Section 3.3. 
 
3.1 Multiprocessor Modeling 
 
MISSE uses object-oriented techniques to model 
multiprocessor systems.  Each system part is modeled as 
an individual component class which is stored in an 
object-oriented hierarchical part repository for future 
retrieval and use in the Multiprocessor Synthesis phase. 
 
PSM uses an Object Base and a Model Base.  The Object 
Base consists of component parts modeled as objects with 
two types of relationships among them, namely, 
aggregation and generalization [8].  The Model Base 
consists of memory organization based architecture 
models: UMA, NUMA, COMA, and NORMA [13] and 
model-related information.  PSM uses the Model Base to 
map user specifications into architecture models which are 
further refined and implemented using object parts from 
the Object Base.  On the other hand, ICOS relies on a 
Class Hierarchy which is basically similar to the Object 
Base used in PSM, except that a dynamic relationship 
among dependent component classes, known as 
“dependence,” is also modeled.  This dependence 
relationship helps to maintain the precedence among the 
objects to be synthesized in the distributed environment. 
 
MISSE is a system-level  design environment, hence the 
user input is basically system-level design specifications.  
Two different forms of input are used by PSM and ICOS.  
PSM allows the designer to input system-level 
specifications through Functional Models which is a 
combination of the Dynamic Model and Functional Model 
used in Rumbaugh’s Object Modeling Technique (OMT) 
[8].  An example of the Functional Model is illustrated in 
Fig. 4.  ICOS works at a more abstract level by providing 
the designer with a specification language.  An example 
input specifications is given in Fig. 5, which corresponds 
to the Functional Model example in Fig. 4.  Using the 
specification language, the designer can thus specify 
architecture, performance, and synthesis related 
requirements. 
 
3.2 Multiprocessor Synthesis 
 
Two synthesis methodologies: Performance Synthesis 
Methodology (PSM) and Intelligent Concurrent Object-
Oriented Synthesis Methodology (ICOS) have been 
implemented in MISSE.  PSM is an iterative, heuristic 
synthesis methodology, whereas ICOS is a distributed, 
fuzzy, intelligent synthesis methodology. 
 
3.2.1 Performance Synthesis Methodology 
 
Performance Synthesis Methodology (PSM) [9], [10] is a 
simple heuristic-based synthesis methodology for the 

system-level design of multiprocessor systems.  PSM uses 
an Object Base and a Model Base for modeling and 
synthesizing system parts.  Colored Petri Nets used in 
modeling system components and Object Modeling 
Technique used in the design process both contributed to 
the shortening of system development time and to the 
reduction of design cost.  First, user specification 
consisting of functional models and performance 
constraints is translated into architecture models.  Then, 
the system is configured by selecting the method of 
control, the memory organization, the type of processor, 
and the type of system interconnection.  Finally, a 
heuristic design-space exploration algorithm is used to 
generate several near-optimal design alternatives.  The 
best architecture is chosen by evaluating the design 
alternatives using a flexible Performance Estimation 
Formula (PEF) that mainly considers the system level 
design features, such as system throughput (T), utilization 
(U), reliability (R), scalability (S), fault-tolerance (F), and 
cost (C).   

PEF =
× × ×

×
T R S F

U C
(1) 

Several systems were successfully synthesized using this 
top-down object-oriented methodology, thus showing its 
feasibility as a design automation tool for parallel systems. 
 
3.2.2 Intelligent Concurrent Object-Oriented Synthesis 

Methodology 
 
After the successful implementation of PSM in the system 
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level design of MP systems, we have further extended the 
work to improve its synthesis efficiency and to produce 
more balanced designs.  Besides enhancing the use of 
more object-oriented techniques, various other techniques, 
such as distributed synthesis, fuzzy design-space 
exploration, fuzzy specification-guided learning, and 
example-guided learning have all been incorporated into 
the design scheme.  The resulting work was Intelligent 
Concurrent Object-Oriented Synthesis Methodology 
(ICOS) [11]. 
 
First, object-oriented relationships such as aggregation, 
generalization, and dependence; and object-oriented 
operators such as iterator, generator, and updator; both 
are used in the methodology to guide the process of 
component synthesis.  Second, instead of following the 
commonly used centralized control of synthesis tasks, a 
distributed control approach is adopted to manipulate the 
exponential exploration of design space.  Using distributed 
control in ICOS necessitates checking for design 
completion and synthesis rollback, for which a Multi-
token Object-oriented Bi-directional net (MOBnet) model 
[12] was proposed.  Third, since the comparison between 
two or more designs is not a crisp decision, both the 
design-space exploration and the identification of similar 
design configurations during learning should be fuzzified 
for ease of comparison.  Finally, the application of 
machine learning makes the methodology intelligent 
enough to reuse the experiences of previous synthesis 
configurations.  Experiments show all these applied 
techniques contribute to the synthesis efficiency and the 
degree of automation. 
 
3.3 Multiprocessor Simulation 
 
Multiprocessor simulation is much more complicated than 
uniprocessor simulation which itself is already quite a 
complex task.  Different memory organization models, 
system interconnections, and the interaction between 
processors are some features exclusive to multiprocessors, 
which must be correctly and efficiently simulated such 
that the design performance can be more accurately 
estimated at the end of each design level in MISSE. 
 
There are two purposes of simulation in MISSE: (1) the 
performance evaluation of design alternatives during the 
design-space exploration, (2) the final validation of 
estimated performance at the end of each design level. 
 
3.3.1 Modularized Reconfigurable Simulator 
 
Modularized Reconfigurable Simulator (MRS) is an 
object-oriented flexible simulation tool used in MISSE.  
Both hardware and software multiprocessor parts are 
modeled as subsimulators.  Each subsimulator has 

simulation attributes which determine the characteristics 
and the number of a component to be simulated.  The 
unconfigured MRS architecture, as shown in Fig. 6, 
consists of groups of subsimulators.  A group, as enclosed 
within a dotted-line box, consists of subsimulators 
representing the specializations or instances of a 
multiprocessor part.  Besides the actual hardware and 
software parts of a multiprocessor, there are two more 
components: the system workloads and the performance 
monitor.  A combination of the system workloads is used 
to generate the simulation workload, and the function of 
the system monitor is to collect dynamic performance 
information of the system under simulation. 
 
3.3.2 MRS Simulation Procedure 
 
As shown in Fig. 7, the input to MRS is the detailed 
configuration of the system as synthesized in the MP 
Synthesis phase of MISSE.  This information is used to 
configure the MRS architecture.  Each simulation attribute 
is configured according to the input information which 
may consist of the type of memory organization (shared or 
unshared, global or distributed), the kind of global 
interconnection, the total number of processors, etc.   One 
subsimulator is selected from each group of subsimulators.  
An example of a configured MRS architecture is shown in 
Fig. 8.  
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A simulation workload is also generated using the system 
workloads component of MRS, which contains several 
predefined workloads, such as random independent tasks, 
random dependent tasks, pre-determined memory access 
proportions, and pre-determined system interconnection 
utilization.  One or more of these workloads are used to 
create a simulation workload which when used in the 
simulation process gives the desired performance figures.  
Fig. 9 shows the various workloads, the different 
performance characteristics, and the relationships among 
them.  By executing MRS with one or more workloads, 
one can evaluate the corresponding performance 
characteristics of a design alternative.  Different types of 
workloads are used for the evaluation of different 
performance characteristics such that the results can be 
more accurate.  Once the MRS is configured and the 
simulation workload generated, the system monitor is 
initialized so that it can begin collecting the desired 
performance results of the system under simulation.  
Finally, the configured Modularized Reconfigurable 
Simulator is executed with the generated simulation 
workload and the performance readings collected by the 
initialized performance monitor. 
 
 3.3.3 Advantages of MRS 
 
MRS was developed using the basic fact that any two 
design alternatives of the same system usually differ in 
only one or two design characteristics.  This small 
difference between design alternatives allows the easy 
transition from the simulation of one design alternative to 
that of another through a simple reconfiguration of MRS.  
The reconfiguration of MRS involves direct replacements 
of subsimulator modules and/or reconfiguration of 
simulation attributes of currently used subsimulator 
modules.  For example, if one design alternative was a 
1024-processor hypercube and another was a 1536-
processor system connected by a generalized cube with no 

difference in any other design characteristics, then the 
former can be reconfigured into the latter by replacing the 
hypercube system interconnection subsimulator module 
with a generalized cube MIN subsimulator module and the 
number of PE in the Cluster subsimulator reconfigured 
from 1024 to 1536.  On reconfiguration of MRS, the 
simulation workloads have to be regenerated and the 
performance monitor re-initialized so that the system can 
be re-simulated. 
 
Besides the ease of design transformation, MRS is also 
flexible and extendible.  New architecture, protocols, and 
components can be easily included in MRS by creating the 
corresponding subsimulator modules.  MRS is both 
technology and implementation independent since no 
technology specific information is used and the 
implementation of the subsimulators into hardware or 
software components are not implied.  The architecture of 
an example hypercube simulator is shown in Fig. 10. 
 
3.4 MISSE Design Levels 
 
MISSE follows a top-down design methodology with each 
design cycle consisting of modeling, synthesis, and 
simulation.  This cycle occurs at each design level.  
Between two design cycles, levels change from a higher 
design level into a more detailed design level.  As shown 
in Fig. 11, MISSE considers four design levels: system 
level, cluster level, node level, and instruction level.  First, 
at the system level, the user-given system level 
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specifications are analyzed and an object-oriented MP 
model created, then either PSM or ICOS is applied to 
synthesize this model into a system-level description of 
the MP architecture which may include the total number 
of processors, the total amount of RAM, the global 
interconnection (shared bus, multistage interconnection 
network, or hypercube), and the control scheme (SIMD or 
MIMD, synchronous or asynchronous).  This system level 
MP architecture is simulated by configuring MRS based 
on the architecture description. 
 
Second, once the system level performance characteristics 
are verified through simulation, the MP model is then 
perceived at the cluster level, where the MP model is 
synthesized into a cluster level architecture description 
which may consist of the number of processors per cluster, 
the amount of cluster memory, the type of cluster 
interconnection, and the cluster control scheme.  MRS is 
now configured to simulate the various design alternatives 
at the cluster level.  One or more of the alternatives are 
chosen for further synthesis.  Then, the MP model is 
viewed at the node level.  A node is the basic computation 

unit in MISSE and includes a CPU, local memory, and 
local cache.  Synthesis at this level results in a node level 
description of the system, consisting of the type of CPU 
and the amount of local memory and local cache.  
Simulation at this level provides a more accurate 
estimation of the system performance since the type of 
CPU and the other node level characteristics are already 
determined.  Finally, at the instruction level, the MP 
model is viewed as a collection of interacting instruction 
set processors.  Since MISSE is basically a system level 
design environment, the CPU is chosen from existing 
ones, rather than resynthesized, hence there is no actual 
synthesis at this level, but this level is still considered such 
that actual parallel programs can be simulated and a more 
realistic performance estimation of the MP system 
obtained.  This simulation may be trace-driven using 
program traces.  
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The input Functional Model and the specification input 
illustrated in Fig. 4 and Fig. 5, respectively, were 
synthesized using MISSE.  The results of synthesis at each 
design level are shown in Fig. 12 for both PSM and ICOS.  
The system level design results in an 8-cluster system 
interconnected using the hypercube connection, the 
method is SIMD, and the total system memory is 256 MB.  
The cluster level design results in each cluster containing 
4 processing elements (PEs) interconnected by a shared 
bus with 32 MB of cluster memory.  The node level 
design results in each node having a SPARC RISC CPU, 1 
MB local memory, and 256 KB local cache. 

 

4.  CONCLUSION AND FUTURE WORK 
 
MISSE, a Multi-level Intelligent Synthesis and Simulation 
Environment, provides the designer with a complete 
environment for the system level design of multiprocessor 
systems.  Using such an environment increases the 
productivity of a designer as it reduces the design time and 
eliminates the interchange of design formats between two 
successive design phases.  The successful application of 
object-oriented techniques in all the three phases of MP 
design has not only simplified the manipulation of system 
components, but also increased synthesis efficiency [11]. 
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Besides the design of complete MP systems, MISSE can 
also be used for verifying design characteristics of partial 
systems or system parts such as the introduction of a new 
interconnection architecture and the verification of its 
capability of fault-tolerance.  In addition to hardware 
design, software can also be tested within the MISSE 
environment.  Example such as multiprocessor task 
scheduling algorithms and parallel programs were given in 
this article.  One of the most important future work is the 
integration of software development and testing 
techniques into MISSE such that the hardware-software 
codesign [17] of multiprocessor systems can be made 
feasible. 
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